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ONE-PARAMETER FAMILIES OF UNIT EQUATIONS

Aaron Levin

Abstract. We study one-parameter families of S-unit equations of the form f(t)u +

g(t)v = h(t), where f , g, and h are univariate polynomials over a number field, t is an

S-integer, and u and v are S-units. For many possible choices of f , g, and h, we are able
to determine all but finitely many solutions to the corresponding one-parameter family

of S-unit equations. The results are obtained as consequences of some recent results on

integral points on surfaces.

1. Introduction

An equation of fundamental interest in number theory is the S-unit equation

(1) au+ bv = c in u, v ∈ O∗
k,S ,

where k is a number field, a, b, c ∈ k∗, S is a finite set of places of k containing the
archimedean places, Ok,S is the ring of S-integers of k, and O∗

k,S is the group of
S-units of k. The basic theorem on the S-unit equation (1) is

Theorem 1 (Siegel, Mahler). The set of solutions to (1) is finite.

This was proved by Siegel in the case S consists of the set of archimedean places
of k and extended by Mahler to arbitrary S.

Equation (1) and Theorem 1 have been generalized in at least three distinct direc-
tions. First, it is easy to see that Theorem 1 is equivalent to the assertion that, in any
affine embedding, P1 \ {three points} has only finitely many S-integral points. Thus,
Siegel’s theorem on integral points on affine curves may be seen as a generalization
of Theorem 1. Second, the hypothesis that u, v ∈ O∗

k,S has been generalized, for
instance, by Lang [14] to the assumption that u, v ∈ Γ, where Γ is a finitely generated
subgroup of C∗. Third, we can consider S-unit equations with more variables and
terms. The main theorem in this case, proved independently by Evertse [8] and van
der Poorten and Schlickewei [16], is the following.

Theorem 2 (Evertse, van der Poorten and Schlickewei). All but finitely many solu-
tions of the equation

α1u1 + α2u2 + . . .+ αnun = αn+1 in u1, . . . , un ∈ O∗
k,S ,

where α1, . . . , αn+1 ∈ k∗, satisfy an equation of the form
∑

i∈I αiui = 0, where I is a
subset of {0, . . . , n}.

Of course, one can also consider combinations of the above generalizations, such
as [10] and [17], which extend Theorem 2 to finitely generated subgroups of C∗. We
mention also that Theorem 1 has been refined in various ways. There are the effective
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estimates for the heights of solutions to (1) coming from linear forms in logarithms
[11, 12] and bounds on the number of solutions to (1) depending only on the size of
S (and in some versions [k : Q]) [1, 2, 7, 12].

In this article we consider another possible generalization of (1). We study one-
parameter families of the two variable S-unit equation, namely,

(2) f(t)u+ g(t)v = h(t) in t ∈ Ok,S , u, v ∈ O∗
k,S ,

where f , g, and h are nonzero polynomials in k[t]. In most situations, our requirement
that t ∈ Ok,S can be relaxed to the possibly more natural condition that t ∈ k (see
Lemma 5).

Even for very simple choices of f , g, and h, Eq. (2) leads to open problems. For
instance, taking f = g = 1 and h = t2 − 1, we obtain the equation

u+ v = t2 − 1 in t ∈ Ok,S , u, v ∈ O∗
k,S .

Solving this equation is essentially the same as determining when the sum of three S-
units is a perfect square. This appears to be a difficult problem. Indeed, determining
whether or not there are infinitely many perfect squares in Z of the form 2a + 3b + 1
for positive integers a and b is already an open problem. However, as an example of
our results we will show

Theorem 3. For general nonconstant polynomials f, g, h ∈ k[t] with

deg f + deg g = deg h > 2,

the equation

(3) f(t)u+ g(t)v = h(t) in t ∈ k, u, v ∈ O∗
k,S ,

has only finitely solutions with f(t)g(t)h(t) 6= 0.

By “general” here, we mean that if one parametrizes the polynomials f , g, and h in
Theorem 3 (fixing their degrees) in the obvious way using the affine space A2 deg h+3,
then we are excluding polynomials f , g, and h parametrized by some Zariski-closed
subset of A2 deg h+3 (in principle, the Zariski-closed subset could be explicitly given).

If t0 ∈ Ok,S is not a root of f , g, or h, then substituting t = t0 into (2) gives an
S-unit equation. Therefore, Theorem 3 gives numerous examples of S-unit equations
which have no solution. However, since our methods are ineffective, we cannot de-
termine the finitely many values of t for which there are solutions in Theorem 3, and
so we cannot explicitly determine (by our methods) for any given value of t that the
corresponding S-unit equation has no solutions. Despite our inability to effectively
determine the solutions to (3), it is possible to give a bound on the degree of a curve
containing, in an appropriate sense, the set of solutions to (3) (see the discussion after
Corollary 11).

Our results are proven as consequences of some recent theorems on integral points
on surfaces [6, 15]. These theorems trace their origin to the new proof of Siegel’s
theorem using the Schmidt subspace theorem given in [3] and developed for surfaces
in [5]. The ultimate reliance of our results on the subspace theorem is the reason for
their ineffectivity.
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2. Elementary observations

Fix nonzero polynomials f , g, and h. We first discuss an obvious set of solutions
to (2). Let Z(fgh) denote the set of zeroes of fgh and suppose that S is large enough
such that Z(fgh) ⊂ Ok,S . Equation (2) is not a unit equation for t ∈ Ok,S exactly
when t ∈ Z(fgh). For these values of t, the set of solutions to (2) is easily described.
For instance, if f(t0) = 0 and g(t0) 6= 0, then the set of solutions to (2) with t = t0
is given by u ∈ O∗

k,S and v = h(t0)
g(t0)

, assuming that h(t0)
g(t0)

∈ O∗
k,S (otherwise, there are

no solutions with t = t0). Thus, we will call any solution with t ∈ Z(fgh) a trivial
solution and any solution with t /∈ Z(fgh) a nontrivial solution.

In the rest of the paper, we will always make the assumption that f and g do not
have a common zero. We now show that there is no loss of generality in doing this.

Lemma 4. Let f, g, h ∈ k[t] be nonzero polynomials. Then there exist polynomials
f ′, g′, h′ ∈ k[t] such that f ′ and g′ do not have a common zero and such that, for large
enough S, there is a natural inclusion of the set of nontrivial solutions to

(4) f(t)u+ g(t)v = h(t) in t ∈ Ok,S , u, v ∈ O∗
k,S ,

into the set of nontrivial solutions to

(5) f ′(t′)u′ + g′(t′)v′ = h′(t′) in t′ ∈ Ok,S , u
′, v′ ∈ O∗

k,S .

Proof. We easily reduce to the case where f , g, and h do not all have a common
zero. Let d ∈ k[t] be such that f ′ = f/d and g′ = g/d do not have a common
zero and f ′, g′ ∈ Ok,S [t]. For any nontrivial solution (t, u, v) satisfying (4) we have
f ′(t)u+g′(t)v = h(t)/d(t) ∈ Ok,S . It follows from the fact that h and d do not have a
common zero that, after enlarging S, d(t) ∈ O∗

k,S for any nontrivial solution (t, u, v)
satisfying (4). Therefore, if (t, u, v) is a nontrivial solution to (4) then (t′, u′, v′) =
(t, ud(t), vd(t)) is a nontrivial solution to (5), where we have set h′ = h. �

Finally, in most situations the restriction that t is an S-integer in (2) is unnecessary.

Lemma 5. Suppose that the largest degree among f , g, and h is uniquely attained
among f , g, and h. Then for large enough S, the set of solutions to

(6) f(t)u+ g(t)v = h(t) in t ∈ k, u, v ∈ O∗
k,S ,

is the same as the set of solutions to (2).

Proof. Clearly, we can assume that f, g, h ∈ Ok[t]. Suppose that S is large enough
such that the leading coefficients of f , g, and h are all S-units. Let u, v ∈ O∗

k,S . Then
by our assumption on the degrees of f , g, and h, it follows that the leading coefficient
of f(t)u + g(t)v − h(t) (as a polynomial in t) is an S-unit. Therefore, if (t, u, v) is a
solution to (6) then t must be an S-integer. �

3. Integral points on certain affine surfaces

We start with a definition of integral points for affine varieties.

Definition 6. Let V be an affine variety defined over a number field k. Let S be a
finite set of places of k containing the archimedean places. We define a set R ⊂ V (k)
to be a set of S-integral points on V if there exists an affine embedding φ : V ↪→ An

such that φ(R) ⊂ An(Ok,S).
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The solutions to (2) are intimately related to integral points on certain affine sur-
faces. For our purposes, it will be most convenient to view the affine surfaces of
interest as subsets of P1 × P1.

Theorem 7. Let f, g, h ∈ k[t] be nonzero polynomials and let

T = {(t, u, v) ∈ Ok,S ×O∗
k,S ×O∗

k,S | f(t)u+ g(t)v = h(t)}
be the set of solutions to (2). Suppose that f and g do not have a common zero. Let
f̃ , g̃ ∈ k[t] be such that fg̃ + gf̃ = h. Consider P1 × P1 with coordinates (x1, y1) ×
(x2, y2). Let Z be the closed subset of P1 × P1 that is the union of the sets defined by
the four equations (appropriately clearing denominators in the last two equations)

y1 = 0,
y2 = 0,

x1f

(
x2

y2

)
− y1f̃

(
x2

y2

)
= 0,

x1g

(
x2

y2

)
+ y1g̃

(
x2

y2

)
= 0.

Let R ⊂ P1 × P1 \ Z be the set

(7) R = {(f̃(t)− v, f(t))× (t, 1) | (t, u, v) ∈ T, f(t) 6= 0}∪
{(u− g̃(t), g(t))× (t, 1) | (t, u, v) ∈ T, g(t) 6= 0}.

Then R is a set of S-integral points on P1 × P1 \ Z.

Proof. Multiplying everything by a scalar, we may assume that f, g, h ∈ Ok[t]. We
first show that there exists a constant c ∈ k∗ such that for all (t, u, v) ∈ T ,

(8)
c(f̃(t)− v)

f(t)
∈ Ok,S if f(t) 6= 0,

c(u− g̃(t))
g(t)

∈ Ok,S if g(t) 6= 0.

By possibly making c larger, it clearly suffices to prove this for all but finitely many
values of t. So we will ignore values of t for which f(t) = 0 or g(t) = 0. In this case,
it follows from (2) and the definitions of f̃ and g̃ that

(9)
f̃(t)− v

f(t)
=
u− g̃(t)
g(t)

.

Since f and g do not have a common zero, there exist polynomials p1, p2 ∈ Ok[t] such
that fp1 + gp2 = a, where a ∈ Ok is a constant. Let b1, b2 ∈ Ok be nonzero elements
such that b1f̃ and b2g̃ have integral coefficients. Then it follows from (9) and the fact
that t, u, v ∈ Ok,S that we can take c = ab1b2 in (8) if f(t)g(t) 6= 0.

Since y1y2 6= 0 on V = P1 × P1 \ Z, let x′1 = x1/y1 and x′2 = x2/y2 be coordinates
on V . Then every regular function on V may we be written as p(x′1, x

′
2)/((x

′
1f(x′2)−

f̃(x′2))
m(x′1g(x

′
2) + g̃(x′2))

n), where p is a polynomial in two variables and m and n

are integers. A simple calculation shows that for (t, u, v) ∈ T , if x′1 = (f̃(t)− v)/f(t)
or x′1 = (u− g̃(t))/g(t), and x′2 = t, then

x′1f(x′2)− f̃(x′2) = −v,
x′1g(x

′
2) + g̃(x′2) = u.
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For these values of x′1 and x′2, it follows from (8) that there exists a constant d ∈ k∗
such that dp(x′1, x

′
2) ∈ Ok,S . Therefore, for any regular function ψ on V we see that

there exists a constant d ∈ k∗ such that dψ(R) ⊂ Ok,S . Note also that V is affine.
Thus, after multiplying the coordinate functions by suitable constants, for any affine
embedding φ : V ↪→ AN we have φ(R) ⊂ AN (Ok,S). �

So the problem of determining solutions to (2) is now reduced to the study of S-
integral points on certain affine surfaces. When there does not exist a Zariski-dense
set of S-integral points on such a surface, we can parametrize the solutions to the
corresponding one-parameter S-unit equation.

Theorem 8. Let f , g, h, and Z ⊂ P1 × P1 be as in Theorem 7. Suppose that there
does not exist a Zariski-dense set of S-integral points on P1×P1 \Z. Then there exist
finitely many quintuples (zi, ai, bi, pi, qi), zi ∈ k

[
t, 1

t

]
, ai, bi ∈ k, pi, qi ∈ Z, with

(10) aif(zi(t))tpi + big(zi(t))tqi = h(zi(t))

for i = 1, . . . , j, such that all solutions to (2) are parametrized by

(11) t = zi(s), u = ais
pi , v = bis

qi , s ∈ k

for i = 1, . . . , j.

This follows easily from Siegel’s theorem.

Proof. Let R be as in (7). Then by Theorem 2, R is a set of S-integral points on
P1 × P1 \ Z. By hypothesis, R is not Zariski-dense. Let Ci, i = 1, . . . , j, be the one-
dimensional irreducible components of the Zariski-closure of R in P1×P1. By Siegel’s
theorem, Ci is a rational curve defined over k, and if φi : P1 → Ci → P1 × P1 is the
normalization map composed with the inclusion map of Ci, then #φ−1

i (Z ∩ Ci) ≤ 2.
After an automorphism of P1, we can assume that φ−1

i (Z ∩ Ci) ⊂ {0,∞} ⊂ P1. Let
φi(t) = (yi(t), 1) × (zi(t), 1) in affine coordinates on P1. By the definition of Z and
our assumption that φ−1

i (Z ∩ Ci) ⊂ {0,∞}, we then have yi, zi ∈ k
[
t, 1

t

]
and

yi(t)f(zi(t))− f̃(zi(t)) = −bitqi ,

yi(t)g(zi(t)) + g̃(zi(t)) = ait
pi

for some ai, bi ∈ k and some integers pi, qi ∈ Z. Now easy calculations and the
definition of R show that (10) holds and that all but finitely many solutions to (2)
are parametrized by (11) for i = 1, . . . , j. The finitely many remaining solutions can
be covered in the theorem by taking, for some i′, zi′(s) constant and pi′ = qi′ = 0
with appropriate ai′ , bi′ ∈ k. �

We define a set of curves on a surface to be in general position if the intersection
of any three of the curves is empty. Recall also that a curve C on P1 × P1 is said to
be of type (a, b) if it is defined by a bihomogeneous equation of bidegree (a, b). We
will need the following theorem on integral points from [15].

Theorem 9. Let Z1, Z2, Z3, Z4 ⊂ P1 × P1 be curves in general position of types
(0, 1), (1, 0), (1,m), and (1, n), respectively, with m,n > 0. Then there exists a
proper Zariski-closed subset Y ⊂ P1 × P1, independent of k and S, such that for any
set R of S-integral points on P1 × P1 \ ∪4

i=1Zi the set R \ Y is finite.
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Remark. Using a quantitative version of Schmidt’s subspace theorem due to Evertse
[9], and the method of proof in [15], it is possible to show that any set R in Theorem 9
is contained in a curve C ⊂ P1×P1 of type (a, b), where a, b ≤ N(φ,Z3, Z4, [k : Q], |S|).
Here N(φ,Z3, Z4, [k : Q], |S|) is an explicitly computable function which depends only
on the embedding φ from Definition 6, Z3 and Z4 (specifically, m, n, and the heights
of the equations defining Z3 and Z4), the degree [k : Q], and the number of places in
S. A more complicated and detailed calculation of this sort is carried out in [4], where
Corvaja and Zannier use their proof of Siegel’s theorem combined with Evertse’s result
to obtain new bounds for the number of integral points on affine curves.

More generally, Theorem 9 holds with Z3 and Z4 of types (a, b) and (c, d), respec-
tively, with a, b, c, d > 0. We now give some more information on the exceptional
set Y in Theorem 9 in the case that Z1, Z2, Z3, and Z4 meet transversally (i.e., if
P ∈ Zi ∩ Zj , i 6= j, then the local equations f, g of Zi, Zj at P generate the maximal
ideal of OP,P1×P1). It is easy to see that every curve on P1×P1 intersects Z = ∪4

i=1Zi

in at least two points. So by Siegel’s theorem, every irreducible curve C in (a mini-
mal) Y intersects Z in exactly two points P and Q ignoring multiplicities. We denote
the intersection number of two curves D and E on a surface by D.E.

Theorem 10. Suppose that Z1, Z2, Z3, and Z4 are in general position and meet
transversally. Then the set Y (minimally chosen) consists of the following types of
irreducible curves C:

(i). C is of type (0, 1).
(ii). C is of type (1, 0).
(iii). C is of type (1, 1) and P ∈ Z1 ∩ Z3, Q ∈ Z2 ∩ Z4 (up to switching P and Q

or Z3 and Z4), where {P,Q} = C ∩ Z.
Furthermore, if m + n > 2, then for general Z3 and Z4 of types (1,m) and (1, n),
respectively, Y consists only of (0, 1) curves.

Proof. By Siegel’s theorem, C must be a rational curve and, as noted earlier, C must
intersect Z in exactly two points P and Q. Furthermore, if π : P1 → C is the
normalization of C, then π−1(P ) and π−1(Q) must consist of exactly one point each.
Suppose that C is of type (a, b) with a, b > 0. Then C intersects each of Z1, Z2, Z3,
and Z4 in at least one point. Therefore, up to switching P and Q or Z3 and Z4, since
the curves in Z are in general position we must have either P ∈ Z1 ∩Z2, Q ∈ Z3 ∩Z4

or P ∈ Z1 ∩ Z3, Q ∈ Z2 ∩ Z4.
Suppose that P ∈ Z1 ∩ Z2 and Q ∈ Z3 ∩ Z4. Recall the intersection formula [13,

Ch. V:Ex. 3.2]

(12) D.E =
∑

µP ′(D)µP ′(E)

for curves D and E on P1×P1 without shared components, where µP ′(D) and µP ′(E)
denote the multiplicity of the point P ′ on D and E, respectively, and the sum is taken
over all infinitely near points P ′ of P1×P1. Let φ : X → P1×P1 be the map obtained
by blowing up P1 × P1 at Q. Let Z ′3, Z

′
4, and C ′ denote the strict transforms of Z3,

Z4, and C, respectively, in X. By transversality, Z ′3 and Z ′4 do not meet above Q.
Since C intersects Z3 and Z4 only at Q and π−1(Q) consists of exactly one point,
it follows that C ′ can intersect at most one of Z ′3 and Z ′4. Therefore, if C ′ does
not intersect, say, Z ′3, then applying (12) to C and Z3, we see that we must have
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µQ(C) = C.Z3 = am + b ≥ a + b. But it is easy to see that an irreducible curve of
type (a, b) with a, b > 0 cannot have a point of multiplicity ≥ a+ b. Thus, we arrive
at a contradiction in this case.

Now suppose that P ∈ Z1∩Z3, Q ∈ Z2∩Z4. The same argument as before, making
use of the transversality assumptions, shows that µP (C) = a and µQ(C) = b. It is
an easily verified fact that given any two points P ′, Q′ ∈ P1 × P1 there is a (unique)
(1, 1) curve passing through P ′ and Q′ with a given tangent direction at P ′. Let D
be a curve of type (1, 1) passing through P and Q and tangent to C at P . If D 6= C,
then by construction C.D > a+ b, a contradiction. Therefore we must have C = D,
and so C must be a curve of type (1, 1).

Finally, if m + n > 2, it is not hard to see that for Y to contain curves other
than curves of type (0, 1), the curves in Z must be in special position, definable by
algebraic relations. We leave the details to the reader. �

As a consequence of Theorems 9 and 10 we obtain

Corollary 11. Let f, g, h ∈ k[t] be nonconstant polynomials such that f and g do not
have a common zero and deg f + deg g = deg h. Then all but finitely many solutions
to

(13) f(t)u+ g(t)v = h(t) in t ∈ k, u, v ∈ O∗
k,S ,

are parametrized by a finite number of families, independent of k and S, of the form

(14) t = z(s), u = asp, v = bsq, s ∈ k,

where z ∈ k[t], a, b ∈ k, p, q ∈ Z, and

af(z(t))tp + bg(z(t))tq = h(z(t)).

If in addition all of the roots of f , g, and h occur with multiplicity one, then all of
the parametrizations (14) can be chosen with z linear.

Proof. Let m = deg f and n = deg g. First note that there exist f̃ , g̃ ∈ k[t] with
deg f̃ ≤ m and deg g̃ ≤ n such that fg̃+ gf̃ = h. To see this, let Pi denote the vector
space of polynomials over k of degree at most i and consider the map Pn⊕Pm → Pm+n

given by x⊕y 7→ fx+gy. The kernel is one-dimensional, generated by (−g)⊕f (since
f and g do not have a common zero), and so by counting dimensions we see that the
map is surjective. Therefore, by Theorem 7 with this f̃ and g̃, we see that solutions to
(13) give rise to a set of S-integral points on P1×P1\Z, where Z = ∪4

i=1Zi and Z1, Z2,
Z3, and Z4 are of types (1, 0), (0, 1), (1,m), and (1, n), respectively. Furthermore, it
is easy to see that deg f+deg g = deg h implies that Z1, Z2, Z3, and Z4 are in general
position (in fact, the other direction also holds). The first part of the corollary then
follows from Theorems 8 and 9, except for the extra assertion that z can be chosen
in k[t] rather than k[t, 1/t]. This last assertion follows from the fact that the Zi’s are
in general position, and so each Ci in the proof of Theorem 8 intersects Z1 and Z2 in
only one point each. Finally, the condition that all of the roots of f , g, and h occur
with multiplicity one (and deg f + deg g = deg h) is readily seen to be equivalent to
Z1, Z2, Z3, and Z4 being in general position and meeting transversally. Thus, we
may use Theorem 10. Since the parametrization (14) corresponding to a curve C of
type (c, d) has deg z = c, by Theorem 10, z can be chosen to be linear. �
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Theorem 3 from the introduction is similarly a consequence of the last statement
of Theorem 10. We merely note that a (0, 1) curve in Y corresponds to a trivial set
of solutions to (3). It is natural to try to determine how the cardinality of the set of
nontrivial solutions to (3) in Theorem 3 depends on the polynomials f , g, and h and
the set of places S. Viewing the nontrivial solutions of (3) as a subset R ⊂ P1 × P1

as in Theorem 7, using the remark following Theorem 9 it can be shown that R is
contained in a curve C ⊂ P1 × P1 of type (a, b) with a, b ≤ N(f, g, h, [k : Q], |S|).
Here N(f, g, h, [k : Q], |S|) is an explicitly computable function that depends only on
the degrees and heights of the polynomials f , g, and h, the degree [k : Q], and the
number of places in S. Of course, in the situation of Theorem 3, R is in fact a finite
set, and it seems quite plausible that R is itself bounded in cardinality by a number
depending only on the heights of f , g, and h, the degree [k : Q], and the number of
places in S.

As an example of Corollary 11, we explicitly work out what happens when f and
g are linear and h is quadratic.

Corollary 12. Let L1 = a1t + a0 and L2 = b1t + b0 with L1, L2 ∈ k[t], L1/L2

nonconstant, and a1, b1 6= 0. Let Q = c2t
2 + c1t+ c0 ∈ k[t] with c2 6= 0. Consider the

equation

(15) L1(t)u+ L2(t)v = Q(t) in t ∈ k, u, v ∈ O∗
k,S .

Let r1 and r2 be the roots of Q. Then there exist the following four families of
(potential) solutions to (15):

t =
(a1b0 − a0b1)η
c2(b1r1 + b0)

+ r2, u = η, v = − (a1r1 + a0)η
b1r1 + b0

, η ∈ O∗
k,S ,

(16)

t =
(a1b0 − a0b1)η
c2(b1r2 + b0)

+ r1, u = η, v = − (a1r2 + a0)η
b1r2 + b0

, η ∈ O∗
k,S ,

(17)

t =
a1η

c2
+
a1b1c0 − a1b0c1 + a0b0c2

c2(a1b0 − a0b1)
, u = η, v =

a2
1c0 − a0a1c1 + a2

0c2
a1(a1b0 − a0b1)

, η ∈ O∗
k,S ,

(18)

t =
b1η

c2
+
a1b1c0 − a0b1c1 + a0b0c2

c2(a0b1 − a1b0)
, u =

b21c0 − b0b1c1 + b20c2
b1(a0b1 − a1b0)

, v = η, η ∈ O∗
k,S .

(19)

All but finitely many solutions to (15) are given as follows:

(a). If Q is not a perfect square and not of the form αL1L2 + β, α, β ∈ k, then all
but finitely many nontrivial solutions to (15) are contained in (16)–(19).

(b). If Q is not a perfect square and Q = αL1L2 + β for some α, β ∈ k, then all
but finitely many nontrivial solutions to (15) are contained in (16)–(19) and
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the following two families:

t =
a1η

c2
− b0
b1
, u = η, v =

c2(a1b1c0 − a0b0c2)
a2
1b

2
1η

, η ∈ O∗
k,S(20)

t =
b1η

c2
− a0

a1
, u =

c2(a1b1c0 − a0b0c2)
a2
1b

2
1η

, v = η, η ∈ O∗
k,S .(21)

(c). If Q is a perfect square with double root r = r1 = r2 and Q is not of the form
αL1L2 + β, α, β ∈ k, then all but finitely many nontrivial solutions to (15)
are contained in (16)–(19) and the following family:

(22) t = η

√
a0b1 − a1b0

b1c2
+ r, u = η2, v = −a1η

2

b1
, η ∈ O∗

k,S .

(d). If Q is a perfect square with double root r = r1 = r2 and Q = αL1L2 + β
for some α, β ∈ k, then all but finitely many nontrivial solutions to (15) are
contained in (16)–(22).

Proof. As in the proof of Corollary 11, the solutions to (15) give rise to integral
points on P1 × P1 \ Z, where Z = ∪4

i=1Zi and Z1, Z2, Z3, and Z4 are curves in
general position of types (0, 1), (1, 0), (1, 1), and (1, 1), respectively. The four families
of solutions (16)–(19) correspond to the four curves of type (1, 0) that intersect Z
in exactly two points. If Q is not a perfect square, the curves Z1, Z2, Z3, and Z4

meet transversally. Thus, by Theorem 10, the only other infinite families of nontrivial
solutions in cases (a) and (b) arise from curves of type (1, 1) as in (iii) of Theorem 10.
It is easily verified that such curves exist if and only if Q is of the form Q = αL1L2+β
for some α, β ∈ k, in which case there are two curves of type (1, 1) intersecting Z in
exactly two points, corresponding to the two families of solutions (20) and (21). This
proves parts (a) and (b).

When Q is a perfect square, the curves Z3 and Z4 intersect in only one point
(and hence Theorem 10 does not apply). In this case we give an analysis of the
exceptional set Y in Theorem 9 similar to the analysis given in Theorem 10. Let
{Pi,j} = Zi ∩ Zj , 1 ≤ i < j ≤ 4. Let C be a curve of type (a, b), a, b > 0, that is a
necessary component of the exceptional set Y in Theorem 9. Then C∩Z = {Pi,j , Pk,l}
with {i, j, k, l} = {1, 2, 3, 4}. For i < j, (i, j) 6= (3, 4), the curves Zi and Zj intersect
transversally at Pi,j . Therefore the proof of Theorem 10 shows that if P3,4 6∈ C, then C
must be a curve of type (1, 1) as in (iii) of Theorem 10. As mentioned previously, such
a curve C exists if and only if Q is of the form Q = αL1L2 +β for some α, β ∈ k. Now
suppose that C∩Z = {P1,2, P3,4}. Let X ′ denote the blowup of P1×P1 at P3,4 and let
P ′

3,4 be the (unique) point of intersection of the strict transforms of Z3 and Z4 on X ′.
Since the strict transforms of Z3 and Z4 meet transversally at P ′

3,4, an argument as in
the proof of Theorem 10 shows that µP3,4(C) + µP ′

3,4
(C) = min{C.Z3, C.Z4} = a+ b.

Let C ′ be a curve of type (1, 1) passing through P1,2 and tangent to Z3 (and Z4)
at P3,4. Then if C 6= C ′, by (12) we obtain C ′.C ≥ a + b + 1, which is impossible.
Therefore we must have C = C ′. The curve C ′ corresponds to the family of solutions
(22). Parts (c) and (d) of the theorem now follow. �

We can also prove a result in one case where deg f + deg g 6= deg h. We need the
following special case of a result from [6].
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Theorem 13 (Corvaja, Zannier). Let Z1, Z2, Z3, Z4 ⊂ P1 × P1 be curves of types
(0, 1), (1, 0), (1, 1), and (1, 1), respectively. Suppose that there exists a unique point
where Z1, Z3, and Z4 intersect transversally and that outside of this point of triple
intersection the Zi are in general position. Then there exists a proper Zariski-closed
subset Y ⊂ P1 × P1, independent of k and S, such that for any set R of S-integral
points on P1 × P1 \ ∪4

i=1Zi the set R \ Y is finite.

Remark. The assumptions of this theorem do not quite satisfy the assumptions of
Corollary 1.2 in [6] (with D1 = Z1 ∪ Z2, D2 = Z3, and D3 = Z4 in their notation).
However, the proof in [6] shows that instead of assuming D1, D2, and D3 are irre-
ducible, it is sufficient that the strict transforms of D1, D2, and D3 in the blow-up at
the point of triple intersection be linearly equivalent to irreducible effective divisors,
which certainly occurs in our situation.

Let P be the point of triple intersection in Theorem 13. It is easily seen that the
set Y in Theorem 13 can be taken to consist of curves of type (1, 0) and (0, 1), a
curve of type (1, 1) tangent to Z3 and passing through P and Z2 ∩Z4, and a curve of
type (1, 1) tangent to Z4 and passing through P and Z2 ∩ Z3. Using Theorem 7 to
translate this into arithmetic, we obtain

Corollary 14. Let L1 = a1t+ a0, L2 = b1t+ b0, and L3 = c1t+ c0 with L1, L2, L3 ∈
k[t], L1/L2 nonconstant, and a1, b1, c1 6= 0. All but finitely many nontrivial solutions
to

L1(t)u+ L2(t)v = L3(t) in t ∈ Ok,S , u, v ∈ O∗
k,S ,

are parametrized by the following four families:

t =
(a0b1 − a1b0)η

b1c1
− c0
c1
, u = η, v = −a1η

b1
, η ∈ O∗

k,S

t =
a1c0 − a0c1 − a1b0η

a1b1η
, u =

c1
a1
, v = η, η ∈ O∗

k,S

t =
b1c0 − b0c1 − a0b1η

a1b1η
, u = η, v =

c1
b1
, η ∈ O∗

k,S

t ∈ Ok,S , u =
b0c1 − b1c0
a1b0 − a0b1

, v =
a0c1 − a1c0
a0b1 − a1b0

Corollary 14 was already proven, implicitly, in [6, Remark 4.2].
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