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ENERGY DECAY FOR DAMPED WAVE EQUATIONS ON
PARTIALLY RECTANGULAR DOMAINS

Nicolas Burq and Michael Hitrik

Abstract. We consider the wave equation with a damping term on a partially rec-
tangular planar domain, assuming that the damping is concentrated close to the non-

rectangular part of the domain. Polynomial decay estimates for the energy of the solution

are established.

1. Introduction and statement of result

The purpose of this note is to show how the methods of [4], [5] apply to estimate
the energy decay rates for the damped wave equation on a class of planar domains,
including some ergodic billiards. In a situation when the geometric control condition
of Bardos, Lebeau, and Rauch [1] does not hold, we obtain a polynomial decay es-
timate for the energy of the damped wave, with respect to a stronger norm of the
initial data. In order to formulate the main result, we shall begin by recalling some
standard notation and assumptions.

Let Ω ⊂ Rn, n ≥ 2, be a bounded connected domain, with ∂Ω ∈ C∞. When
0 ≤ a ∈ L∞(Ω) is a non-negative smooth function on Ω, we consider the following
initial-boundary value problem,

(1.1)

⎧⎨⎩
(−D2

t − Δ + 2ia(x)Dt

)
u = 0, (t, x) ∈ R+ × Ω,

u = 0 on R+ × ∂Ω,
u|t=0 = u0 ∈ H1

0 (Ω), Dtu|t=0 = u1 ∈ L2(Ω).

Here Dt = ∂t/i and we shall assume throughout that the damping coefficient a does
not vanish identically.

Associated with the evolution problem (1.1) is the solution operator U(t) = eitA,
t ≥ 0, acting in the Hilbert space of the Cauchy data H = H1

0 (Ω) × L2(Ω) and
mapping (u0, u1) ∈ H to (u(t, ·), Dtu(t, ·)). Here we equip H with the norm∣∣∣∣∣∣∣∣ (

u0

u1

) ∣∣∣∣∣∣∣∣2
H

= ||∇u0 ||2L2 + ||u1 ||2L2 .

The infinitesimal generator A of the semigroup U(t) is the operator

(1.2) A =
(

0 1
−Δ 2ia(x)

)
: H → H,
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with the domain D(A) =
(
H2 ∩ H1

0

) × H1
0 . It follows that the spectrum of A is

discrete, and from [8] we recall that if λ ∈ C is an eigenvalue of A then 0 < Im λ ≤
2|| a ||L∞ .

For future reference, let us notice that when U ∈ D(A), then Im 〈AU,U〉H ≥ 0 and
hence

(1.3) || (λ − A)−1 ||L(H,H) ≤ 1
|Im λ| , Im λ < 0.

In this note we shall be concerned with the energy of the solution u(x, t) of (1.1)
at time t,

(1.4) E(u, t) =
1
2

∫
Ω

(
|∇xu|2 + |Dtu|2

)
dx.

It is easily seen that E(u, t) is nonincreasing as t → ∞ and from [8] we may also
recall that E(u, t) → 0 as t → ∞, for each (u0, u1) ∈ H. Under the geometric control
condition stating that there exists T0 > 0 such any billiard trajectory in Ω of length
≥ T0 meets the open set {x; a(x) > 0}, the uniform exponential decay of the energy
has been established by Bardos, Lebeau, and Rauch [1]. In the general case, without
any assumptions on the underlying dynamics, it has been proved by Lebeau [8] that
the decay rate of the energy is always logarithmic, provided that the initial data in
(1.1) are measured with respect to a stronger norm. In this note, we shall derive a
polynomial decay estimate for the energy, for a class of planar domains and damping
regions, in the case when the geometric control condition of [1] fails to hold.

We shall consider the class of partially rectangular domains Ω ⊂ R2. By this
we mean that Ω is connected, has a boundary that is piecewise C∞, and contains a
rectangle R ⊂ Ω, such that if we decompose the boundary of R into pairs of parallel
segments, ∂R = Γ1 ∪ Γ2, then Γj ⊂ ∂Ω for at least one j, say for j = 1. We shall
write Ω = R ∪ W , where W is the non-rectangular part of Ω.

Example. The Bunimovich stadium S, defined as the union of a rectangle R =
{(x, y);x ∈ [0, 1], y ∈ [0, 2β]}, β > 0, with two semicircular regions centered at (0, β)
and (1, β), with radius β, which lie outside of R, is a partially rectangular domain.
It is well known [2] that the geodesic flow in S, obeying the law of reflection at the
boundary, is ergodic. In what follows, the ergodicity of the underlying classical flow
in Ω will not play any special role in our considerations.

Theorem 1.1. Let Ω ⊂ R2 be a partially rectangular domain, Ω = R ∪ W , and let
0 ≤ a ∈ C(Ω) be such that a > 0 in W , the closure of W in Rn. Then for each k > 0
there exists a constant Ck > 0 such that for each (u0, u1) ∈ D(Ak) we have

(1.5) E(u, t)1/2 ≤ Ck
(log t)

k
2 +1

t
k
2

|| (u0, u1) ||D(Ak), t ≥ 2.

Remark. We notice that in the case when the damping coefficient a vanishes outside
of a neighborhood of W in Ω, the geometric control condition of [1] fails, due to
the existence of the invariant set for the classical flow constituted by the bouncing
ball orbits parallel to the pair of segments Γ2 and staying within the rectangle R.



ENERGY DECAY FOR DAMPED WAVE EQUATIONS 37

Therefore (see [1]), no uniform decay estimate for the energy with respect to the
energy norm of the initial data is possible.

Theorem 1.1 is proved in section 2. We shall finish this section by briefly discussing
the issue of optimality of the bound (1.5). First, arguing heuristically on the classical
level, let us notice that every ray starting in the interior of the rectangle and forming
an angle of size 1

k , k  1, with the direction of Γ2 will reach the non-rectangular part
of the domain after a time which is of the order ∼ k. When discussing the quantum
picture, for simplicity, we shall replace the rectangle R by an infinite strip of the form
Rx × [0, π]y and consider the wave evolution of the functions ek(x, y) = ϕ(x) sin ky,
ϕ ∈ S(R), ϕ̂ ∈ C∞

0 (R), ||ϕ ||L2 = 1. Here ϕ̂(ξ) =
∫

e−ixξϕ(x) dx is the Fourier
transform of ϕ. Then ek is an O(1)-quasimode for the Dirichlet Laplacian ΔD in
Rx × [0, π]y, and a simple calculation shows that

(1.6)
(
cos t

√
−ΔD

)
ek = (cos tk) ek + O

(
t

k

)
, |t| ≤ k → ∞.

These heuristic considerations suggest that the optimal energy decay estimate in
Theorem 1.1, modulo an ε-loss, should be of the form

(1.7) E(u, t)1/2 ≤ Oε(1)
t1−ε

|| (u0, u1) ||D(A), ε > 0.

(Remark that taking t = εk, ε � 1 in (1.6) and letting k tend to infinity shows that
(1.7) cannot hold if ε < 0.)

In section 3 we shall describe a class of examples of C∞-damping coefficients a for
which we are able to improve the result of Theorem 1.1 and obtain an estimate of the
form (1.7).

Theorem 1.2. Assume that a ∈ C∞(Ω) is a damping coefficient satisfying the as-
sumptions of the beginning of section 3 and in particular (3.1), (3.2), for some m > 4.
Then we have for k > 0 and ε > 0,

(1.8) E(u, t)1/2 ≤ Ok,ε(1)

t
k

1+ 4
m

−ε
|| (u0, u1) ||D(Ak), t ≥ 2.

In particular if (3.2) is satisfied for all m > 4, then for each k > 0 and each ε > 0
there exists Ck,ε > 0 such that for each (u0, u1) ∈ D(Ak) we have

(1.9) E(u, t)1/2 ≤ Ck,ε

tk−ε
|| (u0, u1) ||D(Ak), t ≥ 2.

At the present time, we do not know whether one can obtain an estimate of the form
(1.7) for a general continuous, or even smooth, damping term, concentrated near the
non-rectangular part of the domain.

Remark. When this paper was completed, the authors learned of a very recent work
by Kim Dang Phung [9], where a polynomial decay estimate for the energy, with an
unspecified decay rate, was obtained on a partially cubic domain, with the damping
acting in a neighborhood of the boundary except between a pair of parallel square
faces of the cube. An initial glance at [9] shows that the methods of the present paper
are completely different.
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2. Proof of Theorem 1.1

Following [4] and [8], we shall use the stationary methods, and the main point will
be to estimate the resolvent (λ − A)−1 : H → H for λ ∈ R, |λ|  1.

The following result, closely related to Proposition 6.1 of [4], is our starting point.

Proposition 2.1. Let R = [0, 1]x × [0, π]y ⊂ R2 be a rectangle, and let us consider
the stationary problem

(2.1)
(−Δ + 2iaλ − λ2

)
u = f + ∂xg, u|∂R = 0.

Here λ ∈ R, |λ| ≥ 1 and f , g ∈ L2(R). Assume that 0 ≤ a ∈ C(R) is such that

(2.2) [0, 1] � x �→ inf
y∈[0,π]

a(x, y) does not vanish identically.

Then we have

(2.3) ||u ||2L2(R) ≤ O(1)
(
|| f ||2L2(R) + || g ||2L2(R) + λ2

∫
R

a(x, y) |u|2 dx dy

)
.

Proof. When establishing (2.3), it suffices to do so when a = a(x) is a function of x
only. Indeed, assume that (2.3) has already been established in this special case. If
a ∈ C(R) satisfies (2.2), we can take 0 ≤ a1 ∈ C([0, 1]), not identically zero and such
that 0 ≤ a1(x) ≤ a(x, y) when (x, y) ∈ R. Now if u ∈ H1

0 (R) satisfies

(2.4)
(−Δ + 2iλa − λ2

)
u = f + ∂xg,

then

(2.5)
(−Δ + 2iλa1 − λ2

)
u = f + ∂xg + 2iλ(a1 − a)u.

Applying (2.3) to (2.5), we get
(2.6)

||u ||2L2 ≤ O(1)
(
|| f ||2L2 + || g ||2L2 + λ2

∫
R

(a − a1) |u|2 dx dy + λ2

∫
R

a1 |u|2 dx dy

)
,

and the bound (2.3) follows in the general case. In what follows, when proving (2.3),
we shall therefore assume that 0 ≤ a = a(x) ∈ C([0, 1]) is a function of x only, which
does not vanish identically.

When analyzing (2.1), we follow [4], [5] and separate variables. The Dirichlet rea-
lization of −∂2

y on L2((0, π)) has the eigenvalues k2, k = 1, 2, . . . with the correspon-
ding eigenfunctions ek(y) =

√
2/π sin ky, forming an orthonormal basis in L2((0, π)).

Writing

u(x, y) =
∞∑

k=1

uk(x)ek(y),

and similarly for f and g,

f(x, y) =
∞∑

k=1

fk(x)ek(y), g(x, y) =
∞∑

k=1

gk(x)ek(y),
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we see that uk, k = 1, 2, . . . satisfy

(2.7)
(−∂2

x + 2ia(x)λ + k2 − λ2
)
uk(x) = fk(x) + ∂xgk(x), uk(0) = uk(1) = 0.

When analyzing (2.7), we shall first consider the case when k ∈ N is such that
k ≥ |λ|. We then claim that

(2.8) ||uk ||2L2 ≤ O(1)
(|| fk ||2L2 + || gk ||2L2

)
,

and here we do not need the assumption that a does not vanish identically.
Indeed, multiplying the first equation in (2.7) by uk, we obtain, integrating by

parts and taking the real part, that∫ 1

0

|u′
k(x)|2 dx + (k2 − λ2)

∫ 1

0

|uk(x)|2 dx(2.9)

= Re
∫ 1

0

(fk(x)uk(x) − gk(x)∂xuk(x)) dx.

Here the right hand side does not exceed

(|| fk ||L2 + || gk ||L2) (||uk ||L2 + ||u′
k ||L2) ≤ 2 (|| fk ||L2 + || gk ||L2) ||u′

k ||L2 ,

where we also used the Poincaré inequality

||uk ||L2 ≤ ||u′
k ||L2 , uk ∈ H1

0 ((0, 1)).

Another application of the Poincaré inequality combined with (2.9) then immediately
gives (2.8).

We now come to discuss the second case when k < |λ|. Let τ ∈ R be such that
τ2 = λ2 − k2. Then we have

(2.10)
(−∂2

x + 2ia(x)τ − τ2
)
uk(x) = fk(x) + ∂xgk(x) + 2i(τ − λ)a(x)uk(x),

uk(0) = uk(1) = 0.

Now the expression in the left hand side of (2.10) is a one-dimensional stationary
damped wave operator, for which it is well-known [6] that the resolvent bound

(2.11) R0(τ) :=
(−∂2

x + 2iaτ − τ2
)−1

= O

(
1

1 + |τ |
)

: L2((0, 1)) → L2((0, 1))

holds true, since 0 ≤ a ∈ C([0, 1]) is not identically zero. See also [7]. It follows that

(2.12) R0(τ) = O(1) : L2((0, 1)) → H1
0 ((0, 1)), τ ∈ R,

and hence by duality, the same bound holds when R0(τ) is viewed as an operator
from H−1((0, 1)) to L2((0, 1)). Applying these observations to (2.10), we get

(2.13) ||uk ||2L2 ≤ O(1)
(|| fk ||2L2 + || gk ||2L2

)
+ O(1)λ2|| a1/2uk ||2L2 .

Combining the bounds (2.8) and (2.13) and summing with respect to k, we get the
proposition. �

Proposition 2.2. Let Ω ⊂ Rn be a partially rectangular domain, Ω = R ∪ W , and
let 0 ≤ a ∈ C(Ω) be such that a > 0 in W . If we put R(λ) = (−Δ + 2iaλ − λ2)−1,
λ ∈ R, then we have

(2.14) R(λ) = O(|λ|) : L2(Ω) → L2(Ω), |λ| ≥ 1.
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Proof. We may assume that R = [0, 1]x × [0, π]y, with the sides parallel to the x-axis
contained in the boundary of Ω.
When f ∈ L2(Ω), let u ∈ H1

0 (Ω) be the solution of

(2.15)
(−Δ + 2iaλ − λ2

)
u = f, u|∂Ω = 0, |λ| ≥ 1.

We now let 0 ≤ χ ∈ C∞
0 ((0, 1)), 0 ≤ χ ≤ 1, be a cut-off function such that χ = 1

on [ε, 1 − ε]. Here ε > 0 small is to be chosen. Then it follows that χu, viewed as a
function on R, vanishes on its boundary and satisfies in the interior

(2.16)
(−Δ + 2iaλ − λ2

)
χu = χf + [−Δ, χ]u.

Here [−Δ, χ]u = χ′′(x)u − 2∂x(χ′(x)u). An application of Proposition 2.1 gives
therefore that

(2.17) ||χu ||2L2 ≤ O(1)
(
|| f ||2L2 +

∫
ωε

|u|2 dx dy + |λ|2
∫

R

a(x, y) |u|2 dx dy

)
.

Here ωε is a neighborhood of the support of χ′(x), and choosing ε > 0 small enough,
we can achieve that ωε is so close to the vertical sides of ∂R, that it is contained in
the set where a(x, y) is bounded away from 0. It follows that

(2.18) ||χu ||2L2 ≤ O(1)|| f ||2L2 + O(1) |λ|2
∫

Ω

a(x, y) |u(x, y)|2 dx dy.

Now observe that multiplying (2.15) by u, we obtain, integrating by parts and
taking the imaginary part, that

(2.19) 2λ

∫
Ω

a |u|2 dx dy = Im
∫

Ω

fu dx dy.

Hence

(2.20) |λ|
∫

Ω

a |u|2 dx dy ≤ || f ||L2 ||u ||L2 .

and using this in (2.18) we see that

(2.21) ||χu ||2L2 ≤ O(1)|| f ||2L2 + O(1) |λ| || f ||L2 ||u ||L2 .

It remains to estimate the L2-norm of (1−χ)u, and to that end we notice that the
support of this function is contained in the set where a is bounded away from zero.
Therefore, another application of (2.20) shows that

(2.22) || (1 − χ)u ||2L2 ≤ O(1)|| f ||L2 ||u ||L2 , |λ| ≥ 1.

Putting together the estimates (2.21) and (2.22) we get

(2.23) ||u ||L2 ≤ O(1)|| f ||L2 + O(1) |λ|1/2 || f ||1/2
L2 ||u ||1/2

L2 ,

so that

(2.24) ||u ||L2 ≤ O(1) |λ| || f ||L2 .

This completes the proof. �
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With Proposition 2.2 available, we are in the position to estimate the norm of the
resolvent of the operator A in (1.2) on the real axis. In doing so, we notice that a
simple computation, as in [8] and [7], shows that

(2.25) (λ − A)−1 =
(

R(λ)(2ia − λ) −R(λ)
R(λ)(2iaλ − λ2) − 1 −λR(λ)

)
, λ ∈ R.

Here, as in Proposition 2.2, we have written R(λ) = (−Δ+2iλa−λ2)−1. To estimate
the norm (λ − A)−1 as an operator on H = H1

0 × L2, we have to derive bounds on
the operators

(2.26) R(λ) : L2 → H1
0 , R(λ)(2iaλ − λ2) − 1 : H1

0 → L2,

and

(2.27) R(λ)(2ia − λ) : H1
0 → H1

0 .

Now Proposition 2.2 together with an integration by parts argument shows that

(2.28) R(λ) = O(λ2) : L2 → H1
0 ,

and hence by duality,

(2.29) R(λ) = O(λ2) : H−1 → L2.

When estimating the norm of the second operator in (2.26), we use that

R(λ)(2iaλ − λ2) − 1 = R(λ)Δ,

and hence, combining (2.29) together with the fact that the Laplacian Δ : H1
0 → H−1

is continuous, we get

(2.30) R(λ)(2iaλ − λ2) − 1 = R(λ)Δ = O(λ2) : H1
0 → L2.

It remains to estimate the norm in (2.27), and to that end, we write

(2.31) R(λ)(2ia − λ) =
1
λ

(1 + R(λ)Δ).

If f ∈ H1
0 and u = R(λ)Δf ∈ H1

0 then

(2.32)
(−Δ + 2iaλ − λ2

)
u = Δf ∈ H−1,

and hence multiplying (2.32) by u, integrating by parts, and taking the real part, we
get

(2.33) ||u ||2H1
0
− λ2||u ||2L2 ≤ ||Δf ||H−1 ||u ||H1

0
≤ || f ||H1

0
||u ||H1

0
.

Therefore,

(2.34) ||u ||2H1
0
≤ O(1)

(
λ2||u ||2L2 + || f ||2H1

0

)
.

When estimating the L2-norm of u = R(λ)Δf , we use (2.30) to conclude that

(2.35) ||u ||L2 ≤ O(λ2)|| f ||H1
0
,

and combining this estimate with (2.34) we get

(2.36) ||u ||H1
0
≤ O(|λ|3)|| f ||H1

0
.

An application of (2.31) then shows that

(2.37) R(λ)(2ia − λ) = O(λ2) : H1
0 → H1

0 .
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Combining Proposition 2.2 together with (2.28), (2.30), (2.37), and the fact that
A has no real eigenvalues, we get the basic bound

(2.38) (λ − A)−1 = O((1 + |λ|)2) : H → H, λ ∈ R.

We shall finally show how the bound (2.38) allows us to conclude the proof of
Theorem 1.1. In doing so, we shall follow the argument of [8] closely, adapting it to
the present case.

When k > 1 is an integer and x ∈ H, we write, as in [8] and [3], for t > 0,

(2.39) eitA(1 − iA)−kx =
1

2πi

∫
γ

eitλ 1
(1 − iλ)k

(λ − A)−1x dλ.

Here γ = {λ ∈ C;λ = η − i/2, η ∈ R}. Furthermore, when

X = X(t) = γ1

(
t

log t

)1/2

,

where γ1 > 0 is to be chosen, we use the same decomposition of (2.39) as in [8],

eitA(1 − iA)−kx(2.40)

=
1

2πi

1√
2π

∫
γ

∫
R

eitλ 1
(1 − iλ)k

e−(λ−τ)2/2(λ − A)−1x dτ dλ

=
∫

γ

∫
|τ |≤X

· · · +
∫

γ

∫
|τ |≥X

· · · = I1 + I2,

where

(2.41) I1 =
1

2πi

1√
2π

∫
γ

∫
|τ |≤X

eitλ 1
(1 − iλ)k

e−(τ−λ)2/2(λ − A)−1x dτ dλ,

and

(2.42) I2 =
1

2πi

1√
2π

∫
γ

∫
|τ |≥X

eitλ 1
(1 − iλ)k

e−(τ−λ)2/2(λ − A)−1x dτ dλ.

Now combining (2.38) together with a perturbation argument, we see that the
function λ �→ (λ − A)−1x is holomorphic in λ with values in H, in the region below
and including the curve

(2.43) γε0 =
{

λ = η + i
ε0
η2

, |η| ≥ 1
}
∪ {λ = η + iε0, |η| ≤ 1} ,

where ε0 > 0 is small enough but fixed. Also, we see that along γε0 , (λ − A)−1x is
bounded in H by O(1)(1 + |η|)2||x ||H . Therefore, when estimating I1, we may write

(2.44) I1 =
1

2πi

1√
2π

∫
γε0

∫
|τ |≤X

eitλ 1
(1 − iλ)k

e−(τ−λ)2/2(λ − A)−1x dτ dλ.

The contribution to I1 coming from the part of γε0 where |η| ≤ 1 is easily seen to
be bounded by O(e−ε0tX(t))||x ||H , hence decaying exponentially, and therefore we
may concentrate on the part of γε0 where |η| ≥ 1. When estimating the contribution
coming from this part, exactly as in [8], we treat separately the cases when 1 ≤ |η| ≤
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γ2(t/ log t)1/2 and |η| ≥ γ2(t/ log t)1/2. Here γ2 > 0 is to be chosen. The H–norm of
the integrand in I1 coming the part where |η| ≥ 1 is bounded by

(2.45) O(1)exp

(
− tε0

|η|2
)

|η|2
(1 + |η|)k

e−(τ−η)2/2||x ||H .

Here |τ | ≤ γ1(t/ log t)1/2. It follows that the contribution to I1 coming from the
region where 1 ≤ |η| ≤ γ2(t/ log t)1/2 is controlled by

(2.46) O(1)
t

log t

1
tε0/γ2

2
||x ||H ,

which decays as any fixed inverse power of t, provided that γ2 > 0 is sufficiently small.
Having fixed γ2 > 0 small enough, as in [8], we choose γ1 ∈ (0, γ2), and observe that
for |τ | ≤ γ1(t/ log t)1/2 and |η| ≥ γ2(t/ log t)1/2, we have

(2.47)
1
2
(τ − η)2 ≥ δ

(
τ2 + η2

)
, δ > 0.

It follows then that the final contribution to I1 coming from the region where |η| ≥
γ2(t/ log t)1/2 is obtained by integrating over this region

(2.48) O(1)
(

t

log t

)1/2 |η|2
(1 + |η|)k

e−δη2 ||x ||H ,

and this clearly decays rapidly (and even exponentially) as t → ∞. We conclude that
for each N ∈ N,

(2.49) I1 = ON (t−N )||x ||H .

When estimating I2 in (2.42), we continue to follow [8] and write

(2.50) I2 = eitAJ,

where

(2.51) J =
1

2πi

1√
2π

∫
|τ |≥X

∫
γ

1
(1 − iλ)k

e−(τ−λ)2/2(λ − A)−1x dτ dλ.

Since eitA is uniformly bounded on H for t ≥ 0, it suffices to estimate J in the energy
norm, as t → ∞. Exactly as in [8], we then see that we have to estimate the integral

(2.52)
∫ ∞

0

SX− i
2+μe−iπ/8(x) dμ,

where

(2.53) Sτ (x) =
∫

γ

1
(1 − iλ)k

e−(λ−τ)2 (λ − A)−1
x dλ.

Arguing precisely as in [8] and making a contour deformation as in that paper, we
then verify that with τ = X − i

2 + μe−iπ/8, μ ≥ 0,

(2.54) ||Sτ (x) ||H ≤ O(1)
(

e−δ(μ2+X2) +
1

(1 + μ)(μ + X)k

)
||x ||H , δ > 0.

Let us remark here that when deriving (2.54), the bound (1.3) is important.
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It follows from (2.50), (2.52), and (2.54) that the H-norm of I2 does not exceed a
constant times the norm of the vector x multiplied by

(2.55)
∫ ∞

0

(
e(−δ(μ2+X2)) +

1
(1 + μ)(μ + X)k

)
dμ.

Since

(2.56)
∫ ∞

0

d μ

(μ + 1)(μ + X)k
= Ok

(
log X

Xk

)
,

we conclude, recalling the definition of X, that

(2.57) I2 = Ok(1)
(log t)k/2+1

tk/2
||x ||H , t ≥ 2, k = 2, 3, . . .

This completes the proof of Theorem 1.1 in the case when k > 1 is an integer.
Using an interpolation argument as explained in [3], we get the result for a general
k > 0.

Remark. By refining again the analysis above as in section 4 of [3] one could
probably avoid the logarithmic loss in (2.57).

3. Improved decay estimates: an example

In this section, we shall give an example of a class of damping coefficients vanishing
away from a neighborhood of the non-rectangular part of the domain, for which the
result of Theorem 1.1 can be improved, leading to an estimate of the type (1.7). When
doing so, to fix the ideas, we shall let Ω = S be the Bunimovich stadium, defined in
the example preceding the formulation of Theorem 1.1.

When S = R ∪ W , R = [0, 1]x × [0, π]y, we let 0 ≤ a ∈ C∞(S) be such that a > 0
in W . We assume that

(3.1) a−1(0) = [δ, (1 − δ)]x × [0, π]y, 0 < δ � 1,

and that a is independent of y when x is close to δ and 1 − δ. Furthermore, let us
assume for simplicity that close to δ (respectively 1 − δ), we have

(3.2)
dm

dxm
a(x) ≤ 0 (respectively ≥ 0),

for some m ≥ 4. We then immediately deduce the following result.

Lemma 3.1. For any n < m there exists Cn,m > 0 such that∣∣∣a(n)(x)
∣∣∣ ≤ Cn,ma(x)

m−n
m .

Proof. It suffices to consider the case x ≥ (1 − δ). Using Taylor’s formula, we get for
x ≥ (1 − δ),

a(x) =
∫ x

1−δ

(x − s)m−1

(m − 1)!
a(m)(s)ds, a′(x) =

∫ x

1−δ

(x − s)m−2

(m − 2)!
a(m)(s)ds.

As a consequence,

(3.3) |a′(x)| ≤
∫ y

(1−δ)

(x − s)m−2

(m − 2)!
a(m)(s) ds +

∫ x

y

(x − s)m−2

(m − 2)!
a(m)(s) ds,
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with (1 − δ) < y < x to be chosen. To estimate the first integral in (3.3) we use the
bound

(x − s)m−2

(m − 2)!
=

(m − 1)
x − s

(x − s)m−1

(m − 1)!
≤ (m − 1)

x − y

(x − s)m−1

(m − 1!
,

and for the second integral, we use that

(x − s)m−2

(m − 2)!
≤ (x − y)m−2

(m − 2)!
.

We obtain

|a′(x)| ≤ (m − 1)
(x − y)

a(x) + Om(1)(x − y)m−1.

Choosing y so that a(x) = (x − y)m gives the lemma for n = 1. The general case is
similar. �

Let us consider now the stationary problem

(3.4)
(−Δ + 2iλa − λ2

)
u = f ∈ L2(S), u|∂S = 0, λ  1.

As in the proof of Proposition 2.2, we let 0 ≤ χλ ∈ C∞
0 ((0, 1)) be a cut-off function

so that χλ vanishes for x close to 0 or 1.Then the function χλu vanishes on ∂R and
satisfies in the interior of the rectangle,

(3.5)
(−Δ − λ2

)
χλu = χf + χ′′

λu − 2∂x(χ′
λu) − 2iλa(x)χλu.

We choose χλ = χ(λa(x)) with χ = 0 for |x| ≥ 2, and χ = 1 for |x| ≤ 1, so that in
the support of χ′

λ(x) we have

(3.6) a(x) ∼ 1
λ

, λ  1.

From Lemma 3.1 we get the following bounds on the derivative of χλ,

(3.7) |χ′
λ| = |λχ′(λa(x))a′(x)| ≤ O(1)λ

1
m ,

and similarly

(3.8)
∣∣∣χ(n)

λ

∣∣∣ ≤ O(1)λ
n
m , n < m.

We now come to estimate the L2-norms of the functions χ′′
λu, χ′

λu, and λa(x)χλu,
occurring in the right hand side of (3.5). In doing so, we write

χ′
λu =

χ′
λa1/2u

a1/2
,

and using (3.6), (3.7), we get ∣∣∣∣ χ′
λ

a1/2

∣∣∣∣ ≤ O(1)λ
1
2+ 1

m ,

and consequently

(3.9) ||χ′
λu ||L2(R) ≤ O(1)λ

1
2+ 1

m || a1/2u ||L2(S).

Estimating the L2-norm of χ′′
λu in a similar way, we get

(3.10) ||χ′′
λu ||L2 ≤ O(1)λ

1
2+ 2

m || a1/2u ||L2(S).
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Finally, a similar argument shows that

(3.11) || aλχλu ||L2(R) ≤ O(1)λ1/2|| a1/2u ||L2(S).

At this point we can apply Proposition 6.1 of [4] to (3.5) directly, choosing ωx

there to be a neighborhood of the edges x = 0 and x = 1 where a is bounded from
below and consequently χλu vanishes. Using (3.9), (3.10), and (3.11), we get, with
ω = ωx × [0, π]y,

(3.12) ||χλu ||2L2(R) ≤ O(1)
(
|| f ||2L2(R) + λ1+ 4

m || a1/2u ||2L2(S)

)
.

An application of (2.20) in (3.12) gives next

(3.13) ||χλu ||2L2 ≤ O(1)
(
|| f ||2L2 + λ

4
m || f ||L2 ||u ||L2

)
.

It remains to control the L2-norm of (1 − χλ)u, and when doing so we remark that
the support of 1 − χλ is contained in the set where a ≥ 1/λ, λ  1. Using (2.20) for
the second time, we infer that

(3.14) || (1 − χλ)u ||2L2 ≤ O(1)|| f ||L2 ||u ||L2 .

Putting together (3.13) and (3.14) we get the estimate

(3.15) ||u ||L2 ≤ O(1)
(
|| f ||L2 + λ

2
m || f ||1/2

L2 ||u ||1/2
L2

)
,

and finally,

(3.16) ||u ||L2 ≤ O(1) |λ| 4
m || f ||L2 , λ ∈ R, |λ|  1.

Repeating the arguments of section 2, with the bound (3.16) in place of Proposition
2.2, we get the bound

(3.17) (λ − A)−1 = O(1) (1 + |λ|)1+ 4
m : H → H, λ ∈ R,

and Theorem 1.2 follows as before.
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[3] N. Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et

absence de résonance au voisinage du réel, Acta Math. 180 (1998), no. 1, 1–29.
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