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THE VALUATIVE TREE OF A TWO-DIMENSIONAL REGULAR
LOCAL RING

A. Granja

Abstract. We prove that the set of normalized centered real valuations of a two-

dimensional regular noetherian local ring has a natural structure of parameterized,
rooted, non-metric tree performed on the field of real numbers.

1. Introduction

Throughout this paper all the rings considered will be commutative and with unit
element. For a local ring R, we denote by M(R) its maximal ideal and by dim(R)
the Krull dimension of R.

Let R be a noetherian local ring and let us denote by V the valuation space attached
to R, whose elements are functions ν : R −→ R+ = [0,∞] satisfying the standard
axioms of valuations and normalized by ν(M(R)) = min{ν(y); y ∈ M(R)} = 1.

In [FJ1], Favre and Jonsson have shown that (V,≤) has the structure of a parame-
terized, rooted, non-metric tree, when R = C[[X, Y ]] is the power series ring in two
variables X, Y over the complex field C and μ ≤ ν iff μ(f) ≤ ν(f) for all f ∈ R and
μ, ν ∈ V. The tree structure of V provides an efficient means of encoding singularities
given in terms of measures on V. The construction of these measures uses a natural
tree Laplace operator and is developed for a general rooted non-metric tree, with an
increasing parameterization. This is used in [FJ1], [FJ2] and [FJ3] to study curves,
ideals and plurisubharmonic functions in a unified way.

The main tool in [FJ1] is to associate a sequence of key polynomials (SKP) for
each valuation ν ∈ V, which determines and is determined by ν. This is nothing but
the adaptation of MacLane’s method of [M1] and [M2]. Furthermore, among several
others, relations between V and Puiseux series or dual graph are also set up.

The possible extension of the above results to more general rings is discussed in
Appendix E of [FJ1]. In particular, it would be interesting to extend some of them
when either R = K[[X, Y ]] is the power series ring in two variables over a field K (for
instance of positive characteristic or not algebraically closed) or, more generally, when
R is a two-dimensional regular noetherian local ring (perhaps non-equicharacteristic).
In these cases, SKP or Puiseux series fail and we need a different approach.

The objective of this paper is to show that (V,≤) is a parameterized, rooted,
non-metric tree, when R is a two-dimensional regular noetherian local ring.

For this, we consider the sequence of quadratic dilatations {(Rν
i , νi)}λ(ν)

i=0 (with
λ(ν) possibly infinite) of R along ν ∈ V . Here νi is a valuation on Rν

i , whose
restriction to R = Rν

0 is ν. Also and as in [GR] or [L], we consider the multiplicity
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sequence {mν
i }λ(ν)

i=0 attached to the pair (R, ν), where mν
i = min{νi(y); y ∈ M(Rν

i )}
for 0 ≤ i < λ(ν) and mν

λ(ν) = 0, in the case where λ(ν) < ∞. The sequence of

quadratic dilatations determines and is determined by ν, in fact,
⋃λ(ν)

i=0 Rν
i = V is a

valuation ring. Notice that if ν−1(∞) �= {0}, then ν is not the valuation associated
with V and this corresponds with the case of a curve valuation (defined by the prime
principal ideal ν−1(∞)) on the sense of [FJ1], (1.5.5).

There is a kind of valuations of V that play a central role in [FJ1] as well as
in our study: quasimonomial valuations. A valuation ν is quasimonomial if νi is
a monomial valuation for some i ≥ 0. Monomial valuations are nothing but the
valuations induced by a usual monomial valuation on the graduate ring GM(R)(R).
Quasimonomial valuations have two main properties. First, ν is quasimonomial if and
only if the set F(ν) = {i; Rν

i is free} is finite. Here the concept of free or satellite for
some Rν

i cames from the proximity relations on the sequence of quadratic dilatations.
(See, for example, [GR] or [L]). Second and as consequence of our Theorem 18, if
μ < ν, then μ is quasimonomial.

With this background, we can define G(ν) =
∑

i∈F(ν) mν
i for each ν ∈ V, that has

the good properties that allows us to show that (V,≤) is a parameterized (by G),
rooted, non-metric tree.

A part from this Introduction, the paper is organized into four further sections
that we will describe next. The first section is technical in nature and contains con-
cepts and properties about valuations, quadratic dilatations, multiplicity sequence and
proximity relations. Section 3 focuses on the concept and properties of quasimono-
mial valuations. In Section 4, we study the relations between the above sequences
associated with two centered valuations μ and ν on R, provided that μ(f) ≤ ν(f) for
all f ∈ R. The last section is devoted to the proof of our main result, Theorem 29,
which is obtained from several previous results that state the properties of G.

In what follows, R will be a regular noetherian local ring of dimension two and we
will denote by OrdR(f) the usual multiplicity of f ∈ R − {0}, i.e. the non-negative
integer d such that f ∈ (M(R))d and f �∈ (M(R))d+1.

2. Notations and preliminaries

This section is technical in nature and contains the initial concepts, notations and
properties.

We write R+ = R+ ∪ {∞} = [0,∞], where R+ is the set of non-negative real
numbers with 0 ∈ R+ and where we extend addition, multiplication and order on R+

to R+ in the usual way.
A valuation on R is a non-constant function ν : R −→ R+ such that
(V1) ν(xy) = ν(x) + ν(y) for all x, y ∈ R;
(V2) ν(x + y) ≥ min{ν(x), ν(y)} for all x, y ∈ R;
(V3) ν(1) = 0.

Note that ν(0) = ∞ and ν(R) ≥ 0.
A valuation ν is proper if ν(R) �= {0,∞} and is centered if ν is proper and

ν(M(R)) > 0.
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Notice that OrdR is a centered valuation on R by setting OrdR(0) = ∞ and that
if p is a prime ideal of R such that ν−1(∞) ⊂ p, then ν extend to a valuation on Rp

in the obvious form.
The above concept of valuation is a restricted version of the more general con-

cept of Manis valuation when one take a totally ordered abelian group Γ instead
of the additive group of real numbers R, i. e. Manis valuations are non-constant
maps ν : R −→ Γ ∪ {∞} satisfying (V1)-(V3). Furthermore, we obtain the usual
concept of valuation or Krull valuation when ν−1(∞) = {0}. In this case, ν ex-
tends to a Krull valuation (also denoted by ν) on the quotient field K(R) of R,
ν(K(R)−{0}) is a totally ordered subgroup of Γ (called the group of values of ν) and
Vν = {x ∈ K(R); ν(x) ≥ 0} is the valuation ring associated to ν, which is a local ring
with maximal ideal M(Vν) = {x ∈ K(R); ν(x) > 0}. In addition, let us remember
that the rank of a Krull valuation ν (denoted rank (ν)) is the Krull dimension of the
ring Vν and is also the least integer l such that ν(K(R) − {0}) can be embedded as
an ordered group into (Rl,+) endowed with the lexicographic order. In our case, as
dim(R) = 2, we have rank (ν) ≤ 2 by Abhyankar’s inequalities, see, for example, [ZS].

In this form, centered valuations ν on R with ν−1(∞) = {0} are nothing but real
rank one centered Krull valuations on R. Furthermore, if ν is a centered valuation on
R with ν−1(∞) �= {0}, then ν determines a Krull valuation on R of real rank two as
follows: ν−1(∞) is a principal prime ideal generated by an irreducible element f ∈ R
and we can define ω : R − {0} −→ (Z ⊕ R) by ω(g) = (s, ν(g′)) for each g ∈ R − {0},
where g = g′fs, g′ �∈ fR and Z ⊕ R is lexicographically ordered. In particular, with
each centered valuation ν on R it is possible to associate a unique valuation ring V
of K(R) that birationally contains R and such that its associated Krull valuation has
real rank one. Namely, if ν−1(∞) = {0}, then ν is a real rank one centered Krull
valuation and V = Vν is its valuation ring; and if ν−1(∞) �= {0}, then V = Rν−1(∞)

is a discrete valuation ring such that Vω � V = Rν−1(∞). Notice that in the last case
if R/ν−1(∞) is an analytically irreducible ring (for example, if R is a complete or
henselian ring), then the valuation ring Vω (of real rank two) is univocally determined
by the height one prime ideal ν−1(∞).

The converse is also true, every real rank two centered Krull valuation ω such that
p ∩ R �= M(R) determines a centered valuation ν on R as follows: ν(g) = pr2(ω(g))
when g �∈ p ∩ R and ν(g) = ∞ when g ∈ p ∩ R. Here 0 ⊂ p ⊂ M(W ) are the prime
ideals of the valuation ring W of ω and pr2 : R ⊕ R −→ R is the second projection.
The remainder centered Krull valuations of real rank two with p ∩ R = M(R) define
the non-proper valuation ν with ν(M(R)) = ∞ and ν(R − M(R)) = 0.

Finally, we point out that each centered valuation (or Krull valuation) ν on R

extends to a unique valuation ν̂ on the M(R)-adic completion R̂ of R. Note that,
in general, one can have ν−1(∞) = {0} and ν̂−1(∞) �= {0} (or in terms of Krull
valuations 1 = rank (ν) < rank (ν̂) = 2).

Next, we recall the concepts of quadratic dilatation and multiplicity sequence.
A quadratic dilatation of R is a ring R1 = (R[z−1M(R)])q, where

z ∈ M(R) − (M(R))2 and q is a prime ideal of R[z−1M(R)] such that
M(R)R[z−1M(R)] ⊂ q.

For the rest of this section, let us fix a centered valuation ν on R.
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Let (x1, x2) be a base of M(R) such that 0 < ν(x1) ≤ ν(x2) and let us write

A = R

[
x2

x1

]
= R

[
(x1)−1M(R)

]
and ν1 : A −→ R+ the unique extension of ν to A

such that ν1(x2/x1) = ν(x2) − ν(x1). We have ν1(A) ≥ 0, M(R)A = x1A ⊂ Q =
{y ∈ A; ν1(y) > 0} and Rν

1 = AQ is a quadratic dilatation of R, that is called the
quadratic dilatation of R along ν. Moreover, Rν

1 is a regular noetherian local ring
with 1 ≤ dim(Rν

1) ≤ dim(R) = 2 and Rν
1 is univocally determined by ν.

Notice that if dim(Rν
1) = 1, then Q = M(R)A = x1A and Rν

1 = AM(R)A = Ax1A

is the (discrete) valuation ring associated to OrdR. (In fact, ν = a · OrdR for some
a ∈ R, a > 0). If dim(Rν

1) = 2, then ν extends to a centered valuation (also denoted
ν1) on Rν

1 and there exists the quadratic dilatation Rν
2 of Rν

1 along ν1. Thus we have
a (possibly infinite) sequence R = Rν

0 ⊂ Rν
1 ⊂ · · · ⊂ Rν

i ⊂ · · · , such that Rν
i is the

quadratic dilatation of Rν
i−1 along νi−1, i ≥ 1. Here ν = ν0.

We denote by λ(ν) the length of the above sequence. Note that dim(Rj) = 1 for
some j ≥ 0 iff λ(ν) < ∞, and, in this case, ν = a · OrdRλ(ν)−1 for some a ∈ R, a > 0.
Furthermore, ν extends to a centered valuation νi on Rν

i such that ν−1(∞) �= (0) iff
(νi)−1(∞) �= (0), 0 ≤ i ≤ λ(ν). In particular, ν is a Krull valuation iff νi is a Krull
valuation for i ≥ 0.

The sequence {(Rν
i , νi)}λ(ν)

i=0 is called the sequence of quadratic dilatations of R

along ν. We note that
⋃λ(ν)

i=0 Rν
i = Vν is a valuation ring, (see [Ab]) that is called

the valuation ring associated with ν. In fact, Vν is the valuation ring of the Krull
valuation ω defined by ν as above.

As in [GR] or [L], we attach to the pair (R, ν) the multiplicity sequence {mν
i }λ(ν)

i=0

given by mν
i = min{νi(y); y ∈ M(Rν

i )}, for 0 ≤ i < λ(ν) and by mν
λ(ν) = 0, if

λ(ν) < ∞.
On the other hand, let us consider g ∈ R − {0}. The strict transform of (R, gR)

in Rν
1 is the pair (Rν

1 , g1R
ν
1) such that g1R

ν
1 is the unique principal ideal given by

(M(R))dg1R
ν
1 = gRν

1 , where d = OrdRν (g).
In general, for 0 ≤ j ≤ λ(ν) the strict transform of (R, gR) in Rν

j is the pair
(Rν

j , gjR
ν
j ) defined inductively as follows: If j = 0, then (R, gR) = (Rν

j , gjR
ν
j ); and if

j > i and (Rν
j−1, gj−1R

ν
j−1) is the strict transform of (R, gR) in Rν

j−1, then (Rν
j , gjR

ν
j )

is the strict transform of (Rν
j−1, gj−1R

ν
j−1) in Rν

j .
We point out that if λ(ν) < ∞, then gλ(ν)R

ν
λ(ν) = Rν

λ(ν).

Lemma 1. With the above notations, we have the following statements:
1) If λ(ν) = ∞ and gjR

ν
j �= Rν

j for all j ≥ 0, then there exists i0 ≥ 0 such that
OrdRν

j
(gj) = OrdRν

j+1
(gj+1) and mν

j = mν
j+1, for j ≥ i0.

2) If g �∈ (ν)−1(∞), then there exists i0(g) ≥ 0 such that gjR
ν
j = Rν

j , for
j ≥ i0(g). Moreover, ν(g) =

∑
j≥0 mν

j · OrdRν
j
(gj).

Proof. 1) We note that OrdRν
j
(gj) ≥ OrdRν

j+1
(gj+1) and mν

j+1 ≥ mν
j for j ≥ 0. Thus,

there exists i0 ≥ 0 with OrdRν
j
(gj) = OrdRν

j+1
(gj+1) for j ≥ i0.

Let us consider j ≥ i0 and a base (x, y) of M(Rν
j ) with νj(x) = mν

j ≤ νj(y). We
can write gj =

∑
k+l=d aklx

kyl+g′j , with d = OrdRν
j
(gj), g′j ∈ (M(Rν

j ))d+1 and either
akl = 0 or akl �∈ M(Rν

j ) when k+ l = d. Therefore, gj+1 =
∑

k+l=d akl(y/x)l +xhj+1,
with hj+1 ∈ Rν

j+1.
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Since OrdRν
j+1

(gj+1) = d = OrdRν
j
(gj), there exists α, a ∈ Rν

j with a �∈ M(Rν
j ) and

either α = 0 or α �∈ M(Rν
j ) such that

∑
k+l=d aklx

kyl − a(y + αx)d ∈ (M(Rν
j ))d+1.

Thus, and after a suitable change of the base, we can assume α = 0 and write
gj+1 = a(y/x)d + xhj+1, with hj+1 ∈ Rν

j+1.
Now, if νj+1(y/x) < νj+1(x) = νj(x) = mν

j , then y/x �∈ M(Rν
j+1).

So gj+2R
ν
j+2 = Rν

j+2 and we reach a contradiction. Hence, νj+1(y/x) ≥ νj+1(x) =
νj(x) = mν

j and mν
j+1 = mν

j .
2) For 0 ≤ j ≤ λ(ν) , we have νj(gj) = νj+1(gj) = νj+1(xdgj+1) = dmν

j +
νj+1(gj+1), where d = OrdRν

j
(gj), xRν

j+1 = M(Rν
j )Rν

j+1 and νj(x) = mν
j .

If λ(ν) < ∞, then gλ(ν)R
ν
λ(ν) = Rν

λ(ν) and there exists i0(g) ≥ 0 such that gjR
ν
j =

Rν
j , for i0(g) ≤ j ≤ λ(ν).
If λ(ν) = ∞ and gjR

ν
j �= Rν

j for j ≥ 0, then, by 1), there exists i1 ≥ 0 such
that OrdRν

j
(gj) = OrdRν

j+1
(gj+1) = d and mν

j = mν
j+1 for j ≥ i1. Thus, νi1(gi1) ≥∑k

j=i1
dmν

j , for all k ≥ i1 and νi1(gi1) = ∞. So, as νj(gj) ≥ νj+1(gj+1) for j ≥ 0,
we have ν(g) = ∞, which is a contradiction. Hence, there exists i0(g) ≥ 0 such that
gjR

ν
j = Rν

j , for j ≥ i0(g).
Finally, as νj(gj) = 0 for j ≥ i0(g) and νj(gj) = OrdRν

j
(gj) · mν

j + νj+1(gj+1) for
j ≥ 0, then ν(g) =

∑
j≥i mν

j OrdRj
(gj). �

To finish this section we will outline some concepts and results concerning proximity
relations.

For 0 ≤ i < j ≤ λ(ν), we say that Rν
j is proximate to Rν

i if the valuation ring of
OrdRν

i
contains Rν

j . In what follows, P(Rν
i ) = {Rν

j ; Rν
j is proximate to Rν

i } denotes
the set of proximate points of Rν

i , for i ≥ 0 and we note that Rν
j is proximate to Rν

j−1

and at most to one other ring. (See [L]).
We say that Rν

j is free (or a free point) if either j = 0 or j ≥ 1 and Rν
j is proximate

to one ring only, namely Rj−1. Otherwise, we say that Rν
j is satellite (or a satellite

point). Note that R = Rν
0 and Rν

1 are free and also if λ(ν) < ∞, then Rν
λ(ν) is free.

We will denote by F(ν) = {i; Rν
i is free}.

Remark 2. With the above notations, let us assume 0 ≤ i < i + 2 ≤ λ(ν), then
mν

i+1 = mν
i iff Rν

i+2 �∈ P(Rν
i ). (See Lemma 16 of [GR]). Moreover, if P(Rν

i ) is a finite
set, then mν

i =
∑

Rν
j ∈P(Rν

i )

mν
j . (See Lemma 17 of [GR]).

Lemma 3. With the above notations, P(Rν
i ) is a finite set, for 0 ≤ i < λ(ν).

Proof. If P(Rν
i ) is not finite, then λ(ν) = ∞ and for each j > i we can take a

base (x(j)
1 , x

(j)
2 ) of M(Rν

j ) such that M(Rν
i )Rν

i+1 = x
(i+1)
2 Ri+1 and M(Rν

i )Rν
j =

(x(j)
1 )aij x

(j)
2 Rν

j with aij = j − i− 1, j ≥ i + 1. In fact, x
(j)
2 = x

(i+1)
2 /(x(i+1)

1 )j−i−1 for

j ≥ i + 1. Thus, νi+1(x(i+1)
2 ) ≥ (j − i − 1)νi+1(x(i+1)

1 ) and νi+1(x(i+1)
2 ) = ∞.

As M(Ri)Rν
i+1 = x

(i+1)
2 Rν

i+1, then νi(g) = ∞ for all g ∈ M(Rν
i ). In particular,

ν(g) = νi(g) = ∞ for all g ∈ M(R) and ν is not centered, which is a contradiction.
Hence, P(Rν

i ) is a finite set. �
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Remark 4. Note that if P(Rν
i ) = {Rν

i+1, . . . , R
ν
i+h(i)}, with h(i) > 1, then

mν
i > mν

i+1 by Remark 2. Moreover, we have the following possibilities:
1) mν

i+1 = · · · = mν
i+h(i), mν

i = h(i)mν
i+1, Ri+j is satellite for 2 ≤ j ≤ h(i) and

Ri+h(i)+1 is free.
2) mν

i+1 = · · · = mν
i+h(i)−1 > mν

i+h(i) > 0, mν
i = (h(i)−1)mν

i+1 +mν
i+h(i) and Ri+j

is satellite for 2 ≤ j ≤ h(i) + 1.

Lemma 5. With the above notations, let (x, y) be a base of M(R) with ν(x) ≤ ν(y) <
∞, then we have the following statements:

a) If ν(x) and ν(y) are rationally dependent, then there exist a non-negative
integer k ≥ 1, a sequence of non-negative integers {hj}0≤j≤k and a sequence
of non-negative real numbers {αj}0≤j≤k+1 such that α0 = ν(y), α1 = ν(x),
αj−1 = hjαj + αj+1, 1 ≤ j ≤ k, 0 < αj+1 < αj, 1 ≤ j ≤ k − 2 and αk+1 = 0.
Moreover, Rν

j is free for 0 ≤ j ≤ h1, Rν
j is not free for h1 < j < β and Rν

β is
free, where β = h1 + h2 + · · · + hk.

b) If ν(x) and ν(y) are rationally independent, then there exist a sequence of
non-negative integers {hj}j≥0 and a sequence of non-negative real numbers
{αj}j≥0 such that α0 = ν(y), α1 = ν(x), αj−1 = hjαj + αj+1 and
0 < αj+1 < αj, j ≥ 0. Moreover, Rν

j is free for 0 ≤ j ≤ h1 and Rν
j is

not free for j > h1.

Proof. From the Euclidean division algorithm, we obtain either k ≥ 1, {hj}0≤j≤k and
{αj}0≤j≤k+1 in case a) or {hj}j≥0 and {αj}j≥0 in case b).

Finally, the result follows from Remark 4. Note that if h1 + · · · + hl−1 ≤ j <
h1 + · · · + hl, then mν

j = αl−1. Here l ≤ k in case a) and h0 = 0 if l = 1. �

3. Quasimonomial valuations

In this section, we study the quasimonomial valuations that will play a central
role in what follows. For this, we must introduce the concept of monomial valuation,
which needs some previous results.

Let us fix (x1, x2) a base of M(R). We begin with the following:

Remark 6. Let M1, . . . ,Ml+1 be l + 1 pure monomials in x1 and x2, i.e. Mi =
(x1)ai

1(x2)ai
2 , where ai

j ≥ 0 is a non-negative integer for 1 ≤ j ≤ 2 and 1 ≤ i ≤ l + 1.
If Ml+1 ∈ M1R + · · · + MlR, then Ml+1 ∈ MiR for some 1 ≤ i ≤ l.

Lemma 7. For each f ∈ R − {0}, we can write f = a1M1 + · · · + alMl such that
a1, . . . , al �∈ M(R) and M1, . . . ,Ml are distinct pure monomials in x1 and x2 with
MiR �⊂ MjR for i �= j. Furthermore, the monomials M1, . . . ,Ml are univocally
determined by f and the above conditions.

Proof. By Lemma 1.4 of [Fu], there exist M1, . . . ,Ml distinct pure monomials in x1

and x2 with f = a1M1 + · · · + alMl, a1, . . . , al �∈ M(R) and MiR �⊂ MjR for i �= j.
Finally, M1, . . . ,Ml are univocally determined by Remark 6. �

Let us consider γ1, γ2 ∈ R+, we define ν : R −→ R+ as follows:
• ν(0) = ∞.
• ν((x1)α1(x2)α2) = α1γ1 + α2γ2.
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• ν(f) = min{v(Mi); 1 ≤ i ≤ l}, for each f ∈ R − {0}, where f = a1M1 +
· · · + alMl as in Lemma 7.

Lemma 8. With the above notations, ν is a (Krull) valuation on R. Moreover, if
γi > 0 for 1 ≤ i ≤ 2, then ν is centered.

Proof. Let us consider f, g ∈ R and write f =
∑l

i=1 aiMi, g =
∑s

i=1 biM
′
i ,

fg =
∑

1≤k≤r ckNk and f + g =
∑

1≤k≤t dkN ′
k as in Lemma 7.

By Remark 6, we have either N ′
k ∈ MiR for some 1 ≤ i ≤ l or N ′

k ∈ M ′
jR for some

1 < j ≤ s. Hence, ν(f + g) ≥ min{ν(f), ν(g)}.
On the other hand, since fg =

∑
1≤i≤l,1≤j≤s aibjMiM

′
j , we have ν(fg) ≥ ν(f) +

ν(g).
Without loss of generality, we can assume ν(Mi) = ν(f) for 1 ≤ i ≤ l1 and

ν(Mi) > ν(f) for l1 < i ≤ l. Similarly, ν(M ′
j) = ν(g) for 1 ≤ j ≤ s1 and ν(M ′

j) > ν(g)
for s1 < j ≤ s.

Let <′ be the well-ordering in Z2
+ (Z+ the set of non-negative integers with 0 ∈ Z+)

given by (δ1, δ2) <′ (δ′1, δ
′
2), if either δ1 + δ2 < δ′1 + δ′2 or δ1 + δ2 = δ′1 + δ′2 and δ1 < δ′1

or δ1 + δ2 = δ′1 + δ′2, δ1 = δ′1 and δ2 < δ′2.
Now, if Mi = (x1)αi

1(x2)αi
2 and M ′

j = (x1)βj
1 (x2)βj

2 , 1 ≤ i ≤ l and 1 ≤ j ≤ s, we
can assume (αk

1 , αk
2) <′ (αk+1

1 , αk+1
2 ) and (βj

1, β
j
2) <′ (βj+1

1 , βj+1
2 ), for 1 ≤ k ≤ l1 − 1

and 1 ≤ j ≤ s1 − 1. Note that if (i, j) �= (1, 1), 1 ≤ i ≤ l, 1 ≤ j ≤ s, then
ν(M1M

′
1) < ν(MiM

′
j) or ν(M1M

′
1) = ν(MiM

′
j) and (α1

1 + β1
1 , α1

2 + β1
2) <′ (αi

1 +
βj

1, α
i
2 + βj

2). In particular, if (i, j) �= (1, 1), then M1M
′
1 �∈ MiM

′
jR.

Since a1b1 �∈ M(R), by Remark 6, we have M1M
′
1 ∈ NkR for some 1 ≤ k ≤ r.

Hence, ν(f) + ν(g) = ν(M1M
′
1) ≥ ν(Nk) ≥ ν(fg) and ν(f) + ν(g) = ν(fg). �

Definition 9. With the above notations, we say that ν is a monomial valuation on
R with respect to the base (x1, x2). In general, we say that a valuation ν on R is a
monomial valuation if it is monomial with respect to some base of M(R).

Remark 10. We note that a monomial valuation on R determines and it is deter-
mined by a monomial valuation on the graded ring of R. Namely, if T1 and T2 are
indeterminates over R/M(R), then Lemma 7 defines a map Φ from R to the graded

ring GM(R)(R) =
R

M(R)
[T1, T2] of R such that Φ(xi) = Ti, 1 ≤ i ≤ n. Now, every

centered monomial valuation ν on R with respect to the base (x1, x2) induces and it is
induced by a monomial valuation ν̄ on GM(R)(R) such that ν(xi) = ν̄(Ti), 1 ≤ i ≤ 2.

Lemma 11. With the above notations, let ν be a valuation on R such that ν(x1)
and ν(x2) are rationally independent (ν(x1) �= ∞ �= ν(x2)). Then ν is a monomial
valuation on R with respect to (x1, x2).

Proof. Straightforward, in view of Lemma 7 and Definition 9. �
Before introducing quasimonomial valuations we will give a final technical result

on monomial valuations.

Lemma 12. Let ν and μ be two centered valuations on R such that 0 ≤ μ(f) ≤ ν(f)
for all f ∈ R. Let us assume that ν is a monomial valuation on R with respect to
(x1, x2) and that μ(x2) = ν(x2). Then μ is a monomial valuation on R with respect
to (x1, x2).
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Proof. Let μ′ be the monomial valuation on R with respect to (x1, x2) such that
μ′(xi) = μ(xi) for 1 ≤ i ≤ 2. We must see μ′ = μ.

Obviously, we have μ′(g) ≤ μ(g) for all g ∈ R. Let us assume μ′ �= μ, then
there exists an irreducible element f ∈ R − {0} such that μ′(f) < μ(f). Note that
f �∈ x1R (otherwise fR = x1R and μ′(f) = μ(f)) and that μ(x1) < ν(x1) (otherwise
μ(x1) = ν(x1) = μ′(x1) and μ = ν = μ′).

Let us write f = a1M1 + · · · + alMl as in Lemma 7. Since μ′ is monomial, we can
assume, without loss of generality, that μ′(Mi) = μ′(f), 1 ≤ i ≤ l. Also, as f �∈ x1R,
we can assume M1 �∈ x1R. Hence, μ′(M1) = μ(M1) = ν(M1).

Now, if Mi ∈ x1R, then μ(Mi) = μ′(Mi) = μ′(f) < ν(Mi); and if Mi �∈ x1R,
then μ(Mi) = μ′(Mi) = μ′(f) = ν(Mi). Thus, if Mj ∈ x1R and Mi /∈ x1R, we
have ν(Mj) > μ(Mj) = μ′(Mj) = μ′(f) = μ′(Mi) = μ(Mi) = ν(Mi). Hence,
μ′(f) = μ′(M1) = ν(M1) = ν(f) ≥ μ(f) > μ′(f), which is a contradiction. Therefore,
μ = μ′. �

Definition 13. Let ν be a centered valuation on R and let {(Rν
i , νi)}λ(ν)

i=0 be the
sequence of quadratic dilatations of R along ν. We say that ν is a quasimonomial
valuation on R, if νi is a monomial valuation on Rν

i for some i ≥ 0.

Notice that OrdRν
i

is a quasimonomial valuation on Rν
j for 0 ≤ j ≤ i.

Lemma 14. With the above notations, if νi is a monomial valuation on Rν
i for some

i < λ(ν), then νj is a monomial valuation on Rν
j for i ≤ j < λ(ν).

Proof. Without loss of generality, we can assume i = 0. Thus, ν is a monomial
valuation on R with respect to a base (x1, x2) of M(R) and we only need to show
that ν1 is monomial provided that λ(ν) > 1.

Let us assume ν(x1) ≤ ν(x2) = and write A = R

[
x2

x1

]
. We have Rv

1 = AQ and

x1 ∈ Q, where Q = {y ∈ A; ν1(y) > 0}.
If

x2

x1
/∈ Q, then ν(x1) = ν(x2) and, as ν is monomial, then ηRν

1

(
x2

x1

)
is not

algebraic over
R

M(R)
, where ηRν

1
: Rν

1 −→ Rν
1

M(Rν
1)

is the canonical epimorphism.

Hence, QA = x1A and λ(ν) = 1. If
x2

x1
∈ Q, then it is easy to check that ν1 is

monomial on Rν
1 with respect to

(
x1,

x2

x1

)
. �

Definition 15. Let ν be a centered valuation on R and let {(Rν
i , νi)}λ(ν)

i=0 be the
sequence of quadratic dilatations of R along ν. The monomial height of ν is the
non-negative integer or infinity given by

mh(ν) = min{i ≥ 0; νi is a monomial valuation on Rν
i },

when ν is quasimonomial and mh(ν) = ∞, otherwise.

To finish the section we characterize quasimonomial valuations in terms of prox-
imity relations.
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Proposition 16. Let ν be a centered valuation on R and {(Rν
i , νi)}λ(ν)

i=0 be the se-
quence of quadratic dilatations of R along ν, then ν is a quasimonomial valuation on
R if and only if F(ν) = {i; Rν

i is free} is a finite set.

Proof. Let {mν
i }λ(ν)

i=0 be the multiplicity sequence attached to the pair (R, ν).
First let us assume that ν is a quasimonomial, then νj is a monomial valuation

on Rν
j with respect to a base (x(j)

1 , x
(j)
2 ) of M(Rν

j ) for some j ≥ 0. If νj(x(j)
1 ) and

νj(x(j)
2 ) are rationally dependent, then λ(ν) < ∞ and F(ν) is finite, by Lemma 5, a).

If νj(x(j)
1 ) and νj(x(j)

2 ) are rationally independent, then F(νj) is finite by Lemma 5,
b). Therefore, as F(ν) ⊂ {Rν

0 , Rν
1 , . . . Rν

j−1} ∪ F(νj), then F(ν) is finite.
Now, let us assume that F(ν) is a finite. If λ(ν) < ∞, then ν is quasimonomial on

R with νλ(ν)−1 = mν
λ(ν)−1 ·OrdRλ(ν)−1 . If λ(ν) = ∞, then there exists i0 ≥ 1 such that

Rν
j is satellite for j > i0 and Rν

i0
is free. Note that Rν

i0+1 must be proximate to Rν
i0−1.

By Remark 2, we have mν
i0−1 > mν

i0
and there exists a base (x(i0)

1 , x
(i0)
2 ) of M(Rν

i0
)

such that x
(i0)
2 Rν

i0
= M(Rν

i0−1)R
ν
i0

, νi0(x(i0)
1 ) = mν

i0
and νi0(x(i0)

2 ) = mν
i0−1. By

Lemma 5, mν
i0−1 and mν

i0
are rationally independent, by Lemma 11, νi0 is monomial

on Rν
i0

and this complete the proof. �

4. Ordering valuations

Throughout this section ν and μ will be two centered valuations on R such that
0 ≤ μ(f) ≤ ν(f) for each f ∈ R. We denote by {(Rν

i , νi)}λ(ν)
i=0 and {(Rμ

i , μi)}λ(μ)
i=0 the

sequences of quadratic dilatations of R along ν and μ, respectively; and by {mν
i }λ(ν)

i=0

and {mμ
i }

λ(μ)
i=0 the multiplicity sequences attached to the pairs (R, ν) and (R,μ), re-

spectively.
The objective of this section is to study the relation between the above sequences.

Lemma 17. With the above notations, let us assume that μ(x) = ν(x) < ∞ and
0 ≤ μ(y) < min{ν(y), μ(x)} for some base (x, y) of M(R), then μ is a monomial
valuation on R with respect to (x, y).

Proof. If μ(x) and μ(y) are rationally independent, then the result follows from
Lemma 11. Therefore, let us assume that μ(x) and μ(y) are rationally dependent
and write pμ(x) = qμ(y) with 0 ≤ p < q coprime integers.

If μ is not a monomial valuation on R with respect to (x, y), there exists f =∑
iμ(x)+jμ(y)=α aijx

iyj ∈ R − {0} with aij = 0 or aij ∈ R − M(R) and such that
μ(f) > α. Without loss of generality, we can assume f �∈ xR. Thus, we can write

f =
λ∑

i=0

aλ−i(xp)λ−i(yq)i with a0 ∈ R − M(R) and μ(f) > pλμ(x) = qλμ(y) = α.

Hence, p(λ − β)ν(x) + qβν(y) > p(λ − β)μ(x) + qβμ(y) = pλμ(x) = pλν(x), for
0 < β ≤ λ and ν(f) = pλμ(x) = pλν(x) < μ(f), which is a contradiction. �
Theorem 18. With the above notations, let us assume that there exists s ≥ 0 such
that dim(Rμ

i ) = 2, mν
i = mμ

i for 0 ≤ i ≤ s and either dim(Rν
s+1) = 1 or dim(Rν

s+1) =
2 and mν

s+1 > mμ
s+1. Then Rν

i = Rμ
i and 0 ≤ μi(f) ≤ νi(f) for each f ∈ Ri,

0 ≤ i ≤ s. Moreover, Rν
s+1 is free and we have the following possibilities:
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a) If dim(Rν
s+1) = 1, then λ(μ) = λ(ν) = s + 1 and μs = νs = mν

s · OrdRs .
b) If dim(Rν

s+1) = 2 and dim(Rμ
s+1) = 1, then s + 1 = λ(μ) < λ(ν) and there

exists a monomial valuation μ̄s+1 on Rν
s+1 such that μs is the restriction of

μ̄s+1 to Rμ
s . In fact, μs = mμ

s · OrdRμ
s
.

c) If dim(Rν
s+1) = 2 = dim(Rμ

s+1) = 2, then s + 1 < min{λ(μ), λ(ν)}, Rν
s+1 =

Rμ
s+1, 0 ≤ μs+1(f) ≤ νs+1(f) for all f ∈ Rs+1 and μs+1 is a monomial

valuation on Rμ
s+1 = Rν

s+1.

Proof. Let (x1, x2) be a base of M(R). Since s ≥ 0, then mν
0 = mμ

0 and we can
assume ν(x1) = μ(x1) = mν

0 = mμ
0 ≤ μ(x2) ≤ ν(x2). Note that R = Rμ

0 = Rν
0 and

0 ≤ μ(f) ≤ ν(f) for all f ∈ R.

If A = R

[
x2

x1

]
, then A ⊂ Rν

1 , A ⊂ Rμ
1 , Rμ

1 = AQ and Rν
1 = AQ′ , where Q = {h ∈

A; μ1(h) > 0} and Q′ = {h ∈ A; ν1(h) > 0}. Moreover, if h ∈ Q, then (x1)dh ∈ R
for some d ≥ 0. Hence, μ((x1)dh) = μ1(h) + dμ(x1) ≤ ν((x1)dh) = ν1(h) + dμ(x1),
ν1(Q) > 0 and Q ⊂ Q′.

Now, we have the following possibilities:
A) dim(Rμ

1 ) = 2. In this case, Q is a maximal ideal of A, so Q = Q′ and Rμ
1 = Rν

1 .
In particular, dim(Rν

1) = 2, 0 ≤ μ1(f) ≤ ν1(f) for each f ∈ Rμ
1 = Rν

1 and Rμ
1 = Rν

1

is free. Moreover, if mμ
1 < mν

1 , then s = 0, s + 1 = 1 < min{λ(μ), λ(ν)} and we
can take a base (x(1)

1 , x
(1)
2 ) of M(Rν

1) = M(Rμ
1 ) such that x

(1)
2 Rν

1 = M(Rν
0)Rν

1 ,
μ1(x(1)

2 ) = ν1(x(1)
2 ) = mμ

0 = mν
0 and mμ

1 = μ1(x(1)
1 ) < min{μ1(x(1)

2 ), ν1(x(1)
1 )}.

Finally, by Lemma 17, μ1 is a monomial valuation on Rμ
1 with respect to (x(1)

1 , x
(1)
2 ).

B) dim(Rν
1) = 1. In this case, x1A ⊂ Q ⊂ Q′ = x1A. Thus, dim(Rμ

1 ) = 1, s = 0
and λ(μ) = λ(ν) = 1 = s + 1. Moreover, μ = μ0 = ν = ν0 = mν

0 · OrdR and Rν
1 is

free.
C) dim(Rν

1) = 2 and dim(Rμ
1 ) = 1. In this case, s = 0, λ(μ) = 1 = s + 1 < λ(ν).

Moreover, μ = μ0 = mμ
0 · OrdRμ

0
, Rν

1 is free and μ = μ0 is the restriction of μ̄1 to

Rμ
0 , where (x(1)

1 , x
(1)
2 ) is a base of M(Rν

1) such that x
(1)
1 R1ν = M(Rν

0)Rν
1 and μ̄1 is

the (non-centered) monomial valuation on Rν
1 , given by μ̄1(x(1)

1 ) = mν
0 = mμ

0 and
μ̄1(x(1)

2 ) = 0.
D) The remainder possibility is dim(Rμ

1 ) = dim(Rν
1) = 2, mμ

1 = mν
1 and

0 ≤ μ1(f) ≤ ν1(f) for each f ∈ Rν
1 = Rμ

1 . At this point, the result follows from
an easy induction.

To finish, we need to show that Rν
s+1 is free when s ≥ 1. Otherwise, Rν

s+1 is
satellite, dim(Rν

s+1) = 2 and there exists j < s such that Rν
s+1 is proximate to

Rν
j and mν

j = mμ
j > mν

j+1 = mμ
j+1. (See Remark 2). Furthermore, if P(Rν

j ) =
{Rν

j+1, . . . R
ν
j+h(j)}, we have P(Rμ

j ) = {Rμ
j+1, . . . R

μ
j+h(j)}. (See Remark 4). In fact,

mν
j+k = mμ

j+k for 0 ≤ k ≤ h(i), Rμ
s+1 is satellite, dim(Rμ

s+1) = 2 and mν
s+1 = mμ

s+1,
which is a contradiction. �
Remark 19. With the notations of Theorem 18, we note that μ is a quasimono-
mial valuation on R. If dim(Rν

s+1) = 1, then μs = νs = mν
s · OrdRs ; and if

dim(Rν
s+1) = 2, there exists a monomial valuation μ̄s+1 on Rν

s+1 with respect to a
base (x(s+1)

1 , x
(s+1)
2 ) of M(Rν

s+1) such that x
(s+1)
2 Rν

s+1 = M(Rν
s )Rν

s+1, μ̄s+1(x(s+1)
2 ) =
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mμ
s = mν

s , μ̄s+1(x(s+1)
1 ) = α and μi is the restriction of μ̄s+1 to Rμ

i , 1 ≤ i ≤ s. In
fact, if dim(Rμ

s+1) = 1, then α = 0 and μs = mν
s ·OrdRν

s
; and if dim(Rμ

s+1) = 2, then
α = mμ

s+1 and μs+1 = μ̄s+1.

Corollary 20. With the notations of Theorem 18, if ν is a quasimonomial valuation
on R, then mh(μ) ≤ mh(ν).

Proof. By Remark 19, either μs is a monomial valuation on Rν
s = Rμ

s or μs+1 is a
monomial valuation on Rν

s+1 = Rμ
s+1. Thus, hm(μ) ≤ s + 1 in any case.

If mh(ν) > s, there is nothing to do. Therefore, let us assume mh(ν) ≤ s and write
r = mh(ν). By Theorem 18, we have Rμ

r = Rν
r , mμ

r = mν
r and 0 ≤ μr(f) ≤ νr(f)

for each f ∈ Rμ
r = Rν

r . In particular, we can take a base (x(r)
1 , x

(r)
2 ) of M(Rμ

r ) =
M(Rν

r ) such that νr is a monomial valuation on Rμ
r = Rν

r with respect to (x(r)
1 , x

(r)
2 ).

Furthermore, we can assume μr(x(r)
1 ) = mμ

r = mν
r = νr(x(r)

1 ). Hence, by Lemma 12,
μr is a monomial valuation on Rμ

r = Rν
r with respect to (x(r)

1 , x
(r)
2 ) and mh(μ) ≤ r =

mh(ν). �
Proposition 21. With the above notations, let us assume λ(ν) = λ(μ) and mν

i = mμ
i

for 0 ≤ i ≤ λ(ν) = λ(μ), then μ = ν.

Proof. Let us write M(R) = (x1, x2) with μ(x1) = ν(x1) ≤ μ(x2) ≤ ν(x2). If A =

R

[
x2

x1

]
, then A ⊂ Rν

1 and A ⊂ Rμ
1 . Moreover, if Q = {h ∈ A; μ1(h) > 0} and

Q′ = {h ∈ A; ν1(h) > 0}, then Rμ
1 = AQ, Rν

1 = AQ′ and Q ⊂ Q′ (as in the proof of
Theorem 18).

Now, if λ(ν) = λ(μ) = 1, then dim(Rμ
1 ) = dim(Rν

1) = 1, x1A = Q = Q′ and
Rν

1 = Rμ
1 = Ax1A. Hence, μ = ν = mμ

0 · OrdR = mν
0 · OrdR.

If λ(ν) = λ(μ) > 1, then dim(Rμ
1 ) = 2, Q is a maximal ideal of A, Q = Q′ and

Rμ
1 = AQ = Rν

1 . Therefore, we can apply induction to get Rμ
i = Rν

i for 0 ≤ i ≤
λ(ν) = λ(μ).

On the other hand, from Lemma 1, we get μ(g) = ν(g), for each g ∈ R. �

5. The valuative tree

Next, we prove our main result concerning the tree structure of centered valuations
on R.

First, hereinafter for each centered valuation ω on R we denote by {(Rω
i , ωi)}λ(ω)

i=0

(resp. by {mω
i }λ(ω)

i=0 ) the sequence of quadratic dilatations of R along ω (resp. the mul-
tiplicity sequence attached to (R,ω)). Furthermore, we write F(ω) = {i; Rω

i is free}.
Thus in what follows, one must replace ω by the appropriate valuation ν, μ, μj , . . .,
to obtain the notation for each case.

Two valuations ν and μ on R are equivalent (ν ∼ μ) if there exists a non-negative
real number C > 0 such that μ(f) = C · ν(f) for all f ∈ R. Here C · ∞ = ∞. Note
that if ν ∼ μ, then λ(ν) = λ(μ), Rν

i = Rμ
i and νi ∼ μi, 0 ≤ i ≤ λ(ν) = λ(μ). In

particular,
⋃λ(ν)

i=0 Rν
i =

⋃λ(μ)
i=0 Rμ

i and the Krull valuations that define ν and μ are
equivalent (see section 2 and [B], p. 99).
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We pick only one element in each equivalence class and consider normalized valua-
tions, i.e., centered valuations ν on R with ν(M(R)) = min{ν(y); y ∈ M(R)} = 1.
Note that ν(M(R)) = min{ν(x1), ν(x2)}, where M(R) = (x1, x2).

We denote by V the set of normalized centered valuations on R and by ≤R the
natural partial order in V given by μ ≤R ν iff μ(f) ≤ ν(f) for all f ∈ R, μ, ν ∈ V.
Note that OrdR ∈ V and OrdR ≤R ν for all ν ∈ V.

Notice that if R is a complete or henselian ring, then the elements of V can be
identified with the real rank one valuation rings that birationally contains R. (See
section 2).

Let (T ,≤) be a partially ordered set, or poset, we say that a totally ordered subset
S ⊂ T is full if σ, σ′ ∈ S, τ ∈ T and σ ≤ τ ≤ σ′ imply τ ∈ S.

Definition 22. A rooted non-metric tree is a poset (T ,≤) such that
(T1) T has a unique minimal element τ0, called the root of T ;
(T2) if τ ∈ T , then the set {σ ∈ T ; σ ≤ τ} is isomorphic to a real interval;
(T3) every full, totally ordered subset of T is isomorphic to a real interval.

We point out that if (T1) and (T2) hold, then (T3) is equivalent to
(T3’) If S is a totally ordered subset of T without upper bound in T , then there

exists a countable increasing sequence in S without upper bound in T . (See
Remark 3.3 of [FJ1]).

Finally, a rooted non-metric tree T is complete if every increasing sequence (τi)i≥1

in T has a majorant, i.e. an element τ∞ ∈ T with τi ≤ τ∞ for every i.
In what follows, we consider the map G : V −→ [1,∞] given by G(ν) =

∑
i∈F(ν) mν

i .
Here G(ν) = ∞ when λ(ν) = ∞ and the series

∑
i∈F(ν) mν

i diverges.
The next results state the main properties of G.

Lemma 23. With the above notations, G is a strictly increasing map.

Proof. Let μ, ν ∈ V be such that μ <R ν.
As mν

o = mμ
0 = 1 and R = Rν

0 = Rμ
0 , then, by Theorem 18 and Proposition

21, there exists k ∈ F(ν) with dim(Rμ
i ) = 2, mμ

i = mν
i for 0 ≤ i ≤ k − 1 and

either dim(Rμ
k ) = 1 or dim(Rμ

k ) = 2 and mμ
k < mν

k. Furthermore, Rμ
i = Rν

i and
0 ≤ μi(f) ≤ νi(f) for each f ∈ Rμ

i = Rν
i , 0 ≤ i ≤ k − 1.

If dim(Rν
k) = 1, then μk−1 = νk−1 = mν

k−1 · OrdRk−1 and μ = ν, which is a
contradiction, see Theorem 18 and Remark 19. Therefore, dim(Rν

k) = 2.
By Remark 19, there exists a monomial valuation μ̄k of Rν

k with respect to a base
(x(k)

1 , x
(k)
2 ) of M(Rν

k) such that x
(k)
2 Rν

k = M(Rν
k−1)R

ν
k, μ̄k(x(k)

2 ) = mμ
k−1 = mν

k−1,

μ̄k(x(k)
1 ) = α and μi is the restriction of μ̄k to Rμ

i , 1 ≤ i ≤ k − 1. Moreover, if
dim(Rμ

k ) = 1, then α = 0 and μk−1 = mν
k−1 · OrdRν

k−1
; and if dim(Rμ

k ) = 2, then
α = mμ

k and μk = μ̄k.
Now, if α �= 0, then mν

k−1 = mμ
k−1 ≥ mν

k−1 > mμ
k−1 = α and Rμ

k+j is proximate to
Rμ

k−1 = Rν
k−1 for 1 ≤ j ≤ h1, where mν

k−1 = h1α + α2 with 0 ≤ α2 < α. Hence, by
Lemma 5, we have:

a) F(μ) = {l0 = 0 < l1 = 1 < l2 < · · · < ls = k}, when either α = 0 or α �= 0 and
α and mν

k−1 = mμ
k−1 are rationally independent.
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b) F(μ) = {l0 = 0 < l1 = 1 < l2 < · · · < ls = k < ls+1}, when α �= 0 and α and
mν

k−1 = mμ
k−1 are rationally dependent. In this case, dim(Rμ

ls+1
) = 1 and mμ

ls+1
= 0.

Hence, G(μ) =
∑

i∈F(μ) mμ
i =

∑s
j=0 mμ

lj
=

∑s−1
j=0 mν

lj
+ mμ

ls
<

∑s
j=0 mν

lj
≤ G(ν) in

both of cases. �
Lemma 24. With the above notations, let us consider ν ∈ V, then the set I = {μ ∈
V; μ ≤R ν} is a full, totally ordered subset of V.

Proof. We only need to see that I is a totally ordered set.
Let us consider μ1, μ2 ∈ I. If μ1 = ν or μ2 = ν, there is nothing to do. Thus, we

can assume μj <R ν, j = 1, 2 and μ1 �= μ2.
By Theorem 18, for j = 1, 2 there exists kj ∈ F(ν) such that dim(Rμj

i ) = 2,
m

μj

i = mν
i for 0 ≤ i ≤ kj − 1 and either dim(Rμj

lkj
) = 1 or dim(Rμj

kj
) = 2 and

m
μj

kj
< mν

kj
. Furthermore, R

μj

i = Rν
i and 0 ≤ μi

j(f) ≤ νi(f) for each f ∈ R
μj

i = Rν
i ,

0 ≤ i ≤ kj − 1, 1 ≤ j ≤ 2.
Since μj <R ν, then dim(Rν

kj
) = 2, 1 ≤ j ≤ 2. (Otherwise, μj = ν by Remark

19). Thus (and also by Remark 19), there exists a monomial valuation μ̄
kj

j on Rν
kj

with respect to a base (x(kj)
1 , x

(kj)
2 ) of M(Rν

kj
) such that x

(kj)
2 Rν

kj
= M(Rν

kj−1)R
ν
kj

,

μ̄
kj

j (x(kj)
2 ) = m

μj

kj−1 = mν
kj−1, μ̄

kj

j (x(kj)
1 ) = αj and μi

j is the restriction of μ̄
kj

j to R
μj

i ,

1 ≤ i ≤ kj −1. Moreover, if dim(Rμj

kj
) = 1, then αj = 0 and μ

kj−1
j = mν

kj−1OrdRν
kj−1

;

and if dim(Rμj

kj
) = 2, then αj = m

μj

kj
and μ

kj

j = μ̄
kj

j . Therefore, αj < mν
kj

, j = 1, 2.

Without loss of generality, we can assume k1 ≤ k2. If k1 < k2, then μ̄k1
1 ≤Rν

k1
μk1

2

and μ1 ≤R μ2; and if k1 = k2, then either μ̄k1
1 ≤Rν

k1
μ̄k1

2 and μ1 ≤R μ2 when α1 ≤ α2

or μ̄k1
2 ≤Rν

k1
μ̄k1

1 and μ2 ≤R μ1 when α2 ≤ α1. Note that if k1 = k2, we can take

x
(k1)
i = x

(k2)
i , i = 1, 2. �

Lemma 25. With the above notations, let us consider ν ∈ V and I = {μ ∈ V; μ ≤R

ν}, then the restriction GI of G to I is a strictly increasing one-to-one map from I
onto [1,G(ν)].

Proof. By Lemmas 23 and 24, GI is a strictly increasing one-to-one map from I on
[1,G(ν)]. Therefore, we only need to see that GI is an onto map.

Let us consider β ∈ [1,G(ν)], then there exits k ∈ F(ν) such that∑
j∈F(ν), j<k

mν
j ≤ β <

∑
j∈F(ν), j≤k

mν
j .

We write α = β −
∑

j∈F(ν), j<k

mν
j . Note that α < mν

k.

As k is a majorant of F(ν), if dim(Rν
k) = 1, then mν

k = 0 and β = G(ν).
If dim(Rν

k) = 2, let αμk be the monomial valuation on Rν
k with respect to a base

(x(k)
1 , x

(k)
2 ) of M(Rk) with x

(k)
2 Rk = M(Rk−1)Rk, αμk(x(k)

1 ) = α and αμk(x(k)
2 ) =

mν
k−1 > 0. Note that if α > 0, then αμk is a centered valuation on Rν

k and, in general,
αμk(Rν

k) ≥ 0.
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For 0 ≤ j ≤ k − 1, let αμj be the restriction of αμk to Rν
j , then αμj is a centered

valuation on Rν
j for 0 ≤ j ≤ k − 1 and αμj ≤Rν

j
νj for 0 ≤ j ≤ k.

To simplify notation, we write μ =α μ0. We have Rμ
i = Rν

i and μi =α μi for
0 ≤ i ≤ k − 1.

Next, we will show by induction that mν
j = mμ

j for 0 ≤ j ≤ k − 1.
First, since αμk(Rν

k) ≥ 0, we have mμ
k−1 = mν

k−1.
Now, let us assume mμ

k−i = mν
k−i for 1 ≤ i ≤ j.

If mν
k−j−1 = mν

k−j , then mμ
k−j−1 = mμ

k−j and mν
k−j−1 = mμ

k−j−1. Thus, let us
assume mν

k−j−1 > mν
k−j .

By Remark 2, Rν
k−j+1 is proximate to Rν

k−j−1 and mμ
k−j−1 > mμ

k−j . Let us write
P(Rν

k−j−1) = {Rν
k−j−1+l; 0 ≤ l ≤ h}, since Rν

k is free, then k + j − 1 + h < k or
equivalently h < j+1. Also, let us write P(Rμ

k−j−1) = {Rμ
k−j−1+e; 0 ≤ e ≤ h′}. Note

that h′ ≥ h and mν
k−j−1 =

∑h
i=1 mν

k−j−1+i =
∑h

i=1 mμ
k−j−1+i ≤ mμ

k−j−1 ≤ mν
k−j−1.

Hence, h′ = h and mν
k−j−1 = mμ

k−j−1.
At this point, if α �= 0, we have mν

k−1 = mμ
k−1 ≥ mν

k > α = mμ
k . Furthermore,

if mν
k−1 = h1α + α2 with 0 ≤ α2 < α, then Rμ

k+j is proximate to Rμ
k−1 = Rν

k−1 for
1 ≤ j ≤ h1. Hence, by Lemma 5, we have two possibilities:

a) F(μ) = {l0 = 0 < l1 = 1 < l2 < · · · < ls = k} when either α = 0 or α �= 0 and
α and mν

k−1 are rationally independent.
b) F(μ) = {l0 = 0 < l1 = 1 < l2 < · · · < ls = k < ls+1}, when α �= 0 and α and

mν
k−1 are rationally dependent. In this case, dim(Rμ

ls+1
) = 1 and mμ

ls+1
= 0.

Therefore, G(μ) =
∑s−1

j=0 mμ
lj

+ α =
∑s−1

j=0 mν
lj

+ α = β in any case. �

Lemma 26. With the above notations, every totally ordered subset S ⊂ V has a
majorant in V.

Proof. Let us write H = {mh(μ); μ ∈ S}.
If ∞ ∈ H, let μ ∈ S be such that mh(μ) = ∞. If there exists ν ∈ S with μ <R ν,

then, by Remark 19, μ is quasimonomial and mh(μ) < ∞, which is a contradiction.
Hence, μ is a majorant of S.

If ∞ �∈ H, we can distinguish two possibilities:
a) H is infinite. In this case, we take {μi}i≥1 ⊂ S with mh(μi) < mh(μi+1), i ≥ 1.

Since S is a totally ordered set, then μi < μi+1, by Corollary 20.
Let us consider ν : R −→ R+ given by ν(g) = sup{μi(g); i ≥ 1} for each g ∈ R.

It is easy to check that ν ∈ V with μi ≤R ν, i ≥ 1. Furthermore, if μ ∈ S, then there
exists i with mh(μ) < mh(μi). Hence, μ <R μi ≤R ν by Corollary 20, and ν is a
majorant of S.

b) H is finite. In this case, we write h = max(H) and distinguish two further
possibilities:

b.1) There are a finite number of valuations μ ∈ S (say μ1, . . . , μs) with mh(μ) = h.
Since S is totally ordered, we can assume μi ≤R μs, 1 ≤ i ≤ s.

Let us consider μ ∈ S. If mh(μ) < mh(μs) = h, then μ <R μs by Corollary 20;
and if mh(μ) = mh(μs) = h, then μ ≤R μs. Hence, μs is a majorant of S.

b.2) There are infinitely many valuations μ ∈ S with mh(μ) = h.
By Theorem 18, if μ, ν ∈ S with μ ≤R ν and mh(μ) = mh(ν) = h, then mμ

i = mν
i ,

0 ≤ i ≤ h − 1 and mμ
h ≤ mν

h.
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We denote by M = {mμ
h; mh(μ) = h, μ ∈ S} and by a = sup(M) (note that

mμ
h−1 is a majorant of M for each μ ∈ S with mh(μ) = h). We have two possibilities:
b.2.i) a ∈ M . In this case, we write Sa = {μ ∈ S; mh(μ) = h, mμ

h = a} and
distinguish two further cases:

b.2.i.α) Sa is finite, say Sa = {μ1 <R μ2 <R · · · <R μs}. As in case b.1), we easily
get that μs is a majorant of S.

b.2.i.β) Sa is not finite. In this case, if ν, μ ∈ Sa, we have mμ
h = mν

h = a and
Rμ

i = Rν
i for 0 ≤ i ≤ h, by Theorem 18. Furthermore, if μ ∈ Sa, then μh is a monomial

valuation on Rμ
h with respect to a base (x(h)

1 , x
(h)
2 ) of M(Rμ

h) with μh(x(h)
1 ) ≤ μh(x(h)

2 ).
In particular, μh(x(h)

1 ) = mμ
h = a and as μh is monomial on Rμ

h, then μh(x(h)
2 ) = Ωμ

h =
max{μh(y); y ∈ M(Rμ

h) − (M(Rμ
h))2}.

We point out that if μ, ν ∈ Sa, then μh and νh are monomial valuations on Rμ
h = Rν

h

with respect to the same base (x(h)
1 , x

(h)
2 ) of M(Rν

h). (Note that μ ≤R ν or ν ≤R μ
and as mμ

h = mν
h = a, we can apply Lemma 12). In particular, Ωμ

h < Ων
h if and only

if μ <R ν; and {Ωμ
h; μ ∈ Sa} is an infinite set.

Let {μi}i≥1 ⊂ Sa be such that Ωμi

h < Ωμi+1
h . Note that μi <R μi+1 for i ≥ 1.

Now, let ν : R −→ R+ be given by ν(g) = sup{μi(g); i ≥ 1} for each g ∈ R. As in
case a), we easily get that ν ∈ V and that ν is a majorant of S.

b.2.ii) a �∈ M . In this case, let {μi}i≥1 ⊂ S be such that mh(μi) = h, mμi

h < m
μi+1
h

for i ≥ 1 and a = sup{mμi

h ; i ≥ 1}. Note that μi < μi+1 for i ≥ 1.
Finally, let ν : R −→ R+ be given by ν(g) = sup{μi(g); i ≥ 0} for each g ∈ R. As

above ν ∈ V and ν is a majorant of S. �
Corollary 27. With the above notations, let S be a full, totally ordered subset of V,
then G(S) is order isomorphic to a real interval.

Proof. By Lemma 26, S has a majorant ν ∈ V. Thus, S ⊂ [OrdR, ν] and G :
[OrdR, ν] −→ [1,G(ν)] is a strictly increasing order isomorphism. Therefore, S is
order isomorphic to G(S), which is a full, totally ordered subset of R. Hence, G(S) is
a real interval. �
Definition 28. A parameterization of a rooted, non-metric tree (T ,≤) is an increas-
ing (or decreasing) mapping α : T −→ [−∞,+∞] whose restriction to any full, totally
ordered subset of T gives a bijection onto a real interval. (See [FJ1], p. 47).

The main result of this paper is the following:

Theorem 29. With the above notations, the valuation space (V,≤R) is a parametri-
zed complete non-metric tree, rooted at OrdR.

Proof. Obviously, OrdR ≤R ν for every ν ∈ V and we have (T1). (T2) is consequence
of Lemma 25. (T3’) and the completion of V follows from Lemma 26. Thus (V,≤R)
is a complete non-metric tree rooted at OrdR. Finally, from Lemma 23 and Corollary
27, G is a parameterization of (V,≤R). �
Remark 30. In [FJ1], (3.3.1), the parameterization of (V,≤R) is given by the skew-
ness of ν ∈ V, when R = C[[X, Y ]] is the formal power series ring in two vari-
ables over the complex field C. Namely, the skewness of ν is defined by α(ν) =



34 A. GRANJA

sup
{

ν(φ)
OrdR(φ)

; φ ∈ M(R) − {0}
}

. In this case, one can see that α(ν) ≤ G(ν) for

every ν ∈ V.
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