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COUNTABLE GROUPS ARE MAPPING CLASS GROUPS
OF HYPERBOLIC 3-MANIFOLDS

Roberto Frigerio and Bruno Martelli

Abstract. We prove that for every countable group G there exists a hyperbolic 3-

manifold M such that the isometry group of M , the mapping class group of M , and the

outer automorphism group of π1(M) are isomorphic to G.

Introduction

A hyperbolic manifold here is a connected orientable paracompact manifold (with-
out boundary) equipped with a complete metric of constant sectional curvature equal
to −1. If M is a hyperbolic 3-manifold, Isom(M) is the group of isometries of M ,
and MCG(M) the mapping class group of M , i.e. the group of isotopy classes of self-
homeomorphisms of M . If G is a group, Out(G) is the outer automorphism group of
G. We prove here the following:

Theorem 1. For every countable group G there is a hyperbolic 3-manifold M such
that:

G ∼= Isom(M) ∼= MCG(M) ∼= Out(π1(M)).

Together with the fact that there exist uncountably many pairwise non-isomorphic
countable groups, Theorem 1 implies the following:

Corollary 2. There are uncountably many non-isomorphic groups that are funda-
mental groups of hyperbolic 3-manifolds.

Every hyperbolic 3-manifold is the quotient of H3 via the action of a Kleinian
group, that is a discrete torsion-free subgroup of PSL2(C). Theorem 1 implies the
following:

Corollary 3. Every countable group is the outer automorphism group of a Kleinian
group.

Related results. Theorem 1 is already known for finite groups: Kojima proved
in [18] that every finite group is the isometry group of a compact hyperbolic 3-manifold
(see also [9]). Moreover, if M is compact hyperbolic, Mostow’s rigidity Theorem [27]
and Gabai-Meyerhoff-Thurston’s results [15] imply that Out(π1(M)), Isom(M), and
MCG(M) are isomorphic finite groups. Kojima’s Theorem for finite groups has been
extended recently to higher dimensions [5], while Winkelmann [33] and Allcock [4]
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Figure 1: Neighbourhoods of points in a special polyhedron.

proved that every countable group is the isometry group of a complete hyperbolic
surface.

There are many analogues of Corollary 2 concerning topological manifolds of var-
ious dimensions. In dimension 2, there are uncountably many (pairwise non-homeo-
morphic) paracompact surfaces [14]. On the other hand every paracompact surface
supports a complex structure, so Riemann’s uniformization Theorem and classical
results on Fuchsian groups [21, 29] imply that there exist only countably many iso-
morphism classes of fundamental groups of surfaces. In dimensions higher than 2,
there are uncountably many contractible manifolds [24, 16, 11], and also uncountably
many fundamental groups (see e.g. [16, 28]).

Regarding Corollary 3, Matumoto proved in [23] that every group is the outer
automorphism group of some group, while Bumagin and Wise [8] recently showed
that every countable group is the outer automorphism group of a two generators
group.

Sketch of the proof. We consider some decorated 2-dimensional polyhedra with
infinitely many vertices, edges, and faces. We associate to each such polyhedron a
hyperbolic 3-manifold by assembling some blocks with geodesic boundary, correspond-
ing to vertices and edges of the polyhedron. We show that the isometry group of the
manifold is isomorphic to the combinatorial automorphism group of the polyhedron.
It is easy to see that every countable group is the combinatorial automorphism group
of one such polyhedron.

If M is a hyperbolic manifold arising from our construction, building on a rigidity
result of Keen, Maskit, and Series [17] we show that every automorphism of π1(M)
is induced by an isometry. This also implies that a self-homeomorphism of M is
homotopic to an isometry: it remains to show that it is indeed isotopic to it. This
follows from a result of Brown [7], since our M is non-compact and end-irreducible.

The paper is organized as follows. We describe the decorated polyhedra and their
associated hyperbolic manifolds in Section 1. A more detailed outline of the proof of
Theorem 1 is then given in Section 2. Polyhedra with assigned automorphism group
are constructed in Section 3. The needed rigidity results are then proved in Section 4.

1. From decorated polyhedra to hyperbolic manifolds

1.1. Decorated polyhedra. A 2-dimensional polyhedron P is special if every point
of P has one of the regular neighbourhoods shown in Fig. 1, and if the stratification
given by the three types of points gives a cellularization of P . That is, points of type
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WV

Figure 2: The pieces V and W .

(1) form discs – the faces – and points of type (2) form segments – the edges. A vertex
is then a point of type (3). In contrast with the usual definition, compactness is not
required here: thus P can have infinitely many vertices, edges, and discs (but each
has compact closure and is incident to finitely many other vertices, edges, and discs).

A decorated polyhedron is a pair (P, c), where P is a special polyhedron and c :
{edges of P} → N is a function, which will be called the decoration of P . The aim of
this section is to describe a recipe for associating to every decorated polyhedron (P, c)
an orientable hyperbolic 3-manifold M(P, c). This will be done by suitably modifying
the shadow construction first introduced by Turaev and subsequently explored in [10,
9].

1.2. From polyhedra to hyperbolic manifolds. Let (P, c) be a decorated poly-
hedron. Let P0 be a regular neighborhood of its 1-skeleton. We subdivide P0 into
copies of the pieces shown in Fig. 2: we take one piece of type V for each vertex and
c(e) pieces of type W for each edge e. The “boundary” of V (resp. W ) consists of 4
(resp. 2) Y -shaped graphs and 6 (resp. 3) arcs. The following result will be proved in
Lemmas 6 and 8 below.

Proposition 4. There are two complete finite-volume hyperbolic 3-manifolds K and
E with geodesic boundary such that:

• their boundary consists of thrice-punctured spheres;
• boundary components of K (resp. of E) correspond to Y -shaped graphs in ∂V

(resp. in ∂W ), with punctures corresponding to endpoints of the graphs;
• annular cusps of K (resp. of E) correspond to arcs in ∂V (resp. in ∂W );
• the intersections between the boundary components and the annular cusps of
K (resp. of E) correspond to the intersections between the corresponding Y -
shaped graphs and arcs in ∂V (resp. in ∂W );

• the actions of the isometries on boundary components and cusps induce the
isomorphisms:

Isom+(K) ∼= Aut(∂V ) ∼= S4,
Isom(E) ∼= Isom+(E) ∼= Aut(∂W ) ∼= S3 × Z/2,

• every geodesic thrice-punctured sphere in K (resp. in E) is contained in ∂K
(resp. in ∂E).

We have denoted by Aut(Z) the combinatorial automorphism group of a graph Z,
and by Isom+ the group of orientation-preserving isometries.

We equip the blocks K and E with arbitrary orientations. We construct from (P, c)
an oriented hyperbolic 3-manifold as follows: as we said above, the polyhedron P0



900 ROBERTO FRIGERIO AND BRUNO MARTELLI

decomposes into pieces of type V and W . Pick blocks of type K and E corresponding
to pieces of type V and W . For each Y -shaped graph we have a thrice-punctured
sphere, whose punctures correspond to the endpoints of the graph. Given two geodesic
thrice-punctured spheres, every bijection between their punctures is realized by a
unique orientation-reversing isometry. The identifications of the Y -shaped graphs in
P0 therefore induce isometries between pairs of boundary punctured spheres, and we
use such isometries for gluing all these pairs.

Since any symmetry of V (resp. of W ) translates into an orientation-preserving
isometry of K (resp. of E), there is no ambiguity in the construction, and the result
is a complete oriented hyperbolic 3-manifold M(P, c). Annular cusps glue up to toric
cusps, which are in natural correspondence with the faces of P . Every vertex of P
corresponds to a K-block. Every edge e of P gives rise to c(e) blocks of type E and
c(e) + 1 thrice-punctured spheres.

Remark 5. If (P, c) is a decorated polyhedron, there are connected complete hyper-
bolic 3-submanifolds with geodesic boundary Mi ⊂M(P, c), i ∈ N with the following
properties:

• Mi is the union of a finite number of K-blocks and E-blocks, for all i ∈ N;
• Mi ⊂ intMi+1 for all i ∈ N, and

⋃∞
i=0Mi = M(P, c).

1.3. The block K. The rest of this section is devoted to the proof of Proposition 4.
The block K we introduce here has already been used by various authors to construct
hyperbolic manifolds. As we mentioned above, Turaev has studied the boundary of
the 4-dimensional thickening of a special polyhedron (a shadow), and subsequently
Costantino and Thurston have decomposed it intoK-blocks and solid tori, lying above
the vertices and the faces of the polyhedron [10]. The block K has also been used by
Minsky to construct the model manifold needed in the proof of the Ending Lamination
Conjecture [25], and by Agol to construct non-Haken manifolds of arbitrarily high
genus [3].

The piece V is dual to a tetrahedron, which is in turn combinatorially equivalent to
an ideal octahedron O with a checkerboard coloring of the faces: see Fig. 3. Note that
under this correspondence, the Y -shaped graphs and the six arcs in ∂V are associated
respectively to the shadowed faces and the vertices of the octahedron.

Now let us realize O as an ideal regular hyperbolic octahedron, and define K as the
geometric object obtained by mirroring O along its white faces. Since the dihedral
angles of the regular ideal octahedron are right, K is a complete hyperbolic manifold
with non-compact geodesic boundary. As required, ∂K consists of four geodesic
thrice-punctured spheres, each of which canonically corresponds to a Y -shaped graph
in ∂V . The six vertices of O give rise to six annular cusps of K, which in turn intersect
each component of ∂K in (neighbourhoods of) the punctures. Thus a puncture on a
component of ∂K canonically corresponds to the intersection point of one Y -shaped
graph with an arc on ∂V (see Fig. 4).

Lemma 6. We have Isom(K) ∼= S4×Z/2. The isomorphism is obtained by associat-
ing to each isometry the induced permutation of the components of ∂K and a number
in {0, 1} saying whether the isometry is orientation-preserving or not. The isometry
corresponding to (id, 1) switches the ideal octahedra in K.
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Figure 3: The polyhedron P0 is made of pieces whose boundary consists of 4 Y -

shaped graphs and 6 arcs (1). Each such piece is combinatorially equivalent to a
truncated tetrahedron (3), whence to a regular ideal octahedron with checkerboard

coloring of the faces (4).

If S ⊂ K is an embedded geodesic thrice-punctured sphere, then S is a boundary
component of K.

Proof. The map from Isom(K) to S4 × Z/2 is surjective, because K inherits the
symmetries of the tetrahedron. Concerning injectivity, an isometry in the kernel
fixes each thrice-punctured sphere in ∂K, each of its punctures, and is orientation-
preserving: therefore it fixes ∂K pointwise, and hence the whole of K.

Miyamoto proved in [26] that if N is a complete finite-volume hyperbolic manifold
with geodesic boundary, then 2vol(N) > −χ(∂N) · vO, where vO is the volume of the
regular ideal octahedron. Suppose that S ⊂ K \∂K is an embedded thrice-punctured
sphere, and let N be the (possibly disconnected) hyperbolic manifold with geodesic
boundary obtained by cutting K along S. We have 4vO = 2vol(K) = 2vol(N) >
−χ(∂N)vO = 6vO, a contradiction. �

1.4. The block E. Let E0 be the manifold obtained by cutting the double of K
along one component of ∂K (by Lemma 6, the isometry type of this manifold does not
depend on the choice of the component of ∂K along which we cut). By construction
E0 decomposes into two K-blocks, has 3 toric cusps, and 3 annular cusps. Moreover,
∂E0 is given by two geodesic thrice-punctured spheres.
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K

V

O

Figure 4: Each piece V gives rise to a block K which is homeomorphic to the

complement in S3 of four open balls connected by six arcs. The thrice-punctured

spheres in ∂K correspond to the Y -shaped graphs in ∂V .

Lemma 7. We have Isom(E0) ∼= S3 × Z/2 × Z/2. The isomorphism is obtained by
associating to each isometry the induced permutation on the three annular (or toric)
cusps, on its two boundary components, and a number in {0, 1} saying whether it is
orientation-preserving or not.

Moreover, if S is a geodesic thrice-punctured sphere embedded in E0 \ ∂E0, then at
least one puncture of S lies in a toric cusp of E0.

Proof. The map from Isom(E0) to S3 × Z/2 × Z/2 is surjective by Lemma 6, and is
injective because an isometry in the kernel fixes ∂E0 pointwise.

Suppose S ⊂ E0 \ ∂E0 is an embedded geodesic thrice-punctured sphere not in-
tersecting the toric cusps of E0. Then S should intersect the punctured spheres
separating the two blocks in closed geodesics. Since there are no closed geodesics in
thrice-punctured spheres, this would imply that S is contained in the interior of one
of the two K-blocks, against Lemma 6. �

The block E0 fullfills all the requirements to be our block E, except two: it has an
orientation-reversing involution and contains some thrice-punctured spheres (the ones
separating the two blocks). We now kill all the redundant isometries and punctured
spheres by filling appropriately the three toric cusps.
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We recall that a slope on a torus is an isotopy class of simple closed unoriented
curves. Take three disjoint sections of the toric cusps of the same area: their bound-
aries are Euclidean tori, whose slopes have a definite length. The group Isom+(E0)
acts on the set of all slopes on the 3 toric cusps. A direct analysis shows that the
orbit of any slope s consists of 3 slopes of the same length, each lying on a distinct
toric cusp.

An easy doubling argument [13] shows that Thurston’s hyperbolic Dehn filling
Theorem also applies to hyperbolic manifolds with geodesic boundary. Take then a
sufficiently long slope s on a toric cusp, such that the following conditions hold:

(1) the slope s is neither “vertical” or “horizontal”, so the corresponding triple is
not invariant under orientation-reversing isometries;

(2) on the chosen horospherical sections of the toric cusps, the slopes correspond-
ing to s have length `(s) > 12;

(3) the manifold E, obtained via Dehn filling the 3 toric cusps by killing the 3
slopes corresponding to s, is hyperbolic with geodesic boundary;

(4) the shortest closed geodesics in E are the cores of the added solid tori.

Lemma 8. Every positive isometry of E0 induces an isometry of E, and this gives
the isomorphism Isom(E) = Isom+(E) ∼= S3 × Z/2. Moreover, the only geodesic
thrice-punctured spheres contained in E are the components of ∂E.

Proof. Every positive isometry of E0 leaves the triple of killed slopes invariant, and
hence extends to a self-homeomorphism of E, which is homotopic to an isometry of E
by Mostow rigidity for manifolds with boundary [12]. Conversely, every isometry of
E fixes the set of the 3 shortest slopes, and hence its complement E0. Therefore it is
homotopic to an isometry of E0 fixing the triple of slopes, which must be orientation-
preserving by assumption (1) above.

Suppose we have a geodesic thrice-punctured sphere S in E. Since S does not
contain closed geodesics, it intersects the three added geodesics in some k points,
so S0 = S ∩ E0 is a sphere with 3 + k punctures inside E0. Since S is geodesic, it
is easily seen that S0 is essential, that is it is incompressible and ∂-incompressible,
in the sense of [2]. Therefore [2, Theorem 5.1] (or equivalently [20]) implies that
12k < k`(s) 6 |6χ(S)| = 6(1 + k), whence k = 0. Thus S = S0 lies in E0. By [1], S is
isotopic to an embedded geodesic thrice-punctured sphere in E0 not intersecting the
toric cusps of E0, whence, by Lemma 7, to a component of ∂E0. This readily implies
that S is a component of ∂E. �

Remark 9. If only the block K were used (as in [9]), then the orientation-reversing
involution switching the ideal octahedra of this block would always extend to the
whole of M(P, c), thus giving an annoying Z/2 factor in Isom(M(P, c)). In [9], this
factor was killed via Dehn filling, but Thurston’s hyperbolic Dehn filling Theorem
cannot be applied easily here because the manifold is very big. This is the main
reason for introducing the block E, which is chiral, i.e. it has no orientation-reversing
isometries. The introduction of E also provides some technical semplifications when
constructing a polyhedron with the appropriate combinatorial isomorphism group.
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2. Scheme of the proof of Theorem 1

We say that a special polyhedron is regular if it has more than two vertices, and
every edge in its 1-skeleton has distinct endpoints. A decorated polyhedron (P, c)
is big if P is regular and c(e) > 4 for every edge e of P . We denote by Aut(P, c)
the group of combinatorial automorphisms of (P, c), i.e. the group of combinatorial
automorphisms of P preserving the decoration.

The proof of Theorem 1 consists of two steps:
(1) we show that every countable group is the group of combinatorial automor-

phisms of some big decorated polyhedron: this is done in Section 3;
(2) for any big decorated polyedron (P, c), we prove in Section 4 bijections of all

the following sets:

Aut(P, c)
(Prop. 13)

Isom(M(P, c))
(Th. 16)

Out(π1(M(P, c)))

(Cor. 17)

MCG(M(P, c))
(Prop. 21)

MCGhom(M(P, c))

We have denoted by MCGhom(M(P, c)) the group of homotopy classes of self-
homeomorphisms of M(P, c). Maps corresponding to solid arrows are natural, while
their inverses, corresponding to dashed arrows, are constructed in Section 4.

3. Decorated polyhedra with assigned automorphism group

We prove here that every countable group is the automorphism group of a big
decorated polyhedron.

3.1. Special polyhedra with assigned fundamental groups. We begin with
the following:

Proposition 10. Every countable group is the fundamental group of a regular special
polyhedron.

Proof. A countable group has some presentation with countably many generators and
relators. In general, the corresponding polyhedra are constructed by attaching a 1-cell
for each generator and a 2-cell for each relator to some simply connected base-space
(for instance, a point). Here, since cells need to be locally finite, the base-space needs
to be non-compact.

Our base-space is the 2-skeleton of an infinite wall, i.e. of a strip R2 × [0, 1] ⊂ R3

tessellated as in Fig. 5. It is a simply connected special polyhedron whose horizontal
faces are hexagons and vertical faces are squares. Take an infinite line of consecutive
bricks, a point inside the top-face of each brick, and add 1-cells to pairs of consecutive
points, as in Fig. 5.

In our presentation, we can suppose that every generator occurs in exactly 3 re-
lators, and once in each [22]1. Assign arbitrarily an orientation and a generator to

1For each generator g, substitute its occurrences in the relators with new distinct generators

g1, . . . , gk, each occurring once, and add new relators gig
−1
i+1.
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Figure 5: The 2-skeleton of an infinite wall is a special polyhedron, and we add

1-cells to pairs of consecutive bricks in an infinite line.

Figure 6: The 2-cells run over the bricks along right-angled paths.

each 1-cell, and attach for each relator a 2-cell running alternatively along a 1-cell
(corresponding to a letter) and as a right-angled arc along the wall as in Fig. 6. Each
new two-dimensional region is a cell, and three distinct 2-cells run along each 1-cell.
Therefore the resulting polyhedron is special. It is easy to see that it is regular. �

Proposition 11. Every countable group is the group of combinatorial automorphisms
of a big decorated polyhedron.

Proof. In a decorated polyhedron, let us define the colour of a vertex as the 4-uple of
colours of the adjacent edges. Let G be a countable group and P be a regular special
polyhedron with fundamental group G.

Let e0, e1, . . . , en, . . . be an arbitrary ordering of the edges of P , and set c(ei) = i+4
for all i ∈ N. Since P is regular, distinct vertices have distinct colours (because edges
have distinct endpoints, and the singular locus of P is not ).

Let now P̃ be the universal cover of P , and let c̃ be the decoration of P̃ induced
by c. The fiber over a vertex or edge consists precisely of all vertices or edges of the
same colour. Of course the group of deck transformations of P̃ is isomorphic to G.
By definition of c̃, deck transformations are automorphisms. Conversely, every auto-
morphism is a deck transformation, because it must preserve the colours of vertices
and edges, and hence the fibers. �
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4. Rigidity results

4.1. From isometries to combinatorial homeomorphisms of polyhedra. We
begin with the following:

Proposition 12. Let (P, c) be a big decorated polyhedron. Then every geodesic thrice-
punctured sphere in M(P, c) is a boundary component of some block.

Proof. Suppose a geodesic thrice-punctured sphere S is not a boundary component
of a block. By Proposition 4, it cannot be contained inside a block, and hence it
intersects some boundary component S′ of some block in a geodesic. The only simple
geodesics available in S are lines connecting punctures. Thus S intersects S′ along a
cusp, and it must intersect also every other punctured sphere which is parallel to S′

along that cusp. Since (P, c) is big, there are at least 4 such punctured spheres: a
contradiction, since there are at most 3 pairwise disjoint geodesics on S. �

Proposition 13. Let (P, c) be a big decorated polyhedron. Then

Isom(M(P, c)) = Isom+(M(P, c)) ∼= Aut(P, c).

Proof. Every isometry of M(P, c) preserves the set of all geodesic thrice-punctured
spheres, whence, by Proposition 12, the decomposition of M(P, c) into K-blocks cor-
responding to vertices and E-blocks corresponding to edges. Together with Proposi-
tion 4, this implies that the group of combinatorial automorphisms of (P, c) is canon-
ically isomorphic to the group of orientation-preserving isometries of M(P, c), so we
are left to prove that Isom(M(P, c)) = Isom+(M(P, c)).

Let ϕ ∈ Isom(M(P, c)) and E1, E2 ⊂ M(P, c) be E-blocks with ϕ(E1) = E2. By
construction, for i = 1, 2 there exists an orientation-preserving isometry ψi between
Ei and the standard block E. If ϕ were orientation-reversing, then ψ2ϕψ

−1
1 would

provide an orientation-reversing element of Isom(E), against the chirality of E. �

4.2. Hyperbolic manifolds with geodesic boundary. Let N be a complete
finite-volume hyperbolic 3-manifold with non-empty geodesic boundary. Its universal
covering Ñ is isometric to a convex polyhedron of H3 bounded by a countable number
of disjoint geodesic hyperplanes [19]. The group of covering automorphisms of Ñ is a
Kleinian group Γ acting on Ñ with N ∼= Ñ/Γ. Kojima showed in [19] that N is the
convex core of Γ (see [32] for a definition).

4.3. Maximally parabolic Kleinian groups. Let G be a finitely generated Klein-
ian group and set M = H3/G. Let Mc ⊂ M be a compact core of M [30] and set
b(G) = −3χ(Mc). It is shown in [17] that b(G) only depends on the isomorphism type
of G as an abstract group, and that G contains at most b(G) conjugacy classes of rank-
1 maximal parabolic subgroups. A finitely generated Kleinian group G containing
b(G) conjugacy classes of rank-1 maximal parabolic subgroups is called maximally
parabolic. The following result is a restatement of [17, Theorems I and II], and gives
a complete characterization of maximally parabolic Kleinian groups.
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Theorem 14. A finitely generated Kleinian group G is maximally parabolic if and
only if its convex core is a complete finite-volume hyperbolic 3-manifold with geodesic
boundary, consisting of a finite number of totally geodesic thrice-punctured spheres.

Let G and G′ be Kleinian groups and suppose ϕ : G → G′ is an isomorphism.
We say that ϕ is type-preserving if ϕ sends parabolic elements to parabolic elements
and loxodromic elements to loxodromic elements. The following rigidity theorem for
maximally parabolic Kleinian groups is taken from [17].

Theorem 15. Let ϕ : G→ G′ be a type-preserving isomorphism between two Kleinian
groups G and G′. If G is maximally parabolic, then there exists an element h ∈
Isom(H3) such that ϕ(g) = hgh−1 for all g ∈ G.

4.4. From isomorphisms of fundamental groups to isometries. Let (P, c) be
any decorated polyhedron, and let Γ be the Klenian group with M(P, c) ∼= H3/Γ.

Theorem 16. Let ϕ : Γ → Γ be an isomorphism of abstract groups. Then there exists
an isometry g ∈ Isom(H3) with ϕ(γ) = gγg−1 for all γ ∈ Γ.

Proof. If P is compact then the conclusion follows from Mostow-Prasad’s rigidity
Theorem, so we concentrate here on the case when P is non-compact.

The parabolic elements of Γ can be characterized as those elements belonging to a
Z⊕ Z subgroup of Γ, so ϕ is type-preserving.

Let Mi ⊂ M(P, c), i ∈ N be the finite-volume manifolds with geodesic bound-
ary described in Remark 5, and take a basepoint x0 ∈ M0. The map π1(Mi, x0) →
π1(M(P, c), x0) induced by the inclusion is injective, because Mi has geodesic (and
hence incompressible) boundary. Let Γi < Γ be the subgroup corresponding to
π1(Mi, x0) under the identification π1(M(P, c), x0) ∼= Γ. By Theorem 14, Γi is maxi-
mally parabolic, so Theorem 15 implies that for every i ∈ N there exists gi ∈ Isom(H3)
such that ϕ(γ) = giγg

−1
i for all γ ∈ Γi. It follows that for all i ∈ N the isometry

gig
−1
0 commutes with all the elements in Γ0. Since Γ0 is non-elementary, this implies

g0 = gi for all i ∈ N, whence ϕ(γ) = g0γg
−1
0 for every γ ∈

⋃
i∈N Γi = Γ. �

Corollary 17. We have:

Out(π1(M(P, c))) ∼= Isom(M(P, c)) ∼= MCGhom(M(P, c)).

Proof. Since Γ is not elementary, the natural map π : Isom(M(P, c)) → Out(π1(M, c))
is injective (in particular, there exists at most one isometry in every homotopy class of
self-homeomorphisms ofM(P, c)). By Theorem 16 it follows that π is an isomorphism,
so we are left to prove that any self-homeomorphism of M(P, c) is homotopic to an
isometry.

Let f be a self-homeomorphism of M(P, c). Then there exist an isomorphism
f∗ : Γ → Γ and a f∗-equivariant lift f̃ : H3 → H3 of f (i.e. a lift of f with f̃(γ(x)) =
f∗(γ)(f̃(x)) for all γ ∈ Γ, x ∈ H3). By Theorem 16, an element g ∈ Isom(H3) exists
such that f∗(γ) = gγg−1 for all γ ∈ Γ. We now define F̃ : H3× [0, 1] → H3 by setting
F̃ (x, t) = (1 − t) · f̃(x) + t · g(x). Being f∗-equivariant, F̃ projects onto a homotopy
F : M(P, c) →M(P, c) between f and an isometry, whence the conclusion. �
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Remark 18. In [17], a Kleinian group is by definition a discrete torsion-free subgroup
of Isom+(H3) with non-empty discontinuity set (see [32] for a definition). However,
proofs in [17] also work when dealing with Kleinian groups with full-measure limit
set [31]. Moreover, using Remark 5 one could easily prove that if (P, c) is an infinite
decorated polyhedron, then every finitely generated subgroup of π1(M(P, c)) has non-
empty discontinuity set, and is actually geometrically finite.

4.5. From homotopy to isotopy. We are now left to prove that homotopic self-
homeomorphisms of manifolds arising from our construction are in fact isotopic. We
begin with the following:

Definition 19. Let M be a non-compact manifold. We say that M is end-reducible
if there exist a compact set W ⊂M and a sequence {λn}n∈N of simple loops in M \W
with the following properties: any compact subset ofM intersects only a finite number
of λi’s, and each λi is homotopically trivial in M and homotopically non-trivial in
M \W . A non-compact manifold is end-irreducible if it is not end-reducible.

Remark 20. The notion of end-irreducibility was introduced in [6]. Our definition
of end-irreducibility is proved to be equivalent to the original one in [6, Lemma 3.1].

It is shown in [7] that two homotopic self-homeomorphisms of an end-irreducible
non-compact manifold are in fact isotopic. Therefore, in order to conclude the proof
of Theorem 1 we only need to show the following:

Proposition 21. Let (P, c) be an infinite decorated polyhedron. Then M(P, c) is
end-irreducible.

Proof. Suppose M = M(P, c) is end-reducible, and let W and {λn}n∈N be as in
Definition 19. By Remark 5, there exists a complete finite-volume hyperbolic manifold
with geodesic boundary MW ⊂ M containing W . Let C1, . . . , Cj be the toric cusps
of M meeting MW . Up to rescaling, we can suppose that each Cl is disjoint from W .
Let Tl ⊂M be the Euclidean torus bounding Cl, and set

M ′
W = (MW \ (C1 ∪ . . . . . . Cj)) ∪ (T1 ∪ . . . ∪ Tj) .

Since M ′
W is compact, there exists N � 0 such that λN ∩M ′

W = ∅. Suppose λN ⊂ Cl

for some l. Being non-trivial in M \ W , the loop λN is non-trivial in Cl, whence
in M , since the map i∗ : π1(Cl) → π1(M) induced by the inclusion is injective: a
contradiction. We can thus suppose λN ⊂ M \ MW . Since λN is non-trivial in
M \W , it is non-trivial in M \MW . Moreover, each surface in ∂MW is geodesic,
whence incompressible in M , and this readily implies that for any component L of
M \MW the map i∗ : π1(L) → π1(M) induced by the inclusion is injective. This
gives i∗(λN ) 6= 1 ∈ π1(M): a contradiction. �
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