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SHARP GAGLIARDO-NIRENBERG INEQUALITIES VIA
SYMMETRIZATION

Joaquim Martin and Mario Milman

Abstract. We prove Gagliardo-Nirenberg inequalities using certain new symmetriza-

tion inequalities. Our methods are elementary and can be applied in a very general
context.

1. Introduction

Recently, the Sobolev and Gagliardo-Nirenberg inequalities have been sharpened
and extended in different directions. In particular, we mention the works of Cohen-
Meyer-Oru [13], Cohen-DeVore-Petrushev-Xu [11], Cohen-Dahmen-Daubechies-
DeVore [12], where it is shown that the Gagliardo-Nirenberg-Sobolev inequality1

‖f‖Ln′ ≤ C ‖∇f‖L1

can be sharpened to

(1.1) ‖f‖Ln′ ≤ C ‖∇f‖
n−1

n

L1 ‖f‖ 1
n

B
−(n−1)
∞,∞

or even to

(1.2) ‖f‖Ln′ ≤ C ‖∇f‖
n−1

n

BV ‖f‖ 1
n

B
−(n−1)
∞,∞

,

where B
−(n−1)
∞,∞ is the homogeneous Besov space of indices (−(n − 1),∞,∞) (see sec-

tion 2 below).
Ledoux [22] developed a new method to treat (1.1) and obtained the following

extension:

(1.3) ‖f‖Lq ≤ C ‖∇f‖θ
Lp ‖f‖1−θ

B
−θ/(1−θ),∞
∞

, 1 ≤ p < q < ∞, θ =
p

q
.

A special case of (1.3) (p = 2, q = 4) was obtained by Meyer-Rivière [30], who proved

(1.4) ‖f‖L4 ≤ C ‖∇f‖1/2
2 ‖f‖1/2

B−1,∞
∞

,

en route to obtaining

(1.5) ‖∇f‖L4 ≤ C
∥∥∇2f

∥∥1/2

2
‖f‖1/2

BMO .
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Indeed, recalling2 that ∇ : BMO → BMO−1 ⊂ B−1,∞
∞ (cf. [23, Chapter 16]) we see

that (1.5) follows from (1.4) applied to ∇f. The inequality (1.5) is stronger than the
classical Gagliardo-Nirenberg estimate3

‖∇f‖L4 ≤ C
∥∥∇2f

∥∥1/2

2
‖f‖1/2

L∞ .

There are versions of (1.5) for higher order derivatives and other Lp spaces. For
example, Strzelecki [37] (cf. also [33]) established that4

(1.6) ‖∇f‖L2p ≤ C ‖f‖1/2
BMO

∥∥∇2f
∥∥1/2

Lp , 1 < p < ∞, f ∈ W 2
p ∩ BMO,

or, more generally, 1 < p < ∞, 1 ≤ m < k, θ = m
k , q = k

mp,

‖∇mf‖Lq ≤ C
∥∥∇kf

∥∥1−θ

Lp ‖f‖θ
BMO , f ∈ W k

p ∩ BMO.

In a closely related development, Rivière-Strzelecki (cf. [34] and [37]) have ob-
tained non linear versions of Gagliardo-Nirenberg inequalities: for smooth compactly
supported f they prove

(1.7)
∫

Rn

|∇f |p+2 ≤ C ‖f‖2
BMO

∫
Rn

∣∣∇2f
∣∣2 |∇f |p−2

.

As an application these authors obtained regularity results for solutions of nonlinear
degenerate elliptic systems of the form

−div(|∇u|p−2 ∇u) = G(x, u,∇u),

where G grows like |∇f |p .

Once again, the inequality underlying (1.7) involves the Besov space B−1,∞
∞ (cf.

[34]), [37])

∫
Rn

|f |p+2 ≤ C ‖f‖2
B−1,∞

∞

∫
Rn

|∇f |2 |f |p−2
.

Except for Ledoux, all these authors use sophisticated tools that come from har-
monic analysis: Littlewood-Paley theory, wavelets (cf. [13], [11], [12], [30]), connection
with interpolation theory (cf. [11], [12]), duality between H1 and BMO (cf. [37]).
Ledoux’s methods [22] stand out since they are elementary and based only on the
use of some new, but straightforward, Poincaré inequalities. Nevertheless, Ledoux
has been able to extend (1.3) to general settings, where, in particular, the original
methods are not available.

In this paper, we develop a symmetrization approach to the sharp Gagliardo-
Nirenberg inequalities described above. Our approach hinges on interpolation of the
Ledoux-Poincaré inequalities. For example, in Theorem 1 (i) below, we show that for
f ∈ (W 1

1 + W 1
∞) ∩ Bα

∞,∞, α < 0, we have

(1.8) f∗∗(s) ≤ c(|α| , n) |∇f |∗∗ (s)
|α|

1+|α| ‖f‖
1

1+|α|
Bα∞,∞

,

2BMO−1 is the space of derivatives of functions in BMO.
3For stronger pointwise Gagliardo-Nirenberg inequalities see also Maz’ya-Shaposhnikova [29].
4Observe that (1.6) follows from (1.3) applied with q = 2p, θ = 1/2.
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(here f∗∗(t) = 1
t

∫ t

0
f∗(s)ds, and f∗ is the non-increasing rearrangement of f). In fact,

a similar inequality holds if we replace Bα
∞,∞ by suitable Morrey spaces (cf. Theorem

1 (ii) below).
Let X be a rearrangement invariant space (see section 2 below). From (1.8) it

follows that

‖f‖X ≤ c
∥∥|∇f |∗∗∥∥ |α|

1+|α|
X |α|

1+|α|
‖f‖

1
1+|α|
Bα∞,∞

,

where if a > 0
Xa = {f : |f |a ∈ X, with ‖f‖Xa

= ‖|f |a‖1/a
X }.

In particular, for X = Lq and α = 1−n/p, we recover (1.3) for p > 1. The case p = 1
also follows by first observing that (1.8) readily implies the weak-type inequality
(1, n/(n − 1)), and, consequently, the strong type (1, n/(n − 1)) follows by Maz’ya’s
truncation principle (cf. [18] and also [22]).

In this fashion we can also handle the nonlinear inequalities of Rivière-Strzelecki
type. To give a flavor of the results, we show here5 an easy approach to an inequality
closely related to (1.7). Indeed, suppose that p ≥ 2. Then

∫
Rn

|f |p+2 =
∫ ∞

0

(f∗)p (f∗)2

≤ c ‖f‖B−1
∞∞

∫ ∞

0

(f∗)p |∇f |∗∗ (by (1.8))

≤ c ‖f‖B−1
∞∞

∫ ∞

0

(f∗(t))
p+2
2

(
1
t

∫ t

0

(f∗(s))
p−2
2 |∇f |∗ (s)ds

)
dt.

Therefore, by Cauchy-Schwartz and Hardy’s inequalities,

∫
Rn

|f |p+2 ≤ c ‖f‖B−1
∞∞ (

∫
Rn

|f |p+2)1/2(
∫ ∞

0

(f∗(s))p−2 |∇f |∗ (s)2dt)1/2,

and, rearranging terms, we have obtained∫
Rn

|f |p+2 ≤ C ‖f‖2
B−1

∞∞

∫ ∞

0

(f∗(s))p−2 |∇f |∗ (s)2dt.

Applying the last inequality to ∇f gives∫
Rn

|∇f |p+2 ≤ c ‖f‖2
BMO

∫ ∞

0

(|∇f |∗)p−2 (
∣∣∇2f

∣∣∗)2.
The motivation for the next result comes from our recent work on sharp Sobolev

inequalities. In this connection, note that the new Gagliardo-Nirenberg inequalities
provide a sharpening of the classical Sobolev inequalities. For example, if 1 ≤ p <
n, 1

p∗ = 1
p − 1

n , and θ = p
p∗ , then (1.3) reads

(1.9) ‖f‖p∗ ≤ c ‖∇f‖p/p∗

p ‖f‖1−p/p∗

B

p
p−p∗
∞,∞

,

5A somewhat more sophisticated argument involving integration by parts as in [14] or [37] com-
bined with the symmetrization inequality (1.8) gives (1.7) and more (see Theorem 4 below).
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and, therefore, the classical Sobolev inequality

‖f‖p∗ ≤ c ‖∇f‖p

follows from the fact that Lp∗ ⊂ B
p

p−p∗
∞,∞ . However, as is well known, the sharpest

Sobolev inequality involves Lorentz spaces, specifically, for 1 ≤ p ≤ n, 1
p∗ = 1

p − 1
n ,

‖f‖L(p∗,p) ≤ c ‖∇f‖Lp ,

where

(1.10) ‖f‖L(q,r) =
(∫ ∞

0

(
f∗∗(t)t

1
q

)r dt

t

)1/r

, 1 < q < ∞, 0 ≤ r < ∞.

The case p < n is, of course, classical, but the limiting case p = n, improving on [27],
[8], [19] and the references therein, was formulated in this fashion only recently in
Bastero-Milman-Ruiz [2]. It requires defining the limiting Lorentz spaces L(∞, q), by
replacing in (1.10) f∗∗ by the oscillation f∗

o (t) := f∗∗(t) − f∗(t). The idea of using
the oscillation f∗

o (t) in connection with embeddings seems to have originated in the
work of Garsia and Rodemich [17]. The limiting space L(∞,∞) was introduced6 in
[4], where it is shown7 that

BMO ⊂ L(∞,∞),

and, in fact, on a cube

L(∞,∞) is the rearrangement invariant hull of BMO.

To obtain sharp Gagliardo-Nirenberg-Sobolev inequalities with Lorentz spaces we
need to sharpen (1.3). We refine the symmetrization inequality (1.8) as follows (cf.
Theorem 1 (iii) below):

(1.11) f∗∗(s) ≤ c(|α| , n) |∇f |∗∗ (s)
|α|

1+|α|

[(
sup
t>0

t−
α
2 |Ptf(·)|

)∗∗
(s)

] 1
1+|α|

.

Assume |α| < 1− n
p . Then from (1.11) and Hölder inequality it follows that for all

0 < φ ≤ 1 we have

‖f‖L(p∗,φp) ≤ c ‖∇f‖
|α|

1+|α|
Lp

∥∥∥∥
(

sup
t>0

t−
α
2 |Ptf(·)|

)∥∥∥∥
|α|

1+|α|

L( pn
n−(1+|α|)p

, φp
1+|α|(1−φ) )

.

We can interpret the condition
∥∥(

supt>0 t−
α
2 |Ptf(·)|)∥∥

L( pn
n−(1+|α|)p

, φp
1+|α|(1−φ) )

< ∞
as a Triebel-Lizorkin condition corresponding to the space Fα

L( pn
n−(1+|α|)p

, φp
1+|α|(1−φ) ),∞

(cf. Jawerth [20] for an account of the basic theory of Triebel-Lizorkin spaces).
The Gagliardo-Nirenberg effect is achieved since with weaker integrability condi-
tions on the gradient, namely ‖∇f‖Lp < ∞, we improve the optimal integrability
to ‖f‖L(p∗,p) ≤ ‖f‖L(p∗,φp) < ∞ if we assume the extra Triebel-Lizorkin condition.

6For more on spaces defined in terms of oscillation see [10] and [32].
7The containment BMO ⊂ L(∞,∞) is proved in [4] when the domain is a cube; the general

result for f ∈ L1 + L∞ is in [35].



SHARP GAGLIARDO-NIRENBERG INEQUALITIES 53

The study of the limiting case p = n led us to consider the following symmetrization
inequality (cf. [2] and more recently [25] for a more general formulation):

f∗
o (t) ≤ ct1/n(∇f)∗∗(t), f ∈ C∞

0 ,

which we can rewrite as

(1.12) f∗
o (t) ≤ c[t1/n(∇f)∗∗(t)]θf∗

o (t)1−θ, 0 ≤ θ ≤ 1.

Suppose that 1
r = (1−θ)

p∗ + θ
s , 1

q = 1−θ
q0

+ θ
q1

, 0 ≤ θ ≤ 1. Then, from (1.12) and Hölder’s
inequality we get the classical Gagliardo-Nirenberg inequality

(1.13) ‖f‖L(r,q) ≤ c ‖∇f‖1−θ
L(p,q0)

‖f‖θ
L(s,q1)

,

in its formulation for Lorentz spaces. Note that when θ = 0 and q0 = q = p, r = p∗,
(1.13) gives back the sharp Sobolev inequality (1.9) up the end point p = n. The
same method works for domains using the symmetrization inequalities of [25], and
the fractional case follows likewise from the symmetrization inequalities in [24].

In conclusion, we should mention that there is a well known connection between
Gagliardo-Nirenberg inequalities and interpolation/extrapolation which is expressed
in part by the equivalence between inequalities of the form

‖x‖Z ≤ ‖x‖1−θ
X0

‖x‖θ
X1

and the embedding

(1.14) (X0, X1)θ,1 ⊂ Z.

This is well known (cf. [5]) and is exploited for example in [12]. The connection with
extrapolation (cf. [21]) takes into account the constants of embeddings of the type
(1.14). (In this connection see also [6], [7], [28], [31], the references therein, as well as
our forthcoming paper [26], where we also deal with the connection with the Calderón
product method (see also the discussion preceding (1.13)).

2. Preliminaries

In this section we consider a brief description of the spaces we shall deal with in
this paper.

Let Pt = et�, t ≥ 0, be the heat semigroup on R
n. For α ∈ R, α < 0, the

homogeneous Besov space Bα
∞,∞ (see for example [22] and the references quoted

therein) is the space of tempered distributions f on R
n for which the Besov norm

‖f‖Bα∞,∞
= sup

t>0
t−α/2 ‖Ptf‖∞

is finite.
For α < 0, the Morrey spaces Mα

∞ are defined by the condition

‖f‖Mα∞
:= sup

r>0, x∈Rn

r−α |fr(x)| < ∞,

where we let
fr(x) =

1
|B(x, r)|

∫
B(x,r)

f(z)dz, r > 0, x ∈ R
n.

A rearrangement invariant space (r.i. space), X is a Banach function space of
Lebesgue measurable functions R

n endowed with a norm ‖·‖X that satisfies the Fatou
property and is such that, if f ∈ X, and g∗ = f∗, then g ∈ X and ‖g‖X = ‖f‖X .
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Some important examples of r.i. spaces are the Lp spaces, Lorentz spaces L(p, q) and
Orlicz spaces (see [3]).

Every r.i. space X has a representation as a function space on Xˆ(0,∞) such that8

‖f‖X = ‖f∗‖Xˆ(0,|Ω|) .

Since it will simplify our considerations, we assume throughout what follows that
we are working with r.i. spaces such that9

‖f∗‖X � ‖f∗∗‖X ,

where as usual, the symbol f � g will indicate the existence of a universal constant
c > 0 (independent of all parameters involved) so that (1/c)f ≤ g ≤ c f , while the
symbol f � g means that f ≤ c g.

3. Gagliardo-Nirenberg inequalities with Besov spaces of negative order

The purpose of this section is to establish the following:

Theorem 1. Let α < 0. Then
(i) for every f ∈ (W 1,1 + W 1,∞) ∩ Bα

∞,∞, we have

f∗∗(s) ≤ c(|α| , n) |∇f |∗∗ (s)
|α|

1+|α| ‖f‖
1

1+|α|
Bα∞,∞

;

(ii) for every f ∈ (W 1
1 + W 1

∞)∩ Mα
∞ we have

f∗∗(s) ≤ c(|α| , n) |∇f |∗∗ (s)
|α|

1+|α| ‖f‖
1

1+|α|
Mα∞

.

(iii) Let f ∈ (W 1
1 + W 1

∞) be such that
(
supt>0 t−

α
2 |Ptf(·)|) ∈ L1 + L∞. Then,

f∗∗(s) ≤ c(|α| , n) |∇f |∗∗ (s)
|α|

1+|α|

[(
sup
t>0

t−
α
2 |Ptf(·)|

)∗∗
(s)

] 1
1+|α|

, s > 0.

We give the proof of Theorem 1 below, but, before that, we need to develop a
suitable interpolation tool. Indeed, a crucial step in the proof of these results is the
computation of certain K−functionals associated with homogeneous Sobolev spaces,
which we shall treat in the next subsection.

3.1. Interpolation of Sobolev spaces. The K−functional for the pair (W 1
1 ,W 1

∞)
has been computed by DeVore-Scherer [16],

(3.1) K(t, f ;W 1
1 ,W 1

∞) ≈
∑
|α|≤1

∫ t

0

(Dαf)∗(s)ds.

However, in our development we need a precise estimate of the K−functional for
the corresponding homogeneous pair (W̊1

1, W̊
1

∞), which is not explicitly stated in the
literature. In connection with this problem, we refer to Coulhon-Auscher [1], Section

8Since the measure space will be always clear from the context, it is convenient to “drop the hat”

and use the same letter X to indicate the different versions of the space X that we use.
9This condition means that X is not too close to L1 (see [3] for a description of these classes of

r.i. spaces.)
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1.3, where the problem10 is explicitly mentioned. We now show that the proof given
in [9] can be suitably modified to prove (3.1).

Theorem 2. Let f ∈ W 1
1 + W 1

∞, and let

K(t, f) = K(t, f ; W̊
1

1, W̊
1

∞) = inf
f=f0+f1

f0∈W 1
1 , f1∈W 1

∞

(‖|∇f0|‖1 + t ‖|∇f1|‖∞) .

Then, with constants independent of f, we have

(3.2) K(t, f) �
∫ t

0

|∇f |∗ (s)ds.

Proof. Obviously ∫ t

0

|∇f |∗ (s)ds ≤ K(t, f).

To prove the reverse inequality we follow the proof in [9] for the non homogeneous
case. Assume first that f ∈ C∞

0 , and let t > 0 be given. For each multi-index α, with
|α| = 1, let

Eα =
{
x : M(Dαf)(x) > (M(Dαf))∗ (t)

}
, E =

⋃
|α|=1

Eα,

where M is the maximal operator of Hardy-Littlewood. It is clear that E is open and
|E| ≤ nt.

Consider the function f̄ = fχEc . We will show below that

(3.3) sup
x,y∈Ec

∣∣f̄(x) − f̄(y)
∣∣

|x − y| ≤ c
∑
|α|=1

M(Dαf)∗(t).

Moreover, since we obviously have
∥∥f̄

∥∥
∞ ≤ ‖f‖∞ , we see that f̄ ∈ Lip(1, Ec). This

given, we can use Whitney’s extension theorem (see [36, Theorem 3, pag 174]) to
produce f0 ∈ Lip(1, Rn) = W 1,∞(Rn) with f0(x) = f̄(x), Dαf0(x) = Dαf̄(x), |α| = 1,
x ∈ Ec, and ‖f0‖W 1,∞ ≤ ∥∥f̄

∥∥
Lip(1,Ec)

. Set f1 = f − f0.

A perusal of the proof ([36, Theorem 3, pag 174]) shows that

sup
x,y∈Rn

|f0(x) − f0(y)|
|x − y| ≤ c′

∑
|α|=1

(M(Dαf))∗ (t),

with c′ = c′(n). Thus,

(3.4) t ‖∇f0‖∞ ≤ c′t
∑
|α|=1

(M(Dαf))∗ (t) �
∑
|α|=1

∫ t

0

(Dαf)∗(s)ds.

We also have

‖|∇f1|‖1 ≤
∑
|α|=1

‖DαfχE‖1 +
∑
|α|=1

‖Dαf0χE‖1 = I1 + I2.

10Indeed, using our formula for the K−functional of (W̊1
1, W̊

1
∞) simplifies the development of

some portions of [1].
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Since |E| ≤ nt,

I1 ≤ n
∑
|α|=1

∫ t

0

(Dαf)∗(s)ds.

On the other hand by (3.4) we get

I2 =
∑
|α|=1

∫
E

|Dαf0| (x)dx

≤
(

sup
x,y∈Rn

|f0(x) − f0(y)|
|x − y|

)
|E|

�
∑
|α|=1

(M(Dαf))∗ (t)t

�
∑
|α|=1

∫ t

0

(Dαf)∗(s)ds.

Therefore

K(t, f) � ‖∇f1‖1 + t ‖∇f0‖∞
�

∑
|α|=1

∫ t

0

(Dαf)∗(s)ds.

Having established (3.2) for f ∈ C∞
0 , we can easily show that (3.2) does in fact

hold for all f ∈ W 1
1 + W 1

∞, using the arguments given in [16], and we shall omit the
details.

Let us now prove (3.3). Let x1, x2 ∈ Ec, r = |x1 − x2| . Let Qi i = 1, 2, be cubes
centered at xi, i = 1, 2, with sides parallel to the coordinate axes with length equal
to 4r/3. Then there exists a constant cn, independent of xi, such that

(3.5) |Q1 ∩ Q2| ≥ cn |Qi| , i = 1, 2.

Let

Hi =
{

y ∈ Qi :
|f(xi) − f(y)|

r
> λ(t)N

}
, i = 1, 2,

where λ(t) =
∑

|α|=1 M(Dαf)∗(t), and N is a positive fixed number to be determined
precisely later.

Using Chebyshev’s inequality and Lemma 2.5 of [9], we get

|Hi| ≤ 1
λ(t)N

∫
Qi

|f(xi) − f(y)|
r

dy ≤ c

λ(t)N

∑
|α|=1

M(Dαf)(xi) |Qi|

≤ c

N
|Qi| (since xi ∈ Ec).

Now choose N so big that C/N < cn/2, where cn is the constant appearing in (3.5).
Therefore, |H1 ∩ H2| < |Q1 ∩ Q2| . Let z ∈ (Q1 ∩ Q2) \(H1 ∪ H2). Then

|f(xi) − f(z)| ≤ rλ(t)N , i = 1, 2,

and, consequently,∣∣f̄(x1) − f̄(x2)
∣∣ = |f(x1) − f(x2)| ≤ cλ(t) |x1 − x2| , ∀x1, x2 ∈ Ec,
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as we wished to show. �

3.1.1. Proof of Theorem 1.

Proof. (i). Fix t > 0. We claim that for all s > 0

(3.6) (f − Ptf)∗∗ (s) ≤ ct1/2 (∇f)∗∗ (s),

where c > 0 depends only on n.

Assuming the validity of (3.6), we obtain

f∗∗(s) ≤ (f − Ptf)∗∗ (s) + (Ptf)∗∗ (s)

� t1/2 (∇f)∗∗ (s) + t
α
2 t−

α
2 (Ptf)∗∗ (s)

≤ t1/2 (∇f)∗∗ (s) + t
α
2 sup

t>0

(
t−

α
2 sup

s>0
(Ptf)∗∗ (s)

)

= t1/2 (∇f)∗∗ (s) + t
α
2 sup

t>0
t−α/2 ‖Ptf‖∞

= t1/2 (∇f)∗∗ (s) + t
α
2 ‖f‖Bα∞,∞

.

It follows that

f∗∗(s) ≤ inf
t>0

(
t1/2 (∇f)∗∗ (s) + t

α
2 ‖f‖Bα∞,∞

)

≤ c(|α| , n) |∇f |∗∗ (s)
|α|

1+|α| ‖f‖
1

1+|α|
Bα∞,∞

.

We now prove (3.6). Our main tool here is the pseudo-Poincaré inequalities of [22],
namely for f in W 1

1 (resp. f ∈ W 1
∞), we have for all t > 0,

(3.7) ‖f − Ptf‖1 ≤ c(n)t1/2 ‖∇f‖1 (resp. ‖f − Ptf‖∞ ≤ c(n)t1/2 ‖∇f‖∞).

We indicate the proofs for the sake of completeness. Write

f − Ptf =
∫

(f(·) − f(· − y)) pt(y)dy,

where pt(y) is the Gauss-Weirstrass kernel. Then

‖f − Ptf‖1 ≤
∫

‖f(·) − f(· − y)‖1 pt(y)dy.

Moreover, since for f ∈ W 1
1 we have ‖f(·) − f(· − y)‖1 ≤ |y| ‖∇f‖1 , the conclusion

follows with c(n) =
∫ |y| e− |y|2

2 (2π)−n/2dy. (The case involving L∞−norms is similar).
Let f ∈ W 1

1 + W 1
∞. Then for any decomposition f = f0 + f1, with f0 ∈ W 1

1 ,
f1 ∈ W 1

∞, we have

f − Ptf = (f0 − Ptf0) + (f1 − Ptf1) .

Let s > 0. Then by (3.7)

‖f0 − Ptf0‖1 + s ‖f1 − Ptf1‖∞ ≤ c(n)1/2t1/2(‖∇f0‖1 + s ‖∇f1‖∞).
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If we combine the last inequality with the formula for the K−functional for the pair
(L1, L∞) (cf. [3, Chapter 5, Theorem 1.6]), we get

s (f − Ptf)∗∗ (s) = inf
f−Ptf=g0+g1

g0∈L1, g1∈L∞

(‖g0‖1 + s ‖g1‖∞)

≤ inf
f=f0+f1

f0∈W 1,1, f1∈W 1,∞

(‖f0 − Ptf0‖1 + s ‖f1 − Ptf1‖∞)

≤ c(n)1/2t1/2 inf
f=f0+f1

f0∈W 1
1 ,f1∈W 1

∞

(‖∇f0‖1 + s ‖∇f1‖∞)

= c(n)1/2t1/2K(s, f).

At this point, we can invoke Theorem 2 to obtain

s (f − Ptf)∗∗ (s) � t1/2s (∇f)∗∗ (s),

and (3.6) follows, thus concluding the proof of Theorem 1.
(ii). We only sketch the proof since it follows mutatis mutandis. Once again the

key ingredients are known pseudo-Poincaré inequalities for averages (cf. [15]): If f ∈
W 1

1 (or f ∈ W 1
∞), then for all t > 0,

‖f − fr‖1 ≤ c(n)r ‖∇f‖1 (resp. ‖f − fr‖∞ ≤ c(n)r ‖∇f‖∞).

From this point onward, the proof is the same as (i).
(iii). By the triangle inequality

|f(x)| ≤ |f(x) − Ptf(x)| + tα/2 sup
t>0

t−
α
2 |Ptf(x)| .

Taking rearrangements

f∗∗(s) ≤ (f − Ptf)∗∗ (s) + tα/2

(
sup
t>0

t−
α
2 |Ptf(·)|

)∗∗
(s)

� t1/2 (∇f)∗∗ (s) + tα/2

(
sup
t>0

t−
α
2 |Ptf(·)|

)∗∗
(s).

Consequently,

f∗∗(s) ≤ inf
t>0

(
t1/2 (∇f)∗∗ (s) + tα/2

(
sup
t>0

t−
α
2 |Ptf(·)|

)∗∗
(s)

)

≤ c(|α| , n) |∇f |∗∗ (s)
|α|

1+|α|

[(
sup
t>0

t−
α
2 |Ptf(·)|

)∗∗
(s)

] 1
1+|α|

,

as we wished to show. �

3.2. Gagliardo-Nirenberg inequalities with BMO terms. In this brief section
we indicate how we can iterate our inequalities to recover, without effort, the results
in Strzelecki [37]. As a matter of fact, we give a slight extension and formulate our
result in the setting of r.i. spaces.

Given k ∈ N, we denote by dkg the vector (∂βg)|β|=k of all derivatives of order
|β| = k.

Given a r.i. space X , W k,X is the Sobolev space

W k,X =
{
f : ∂βf ∈ X, for all β, |β| ≤ k

}
,
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provided with the norm

‖f‖W k,X =
∑

0≤|β|≤k

∥∥∂βf
∥∥

X
.

Theorem 3. Let X be an r.i space. Let 1 ≤ m < k, with k, m ∈ N. Then

‖dmf‖
X( k

m
) �

∥∥dkf
∥∥m

k

X
‖f‖1−m

k

BMO , f ∈ W k,X(Rn) ∩ BMO.

Proof. Let f ∈ W k,X(Rn)∩ BMO, |β| = m and consider ∂βf. Then

∂βf ∈ B−m
∞,∞ with

∥∥∂βf
∥∥

B−m
∞,∞

� ‖f‖BMO .

By Theorem 1,

∣∣∂βf
∣∣∗∗ (s) � ∣∣∇∂βf

∣∣∗∗ (s)
m

1+m

∥∥∂βf
∥∥ 1

1+m

B−m
∞,∞

� ∣∣∇∂βf
∣∣∗∗ (s)

m
1+m ‖f‖

1
1+m

BMO .

Therefore,

|dmf |∗∗ (s) ≤
∑

|β|=m

∣∣∂βf
∣∣∗∗ (s) �

∑
|β|=m

∣∣∇∂βf
∣∣∗∗ (s)

m
1+m ‖f‖

1
1+m

BMO(3.8)

� ∣∣dm+1f
∣∣∗∗ (s)

m
1+m ‖f‖

1
1+m

BMO .(3.9)

Let now |β| = m + 1 and consider

∂βf ∈ B−(m+1)
∞,∞ with

∥∥∂βf
∥∥

B
−(m+1)
∞,∞

≤ ‖f‖BMO .

Then, using the same argument as before,

(3.10)
∣∣dm+1f

∣∣∗∗ (s) � ∣∣dm+2f
∣∣∗∗ (s)

m+1
m+2 ‖f‖

1
m+2
BMO .

Combining (3.8) and (3.10) we have that

|dmf |∗∗ (s) �
(∣∣dm+2f

∣∣∗∗ (s)
m+1
m+2 ‖f‖

1
m+2
BMO

) m
m+1

‖f‖
1

m+1
BMO

=
∣∣dm+2f

∣∣∗∗ (s)
m

m+2 ‖f‖
2

m+2
BMO .

Let k = m + j. Iterating the previous process j − 2 times, we get

|dmf |∗∗ (s) � ∣∣dkf
∣∣∗∗ (s)

m
k ‖f‖

k−m
k

BMO ,

which implies

‖dmf‖
X( k

m
) �

∥∥dkf
∥∥m

k

X
‖f‖1−m

k

BMO ,

as we wished to show. �
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3.3. Nonlinear Gagliardo-Nirenberg inequalities. We provide a new approach
and extensions to the work of Rivière-Strzelecki (cf. [34] and [37]) mentioned in the
Introduction. Our approach is amenable to further generalizations.

Theorem 4. Let p ≥ 2. Then, for every f ∈ C∞
0 (Rn),∫

Rn

|f |p+1 � ‖f‖B−1
∞,∞

∫
Rn

∣∣∇2f
∣∣2 |∇f |p−2

.

Consequently,

(3.11)
∫

Rn

|∇f |p+1 � ‖f‖BMO

∫
Rn

∣∣∇2f
∣∣2 |∇f |p−2

.

Proof. Let f ∈ C∞
0 (Rn). Since p + 1 ≥ 2, integrating by parts, we obtain

‖|∇f |‖p+1 = −
∫

Rn

div
(
|∇f |p−1 ∇f

)
f.

From ∣∣∣div
(
|∇f |p−1 ∇f

)∣∣∣ ≤ (p − 1 +
√

n) |∇f |p−1 ∣∣∇2f
∣∣

we get

‖|∇f |‖p+1 ≤ (p − 1 +
√

n)
∫

Rn

|∇f |p−1 ∣∣∇2f
∣∣ |f | .

Let I =
∫

Rn |∇f |p−1 ∣∣∇2f
∣∣ |f | . Then

I =
∫ ∞

0

(
|∇f |p−1 ∣∣∇2f

∣∣ |f |)∗
(s)ds =

∫ ∞

0

(
|∇f | p−2

2 + p
2

∣∣∇2f
∣∣ |f |)∗

(s)ds

≤
∫ ∞

0

(
|∇f | p

2

)∗
(s)f∗(s)

(
|∇f | p−2

2
∣∣∇2f

∣∣)∗
(s)ds

=
∫ ∞

0

|∇f |∗ (s)
p
2 f∗(s)

(
|∇f | p−2

2
∣∣∇2f

∣∣)∗
(s)ds

≤
∫ ∞

0

|∇f |∗∗ (s)
p
2 f∗∗(s)

(
|∇f | p−2

2
∣∣∇2f

∣∣)∗
(s)ds.

Therefore, by Theorem 1 and Hölder’s inequality,

I � ‖f‖1/2

B−1
∞,∞

∫ ∞

0

|∇f |∗∗ (s)
p+1
2

(
|∇f | p−2

2
∣∣∇2f

∣∣)∗
(s)ds

≤ ‖f‖1/2

B−1
∞,∞

(∫ ∞

0

|∇f |∗∗ (s)p+1

)1/2 (∫ ∞

0

((
|∇f | p−2

2
∣∣∇2f

∣∣)∗
(s)

)2

ds

)1/2

� ‖f‖1/2

B−1
∞,∞

(∫
Rn

|∇f |p+1

)1/2 (∫
Rn

∣∣∇2f
∣∣2 |∇f |p−2

)1/2

and the result follows. �

Remark 1. An analogous result holds for Morrey spaces and can be proved using the
second part of Theorem 1. We leave the details to the interested reader.



SHARP GAGLIARDO-NIRENBERG INEQUALITIES 61

References

[1] P. Auscher and T. Coulhon, Riesz transform on manifolds and Poincaré inequalities, Ann. Sc.
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Équations aux Dérivées Partielles, 1997–1998, Exp. No. XVI, 16 pp., École Polytech., Palaiseau,
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