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LIPSCHITZ HARMONIC CAPACITY AND BILIPSCHITZ IMAGES
OF CANTOR SETS

JOHN GARNETT, LAURA PRAT AND XAVIER TOLSA

ABSTRACT. For bilipschitz images of Cantor sets in R? we estimate the Lipschitz har-
monic capacity and prove that this capacity is invariant under bilipschitz homeomor-
phisms. A crucial step of the proof is an estimate of the L2 norms of the Riesz tranforms
on L2 (G, p) where p is the natural probability measure on the Cantor set £ and G C E
has p(G) > 0.

1. Introduction

Let Lipl . be the set of locally Lipschitz real functions on Euclidean space R?, let
E be a compact subset of R?, and let

L(B,1) = {f € Lip,,. : supp(Af) C E, ||V fllo < 15V f(00) = 0}

be the set of locally Lipschitz functions harmonic on R? \ E and normalized by the
conditions ||V f|loc < 1 and Vf(oo) = 0. The Lipschitz harmonic capacity of E is
defined by

K(E) =sup{[(Af,1)| : f € L(E,1)}.
It was introduced by Paramonov [P] to study problems of C! approximation by
harmonic functions in R¢.

If d = 2 and if the Hausdorff measure Ay(E) = 0, then f € L(E,1) if and only if
F(z) = fy —ify is an analytic function on C\ E such that OF is real and |F(z)| < 1.
In that case it then follows from Green’s theorem that x(E) = 2myg(E), where

yr(E) = sup{| lim 2F(z)|: F is analytic on C\ E, |F| <1, F(c0) =0, OF real}
is the so called real analytic capacity of E. (See [P].) Moreover, by the main result

of [T1], w(E) < v(E) < Cyr(FE) where ~ is the analytic capacity of F and C is a
constant.

Now let 7' : R4 — R? be a bilipschitz homeomorphism:
(1) A7Ma —y| < [Tz —Ty| < Alx —y|.
This paper is concerned with the following conjecture.
Conjecture 1.1. If T is a bilipschitz homeomorphism, then

R(T(E)) < C(A)R(E),
where A is the constant in (1).
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When d = 2 this conjecture was established in [T2] using the connection between
analytic capacity and Menger curvature obtained in [T1]. The papers [T1] and [T2]
were preceded by two papers [MTV] and [GV] that estimated the analytic capacity of
planar Cantor sets and of their bilipschitz images. The recent paper [MT] estimated
the Lipschitz harmonic capacity of certain Cantor sets in R%, and our purpose here
is to establish Conjecture 1.1 for bilipschitz images of these Cantor sets. Thus in the
language of fractions, this paper is to [MT] as paper [GV] was to [MTV] or paper
[T2] was to [T1].

For fixed ratios \,, such that
(2) 271 <)\, < A < o,
we write
On = H )\ka
k=0
and define the sets
(3) E:ﬂEnv E, = U :’IL7
n=0 [J|=n

where J = (j1,ja, - - -, jn) is a multi-index of length n with j;, € {1,2,...29} and the
"} are compact sets such that

QUi C Q7, for all n and J,

(Jyjn+1)
and such that for all n and J,
(4) crop < diam(Q75) < caoy,,
and
(5) dist(Q}, Q%) > czopn, J # K.

for positive constants ¢y, co, and c3.

When Q7 is a cube with sides parallel to the coordinate axes and side-length o,
and

{Q?j:jlmrl) - QT} int1=1,..., 2d}

consists of the 2¢ corner subcubes of Q7, the set defined by (3) is the Cantor set
studied in [MT], and a set F is the bilipschitz image of such a Cantor set if and only
if E satisfies (3), (4), and (5). Write

and 6(Q) = 6, if @ = Q. Note that by (2),
9n+1 S 971

For Cantor sets it was proved in [MT] that

= (f: 93)_% < K(E) < C(i 92)_%,
n=0 n=0
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where C' depends only on the constant A\g in (2) and we extend their result to bilips-
chitz images of Cantor sets.

Theorem 1.2. If E is defined by (3), (4), and (5), then there is constant
C= C(Clv C2,C3, )\0)
such that

C’l(i 9,%)_% < K(E) < c(i oi)_%.
n=1 n=1

The proof of Theorem 1.2 follows the reasoning in [MT], but with certain changes.
In Section 2 we give some needed geometric properties of the sets E. In Section
3 we obtain L? estimates for the (truncated) Riesz transforms with respect to the
probability measure p on E defined by p(Q7}) = 274 hut restricted to a subset
G C E with p(G) > 0. In Section 4 we derive Theorem 1.2 from the L?-estimates
in section 3 by applying the dyadic T'(b) Theorem of M. Christ to a measure used in
[MTV] and [MT].

2. The geometry of F
Fix E such that (2) - (5) hold.

Lemma 2.1. There is c4 = ca(Xo, €1, €2, ¢3) such that for j =1,2,...,d, and all Q7

(6) sup z; — inf x; > cao.
QUNE oqQune™? "

Proof. Write

w= sup x; — inf x;.
Q"NE oqQune™
Let P be the hyperplane
1
x;=—=(sup x; + inf x,),
iT v I hhE 7)

and let Q’}( be the orthogonal projection of Q¥ onto P. If

C3
w < §Un+p

then for k =n+1,--- ,n+p, (5) and the Pythagorean Theorem give

dlSt(Qﬁl,Qﬁu) Z 7030’]@

when Qk], U Q’“],, C Q". Consequently there are (d — 1)-dimensional balls B%, with

diameter comparable to the diameter of Qﬁ, such that

. 3
dlSt( .k}”Bz;l) S %Cso—k

and
BY N B% = @, when k > m.
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Hence for constants cs5 > ¢ depending only on d and cq, ¢, and cs,

p

raa (U U B

k=1|K|=k

S5 naa (B

k=1|K|=k

P
§ kd _d—1
Z 662 Jn+k’
k=1

d—1
n

Y%

Cs0,

and by (2) this can only happen if p < £. Thus (6) holds with ¢4 = 632%%_1. O
Define the probability measure p on E by p(Q7%) = 27"

Lemma 2.2. There exist c7,cg, and 0 < v < 1, depending only on Ag,c1,c2, and c3
such that for j =1,2,....d, there exist at least c72" disjoint slabs of the form

Sk ={ar <z; <by}

such that by, — ar, < crop, p(Sk) < czy™, and p(lJ Sk) > cs.

Proof. Condition (4) implies that there exist disjoint slabs Sy satisfying all the con-
ditions of the lemma except possibly p(Sk) < ¢;79™. However, by Lemma 2.1 there
exists mg such that if m < n — mg, then for each Q}' at most 2¢ — 1 cubes Q’};H C

" can meet Si. Hence the number of @} with Q}F NS, # @ does not exceed
(24 — 1)(m=m0)2dmo and p(Sy) < (1 — 27470 < ¢y, O

3. The L? estimate

Let E satisfy properties (2) - (5). For z € E we define Q7 = Q') to be the unique
Q" such that x € Q7. If f € L?(p) and j = 1,2,...,d, we define the truncated Riesz
transform as

Ryf@)= [ K0 @)

(y — ),

= By (5) it is clear that ||R§VHL2(;D) < 00.

where K;(y —z) =

Theorem 3.1. Let 0 < a < 1 and let G C E be a closed set such that p(G) > a.
There are constants Cy(a) and Ca, both depending on Ao, c¢1, co and c3, such that for
all N big enough,

N
(™) o (3 62)
n=0

W=
SIS

N
<|IByllzzcp) < Co (Z 9721) :
n=0
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To begin we prove the upper bound in (7). Since the norm HRgvHH(G.p) increases
with G we may assume G = E, which also means C5 does not depend on «. The proof
of the upper bound in (7) follows the paper [MT], but for convenience we repeat their
argument. By the T'(1)-Theorem for spaces of homogeneous type from [Chl] we have

. n RJ Xon 2 n
[ By |lL2p) < C sup sup p((?fl) + C sup sup AT Q")”L1 95
n<N |J|=n On n<N |J|=n p(Q7%)2

Therefore the upper bound in (7) will be an immediate consequence of the following
two lemmas. For convenience we fix j, write K(y — z) = K,;(y — x), and define

Buf)= [ K= i),

Lemma 3.2. If n < m, there is cg such that

1
[ Rmxanllzz(qn.p) < cofmp(Q)2

Proof. For y € Q™ \ QM T, (5) gives

1
Ky —2)| < 5
3 Om+1

Hence by (2)
2d
|RmXQf}| < a_1 emv
C3
and

2d 1
[RmXxqnllrz(qnp < Cg)Tlt%p( HE

O

Lemma 3.3. There is a constant C depending only on Ao, c1, co and c3 such that
for all N >n and all J,

N
%2(Q37p) <C Z Gzp(QT})

k=n

| Ry xqr

Proof. Fix j =1,...,d, then for x € Q7

N—1
Rixqn(@) = Y Rmxqy(x).
We claim that for m # k,

(8) ‘/RmXQ}RkXQj;dP‘ < C27Im=klg, 0,p(Q™).
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Accepting (8) for the moment, we see from Lemma 3.2 that
N—-1
j 2 2
||R3VXQ?}||L2(Q7;) = | E Rixqnllzz(gn)

m=n

N-1
= > [Rmxasl72cqn +2 > (Rmxay Rixey)
m n<k<m<N-1

N-1
< C Z 07,0(Q%)
which gives the right-hand inequality in (7).
To prove (8) assume n < k < m < N — 1. Then because the kernel K is odd,
/ Rovay (x / . / . y)dp(y)dp(z) = 0,
QR r#q ZY;(,T) Q(K q)
so that for any % € Q%,
/  Rinxan (@) Rexorn (x)dp(z) = / ~ Rixqy () (Rrxey (v) — Rixor (2%))dp(z).

K K

But when z € Q%, (4), (5) and (2) give

| Rrxqy (2) — Rixon (v)] < C% < 087" < 07" My
Ok

Ok
Hence using Lemma 3.2

|/RmXQj;RkXdip| < 027" MO Rxgn L qn.p)

< 027G p(Q)2 0,mp(Q7)2
and (8) holds. =

The proof of the lower bound in (7) also follows [MT] but with two alterations
needed because G' # E and because the sets Q"; may be incongruent. When Q = Q"
we also write n = n(Q), Q € D,, and 0(Q) = 0,,.

Let 0 < ¢ < 1, fix G and define B(6) = {Q € J,, Dn : p(GN Q) < dp(Q)}.

Lemma 3.4. Assume § < a and p(G) > a.
(a) Then for all n,

G\ | @h=pG\|JQ) a0
D, NB(J) B(9)
(b) For Ny € N there exists M(Ng) such that whenever Q ¢ B(§), there exist Q' C Q
with n(Q'") < n(Q) + M such that for all Q" C Q" with n(Q") < n(Q") + No

Q"¢ B0).
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Proof. To prove (a) let {Q;} be a family of maximal cubes in B(d), note that
G0 Q) < nGNQy) < plE) =6

B()
and subtract this quantity from p(G).

To prove (b) fix Ny and suppose (b) is false for Ny, d,Q and M = 0. Write
n =n(Q). Then there is Q1 C Q with n(Q1) < n+Npand Q1 € B($). Set Fi = {Q1}.
Then p(Q\ Q1) < (1—2"Md)p(Q) = Bp(Q). Now assume (b) is also false for Ny, d, Q
and M = Ny and write Q \ Q1 = U{Q’' : n(Q') = n(Q1),Q" # Q1}. Then for each
Q' # Q1 with n(Q") = n(Q1) there is Q2 C Q" with n(Q2) < n+2N, and Q2 € B(3).
Set Fp = {Q2}. Then p(Q \ Uz, 7, Qi) < 6°p(Q). Further assume (b) is false for
No,0,Q and M = 2N, and repeat the above construction in each @'\ Q2. After m
steps we obtain families F; of cubes Q; € B(%) such that |J F; is disjoint and

r@\JUJ@y <8mp(@Q)
Jj=1 ]:j
and for f™ < & we obtain p(Q N G) < gz;nzl 25, P(Q;) + 8"p(Q) < dp(Q), which
is a contradiction. We conclude that (b) holds for M = mNj. O

For any ¢ < a we say Q' € G*(9) if @’ satisfies conclusion (b) of Lemma 3.4 for Ny
and 0. Then by parts (b) and (a) of Lemma 3.4 we have:

Lemma 3.5. Let 0 = § and assume p(G) > «. Then

> 0@Q)pQ NG =C(M) Y 0(Q)Pp(QNG) > C(M,a)> 67
G*(%) QEB(9)

Now let A be a large constant. As in [MT], for R € D we will define a family
Stop(R) of “stopping cubes” @ C R. We say @Q € Stopy(R) if @ C R and Q ¢ B(g)
and if

inf‘/ K(y —x)dp(y)| > AO(R).
@ Vanm\e)
We also say @ € Stop (R) if Q@ C R and @ ¢ B(%), if 0(Q) < nf(R) for constant 7 to
be chosen below, if n(Q) > n(R) + Ny for constant Ny to be chosen below, and if
P € Stopy(R) = n(P) > n(Q).
Then define
Stop(R) = {Q € Stopy(R) U Stop; (R) : @ is maximal}.

It follows from the last three conditions in the definition of Stop,(R) that either
Stop(R) C Stopy(R) or Stop(R) C Stop,(R). Inductively we define Stop'(P) =
Stop(P) and

Stop" (P) = J{Stop(Q) : Q € Stop" ' (P)},

Top = {P} U U Stop*(Py),
k>1
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where P, is the unique cube in Dy, and

rr= ] @

Stop(P)

Remark. The constants Ny, N1, A,n are chosen as follows. First we take 6 = a/2.
Then N; will be determined by Lemma 3.7, n and A will be determined by the proof
of Lemma 3.8, and Ny, which depends on A, 7, and ¢, will be determined by the proof
of Lemma 3.6.

Lemma 3.6. Let 0 = § and assume p(G) > a. If No = No(A,n,0) is sufficiently
large, then for all Q € g*(g) there exists a cube P C @ such that P € Top and

n(P) < n(Q) + No.
Proof. Let Q € g*(g) and let R be the smallest cube R € Top such that Q@ C R. We
assume the conclusion of the lemma is false for Q. Thus @ ¢ Top, and @ ¢ Stop(R).
Hence by definition there is xy € @) such that
[ K- sonty)] < a0()
GNR\Q

Then for z € Q (5) gives

n(Q)—1
)
[ Ky-2) - Ky - mo)ds] < Cowgy 3. 2 < CiolR)
GNR\Q ke (R) O
so that
9) sup‘/ K(y— m)dp(y)‘ < (A+C1)I(R).
Q 'JanRr\Q

Take z* € Q N E with z} = infg x; and let Q" be that Q* C @ such that z* € Q*
and n(Q*) = n(Q) + Ny. Then
Ky—2*)>0

for all y € Q and by Lemma 2.1 there is a constant ng such that if n < n(Q*) — ny,
there exists Q" C (Q \ Q*) such that
inf K(y—a")>

yeQ o aﬁ;l

Cc

Because 6,11 < 6, and because we assume the lemma is false for ), we also have
8(Q7) > nf(R) for every such Q7. Hence by (5)

. )
[ K- a)dply) = (N~ nonZ0(R)
GNR\Q*
and by the proof of (9),

(10) inf K(y — 2)dp(y) > (No —no)n — C)6(R).
Q" Jang\o 2

Taking Ny = Ny(A) sufficiently large and comparing (10) with (9) we conclude that
Q* € Stopy(R), which is a contradiction. O
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Note that by Lemma 3.5 and Lemma 3.6 we have for all P,

(11) 292<c Z > 0Q)p(Q) < C'(a) > 0(P)*p(GNP).

n=0D, \B(3) Top
We define
Kpl(z) = Y XGnQ(x)/ K(y — x)dp(y)
QEStop(P) GNP\Q
+ xanme(e) [ K(y - 2)dp(y).
GNP\QN (z)

By construction
XcRn1=Y Kpl

Top
and

||RN1||L2(G) ZHKP1||L2(G) + Z (Kpl,Kql)r2(c)-
Top P,Q€eTop, P#Q

Lemma 3.7. If Ny is chosen big enough, then for all P € Top,

(12) 1Pz > CT1O(P)*p(G N P),
where C' = C(«), and

(13) IKPLlZ2(q) = A*0(P)?p(G N P*P),
where

Pstpo — U{Q : Q e StOp(P) n StOpO(P)}

Lemma 3.8.
(14) Z (Kpl, Kql) 2yl < C(A™" +¢(n)) Z IKp1Z2(c),
P,Q€eTop, P#Q Top

with ¢(n) — 0 asp — 0.

Assuming Lemma 3.7 and Lemma 3.8 for the moment, we see that if A is large
and n is small, then

IRN1[F2() = C™1 ) 0(P)*p(G N P)
Top
and then the lower bound in (7) follows from inequality (11).
To prove Lemma 3.7, first note that (13) follows from the definitions of Stop,(P)

and Stop(P). To prove (12), recall that K = K for some 1 < j < d. We apply
Lemma 2.2 to P with v ~ « to obtain sets S; C P and Sy C P such that

supr; =a < 1nij
S1

and

Min(p(G N S1), p(G N S2)) = c(a)p(P).
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We may assume that S7,S2 are much bigger that any stopping cube of P, because if
there exists some @ € Stop,(P) with size similar to S; or S, then (12) follows from
(13); and if we choose N; big enough, any cube @ € Stop;(P) will be much smaller
that S1,52. Then we get

) $10G)
K >C! p5NG)
| o pxs, (z)dp(x)| > C7'p(S2NG) diam (D)1

Set
Elzpﬂ{l‘j SCL} andEgzPﬂ{xj>a}.
By its definition,

Kpl = T T Ky —x)d
P1= 10 3 a0 /G o, K= 21b0)

where {Q} is a cover of P by disjoint cubes from D. We also have

Keil) = xa@) 3 Ve [ Kly- )ity

i=1,2 k GNE\Qr

= Kpxg (2) + Kpxe,(2).
Write Qr = Q(z) when z € Q) and note that

y¢Qx) = ¢ Q)
Hence by the antisymmetry K(y —z) = —K(x — y) we have

| Kexe,@ipta) =0,
GNE>

Therefore by the choices of S1, S5, 1 and Es,

WGNE) Kl > || Kl
GNEs
= | Kpxe, (z)dp(z)]
GNEy
> | Kpxs, (z)dp()|
SanNG
c(a)p(G N P)
> S S
= p(GmEQ) diam(P)d71 ’

which is (12).

To prove Lemma 3.8 we again follow [MT]. Suppose P # @ € Top and Q C P.
Let Py € Stop(P) be such that Q C Py C P. By the antisymmetry of K we have
Jona Kqldp = 0 so that

KQl(x)Kpl(x)dp‘

Kgl(z)(Kpl(z) — Kpl(zg))dp(x)

‘ QNG ‘ QNG

IA

[KqlllL1 (@) Sup |Kpl(z) — Kpl(zg)l,
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where z( is a fixed point from @). But for any x € @, standard estimates yield

Kpl(z) - Kpl(zg)| < /G o =)~ Ky )

< Cdiam(Q)/ dp(y)

GNP\ Pqg |z —y[?

(1)

< C diam(Q) Tam(B)°

Assume first that Py € Stop,(P). Since 8(R) < 6(P) in the last sum, we get

diam(Q)

’Kpl(a:) — Kpl(xQ)| <C diam(Pg)

o(P).

Hence by (13),

(Kp1, KQl)p2(ap)| <

C diam(Q) ( p(GNQ)
p

1/2
A Kql Kpl
Adlam(PQ) (Gﬂpstpo)> H Q HL2(G)|| P HLQ(G),

when Py € Stopy(P).
Consider now the case Py € Stop; (P). This means that 8(Pg) < nf(P). Then it
follows from (2) that

> () dally) )y < Y AR

pocrcp O(P)  diam(R) rocrice !F)

so that

) 0(R) diam(Q) )
diam(Q) Z ——— <¢(n) —== 0(P) with ¢(n) — 0 as n — 0.

PoCRCP diam(R) diam(Pg)

Hence by (12),

diam(Q)
(Kpl,Kql)r2(ap)| < cn) Jam(Po) [KQllL2) [ KplllL2(c),

when Pg € Stop, (P). Thus (14) follows from Schur’s lemma. O

4. Lipschitz harmonic capacity

In this section we will prove Theorem 1.2. We will assume that each cube @'} in
the definition of the Cantor set E (see (3)) contains a closed ball B such that

cyo, < diam(BY).

This assumption comes for free from the definition of F in Section 1. Indeed, one
easily deduces that there exists a family of balls B’} centered at Q' such that

cyo, < diam(BY%) < cho,,

and
dist(BY, By) > cson, J # K.
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Then if one replaces the cubes Q' in the definition of E by the sets
&= U @rusp.
QRCQ;
FE does not change.
Given a real Radon measure p and f € L(u), let

Ry e(fdps) () = / L 1 w)duty)

ly—z|>€ ‘y -

be the (truncated) (d — 1)-Riesz transform of f € L'(u) with respect to the measure
pand set ||Ryllr2(u) = suPes [ Ry ellLz (-
As in [MT], we need to introduce the following capacity of the sets Ep:
kp(En) =supf{a: 0 <o <1, [|Rapy 22 (apy) < 1},
where py is a probability measure on Epn such that ,uN(Qf}’ )= 9—Nd,
The L? estimates from the previous section yield the following lemma.

Lemma 4.1.

kp(ENn) = <§: Hi) 71/2.
n=1

Proof. By Theorem 3.1 we have

N N\ 1/2
| R 122 o) = 0l Rl 220y = (32 02)

n=1

The lemma follows because the sum above is > 274 [l

We will prove the following;:

Lemma 4.2. There exists an absolute constant Cy such that for all N € N we have

(15) H(EN) S Colip(EN).
Notice that Theorem 1.2 follows from Lemma 4.2 and
(16) K(EN) 2 k1 (En) 2 C Ry (En),

where

ki (B) =sup{[(Af, )] : f € L(E,1),Af = p e My(E)}
and M (E) is the set of positive Borel measures supported on E. The first inequality
in (16) is just a consequence of the definitions of x and k1 and the second inequality

follows from a well known method that dualizes a weak (1,1) inequality (see Theorem
23 in [Ch2] and Theorem 2.2 in [MTV]. The original proof is from [DQ)]).

In [Vo] it is shown that the capacities x and x4 are comparable for all subsets of
R?, but we do not use that deep result.

For any s > 0, we write A, and AS° for the s-dimensional Hausdorff measure and
the s-dimensional Hausdorff content, respectively.
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Proof. The arguments are similar to those in [MTV] and [MT], but a little more in-
volved because our Cantor sets are not homogeneous. Also, instead of using the local
T(b)-Theorem of M. Christ, we will run a stopping time argument in the spirit of
[Chl] and then use a dyadic T'(b)-Theorem (see Theorem 20 in [Chl]).

We set
Sp =07+ 0354+ + 62
Without loss of generality we can assume that for each N > 1 there exists 1 < M < N
such that

S
(17) Sy < 7N < Sm1-

Otherwise 2% < S; and by Lemma 4.1 it follows that ,(Ey) > C~'A{~!. By [P] we
have
K(En) < K(E1) < CAZ ((E1) < OATY,
and if Cy is chosen big enough the conclusion of the lemma will follow in this case.
Assuming (17), we will now prove (15) by induction on N. For N =1 (15) holds
clearly. The induction hypothesis is

K(En) < Cokp(Ey), for 0 <n < N,

where the precise value of Cj is to be determined later.

Notice that for n > 0, (Q¥ N E),, is the n—th generation of the Cantor set Q¥ NE,
i.e. the union of 2"% sets Q?‘HV satisfying properties (4) and (5) with n replaced by
n+ N. Let J* be the multi-index of length M such that

K(QF NE)N-m) = i £((QF NE)N-m).
We distinguish two cases.
Case 1: For some absolute constant Ay to be determined below,
R((QF NE)N-_u) > A2~ Mk (EN),

By the induction hypothesis (applied to (Q) N E)x_as) and by Lemma 4.1 we have
that

K(En) < Ay 2Mis((QY N E)v—_n) < Ay 2M9Cok, ((QY N E)n—n1)

SA5100021»1d( iM(zd—dln)z)m :Agl(JOC( ZN: 9121)—1/2.
n=1 9M+n n=M+1

Now by using that Sy, < S /2 is equivalent to ZN 02 <2 Ziv:M_H 6% and Lemma

n=1"n —
4.1 again, we obtain that

N ~1/2
R(Ex) <2247 Co0 (D0 02) T < CAT Cory(Bw).
n=1

Hence if A9 = C, we obtain (15).

Case 2: For the same constant Ag,
(18) /{((Q% n E)NfM) § A02_MdH(EN).
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Then if 912\/[+1 > S, SM+1 =Sy + 912\/[+1 ~ Q?WJFI. Therefore

—1/2 — 0o
Fp(Enre1) ~ Sypl] ~ 0341 = CAZ (Enrs)-

Hence by (17),
K(EN) < K(Ent1) < OAGZ  (Ens) < Chp(Ent1) = kp(EN),

which is (15) if Cy is chosen big enough.

On the other hand, if 9]2\/[+1 < Sur, then Spyi1 = Sy =~ Sy. Recall that we
are assuming that each cube Qﬁ/f contains some ball ijw with comparable diameter.
Moreover, we may suppose that all the balls Bf]‘/[, J =1,...,2M4 have the same
diameter dp;. We set

Ey = |J B}
|J|=M
We consider now the measure
o = K(EN)trs

where 'y, is defined by
(1) = 3 Aaml KD OB)
Aa—1(0En)

)

J

for compact sets K. Clearly o(Ey) = k(Ey).
Note that the measure o is doubling and has (d — 1)—growth. To verify this, one
uses that

K(EN) < Kk(Ey) < CAY (En) < CAg_1(0En)
and 1y, (Q%) = 27" for all 0 < n < M (see (4.8) and (4.9) of [MT]).
We will show that there exists a good set G C Ejy; with o(G) =~ o(F)js) such that

R, is bounded on L?(0|g) with absolute constants. From this fact, by Theorem 3.1
we have

1/2
1Ry | 22(01) = K(En)Sy)” < C.
So by Lemma 4.1 we infer
K(EN) < CSy"? < Oy~ Cry(B),

which proves the lemma.

To establish the existence of the set GG, we run a stopping time argument. First
we construct a set E and a doubling measure ¢’ on E’. The pair (E’,¢’) is endowed
with a system of dyadic cubes Q(FE’), where

QEN={Q CE': BEN, keN}

(see Theorem 11 in [Chl]). We also define a function b’ on E’, dyadic para-accretive
with respect to this system of dyadic cubes, i.e. for every Qg € Q(F’), there exists

Q€ QE), @, C Qf, with I <k + N and
[ o' = (@)

for some fixed constants ¢ > 0 and N € N, and such that the function R(b'do’)
belongs to dyadic BMO(o¢’). Therefore, the (d — 1)-Riesz transform R associated to
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o’ will be bounded on L?(E’,¢’) by the T(b)—theorem on a space of homogeneous
type (see Theorem 20 in [Ch1]). Our set G will be contained in E' N Ey;.

Now we turn to the construction of the set E’ and the measure ¢’. By definition
there exists a distribution T supported on Ex such that

K(En) < C(T, 1)

and
| RT|| oo (mey < 1.
We replace the distribution 7' with a real measure v supported on Ex such that
k(En) < Clv(En)| and || Rv| 1= (R?) < 1. (The measure v exists because of Volberg’s
theorem ([Vo]), but in the special case of En considered here v can be constructed
directly by setting v = Z‘J‘:N vy with vy = hJXan]VAd—I and h; smooth on 8BLJ,V
such that for all polynomials P of degree at most d, [ P(z)dv; = T(P(z)ps(x)),
where ¢ is smooth and ¢; = xqy on Ex. See [P].)
The definition of ¢ implies that

(19) [W(EN)| > C Yo(En) > oo (Er),

where € is a sufficiently small constant to be fixed later. Notice that for a fixed
generation n, 0 < n < M, there exists at least one cube Q%, such that |[v(Q%)| >
€00 (Q%), since otherwise for 0 <n < M

W(EN) < Y eo(Qk) =€ > o(B))=eo(En),
|K|=n |J|=M
which contradicts (19).
We now run a stopping-time procedure. Let ¢ > 0 be another constant to be chosen
later, much smaller than ¢y. We check whether or not the condition

(20) (Q))] < e0(Q))

holds for the cubes QY. If (20) holds for the cube QY, we call it stopping-time cube.

If (20) does not hold for @Y, we consider the children Q% of Q) and call each such

Q3% with (20) a stopping-time cube. We continue this procedure through generation

M, but we do not consider the cubes of later generations. We obtain in this way a

collection of pairwise disjoint stopping-time cubes {P,},, where P, = Q}, for some

0 < n < M and by definition each P, satisfies condition (20) with QY replaced by P, .
Consider now the function

b= v(Q))

M XBg/I
= 0BT
The function b has the following three important properties:

(1) for 0<n< M, bdo = v(Q%).
Q%

(2) [Iblloo < C-

(3) For any 0 <n < M,

(21) [R(bxqy do) | e ga) < C.
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To show that b is bounded it is enough to verify that
(22) V(@) < Ca(B]), for |.J] = M.

Inequality (22) can be shown by localizing the potential v * x/|z|? (see [P] and
[MPrV]) and using (18), namely

Q| < Cr((QY NE)N_n) < CA2~MAk(EyN) = CAgo(BY).
To see (21), notice that

K(En)
Aa-1(0Enm)
Since [|R(xqy, dv)|| L@y < C, again by localization ([P]), in order to show (21) we
only need to estimate the following differences for 0 < n < M,

R(bxqpdo)(z) — R(xopdv)(x) = Y Ral (),
QY cQy

(23) [R(xpardo)||poe ey < C IR(x pas dAa—1)|| L= (e < C-

v(QY .
where oY = JEB;”% Xpudo — xqudv. Since Jdaly =0, [|[Rad|| e gay < C and for

|lx — c(By)| > co,

M a7
[R(ory ) ()] < va
(21) follows.

At this point one can finish the proof by applying Theorem 7.1 of Volberg [Vo]
with the function b, but we will give a direct argument based on [Chl]. We thank the
referee for the route through Theorem 7.1 of [Vo.

Given a cube Q", 0 < n < M, set

Q" = U B
BMnQn#0)

Notice that diam(Q%) = co,, ~ diam(Q"%) and o|Qy = 01gn- By (19) and (20) we
have ‘

- ~ 1
O-(E]W\UP’Y) Z = /. ~ |b|d0‘
5 C Ev\U, Py
o, = e
> = bdo| — — bdo
> gl [, b= X [, v
1

> E(GoO’(EM) — e;o(PA,)).

€p) — €

C—¢€
21 S o(Py) < (1= molEn).

Therefore, for n =
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We can now define our good set G C Eps. Set
G=Eu\|JP,.
¥

By (24), no(Exy) < 0(G) < o(Ey). We want to construct the set E’, by excising
from E)s the union of the stopping time cubes P, and replacing each P, by a union
of two spheres. For each stopping time cube P,, set

S, = 0Bl UoB?,
where BJ, j = 1,2 are two balls with center ¢(S,) := ¢(B)) = ¢(B2) € P, and such
that

soq if Py =Q7%, for some 0 <n < M,
2diam(B}/) = diam(B?/) = Gy P oM
My =&y

B =culJs, = (B \UP) ulUsn

Y

Set

and define a measure o’ on E’ as follows:

o onG

o= Ag_118B1 Ag_116B2
a(PW)( d 1|6B71 d 1|SB; ) on S,
2 \Ag-1(0B;)  A4-1(0B2)

Using that o is doubling and has (d — 1)—growth it is easy to see that o’ also
satisfies these two properties.

For a system of dyadic cubes in E’ satisfying the required properties (see Theorem
11 in [Chl]), we take all cubes Q%, 0 < n < M, which are not contained in any
stopping time cube ]57, together with each S, together with each (?BZY', j =12
comprising S, together with subsets of the two spheres,... and repeat.

We will now modify the function b on the union U,.S, in order to obtain a new
function b’ defined on E’, bounded and dyadic para-accretive with respect to the
system of dyadic cubes defined above. Let

bz) ifxeG
b/((Ij) —
gv(m) = cl,XaBi (x) — ci)@B% (3;) on S%
where
v(Py)
) 2 _9 (1 ‘V(P’y)‘> d (Pl if [v(Py)] #0
C. = ZW s co = 2w e PA an . —
oo o(P,) y

1 otherwise.
Notice that the coefficients c?y, j =1,2, are defined so that

(25) /

gydo’ = /P bdo = v(P,),

~
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and |c}[ = 2 and 2(1—¢) < |¢2| < 2, because P, is a stopping time cube. The function
b’ is bounded because of the upper bound on the coefficients ng’ j =1,2 and the fact
that ||b]|ec < C.

For future reference, notice that, for every dyadic cube @ in E’, such that Q € S,
for all ~, there is a non-stopping time cube Q* (Q* = Q% for some 1 < n < M)
uniquely associated to @ by the identity

(26) Q:(Q*\ U ]%)U( U Sv>~

B,cQ* B,cQ*

Moreover one has diam(Q) ~ diam(Q™*) and

(27) (@ =0(Q)~ Y o)+ Y o(S)=0Q").

P, CcQ* P,CQ*

We will check now that, by construction, the function b’ is dyadic para-accretive
with respect to the system of dyadic cubes in E':

If for some v, Q C S, the para-accretivity of &’ follows from the definition of g, and
the lower bound on ‘CZ‘Y|, 7 = 1,2. Recall that, when examining the para-accretivity
condition on S, although identity (25) holds, we have a satisfactory lower bound on
the integral over each child 3Bﬁ; of S,, which turns to be enough for ¥’ to be dyadic
para-accretive.

Otherwise, let @* be non-stopping time cube defined in (26). Then due to (25)
and (27) we can write

‘ / Vdo'
Q

We must still show that R(b'0’) belongs to dyadic BMO(o”). It is enough to show
the following L'— inequality

— ’/* bdo’ > eo(Q*) = e’ (Q).

(28) IR XQ) L1 (or,) < Co'(Q),

for every dyadic cube in E’.

Let Q be some dyadic cube in E’. We distinguish between two cases:

. Then (28) follows from the boundedness of the

Case 1: For some v, Q C S
coefficients |, j = 1,2, o(P,) < Cdiam(P,)?! and Ag—1(S,) =~ diam(P, )4 1.
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Case 2: Otherwise, Q@ = (Q™\ U P)U( U S,) for some non-stopping Q* =

P,cQ* P,cQ*
7,1 <n <M. Due to (25) we can write
R(t'xQ)(y) = Rlbxq-)®)

bY [ a@(Ee-y - Kes) - 9)dr'@)

LY / b(a) (K (c(S;) — y) — K(z — y) ) do(a)

'YZP~’YCQ* Py
= A+B+C.
By (21) (or (23) if Q" = B}'), | R(bxq-)

/ |Aldo’ < Co'(Q).
Q

We deal now with term B. Set

Bl = /Q\Sw \/S 9:(0) (K (@ = y) = K(e(S,) = y) ) do (2| do" ()

and
B2 = / | / 9:(2) (K (2 =) = K(e(8,) — y) )dor (2)|do’ (1)

For B1, let g(Q) € N be such that diam(Q) ~ o4y and P, = Q7 for some
0 <n < M. Observe that diam(S,) ~diam(P,) ~ 0,.. Denote by Q°, g(Q) < i < n,
the cubes in E’ contained in @ and containing S, such that diam(Q*) =~ o; (note

that the Q' are either Q%s or unions of spheres replacing the btopplng time cubes of
generation ). Then by the boundedness of g, the (d —1)-growth of ¢’ and the upper
bound in (2),

B1 Z/\ —da

it e of

n—1
On

< Col(Sy) Y 2 <Co(S)) 27 < Co'(S,).

o
i=g(Q)

For B2 argue like in the previous case, i.e. (28) for Q = S, to get that B2 < Co’(S,).
Therefore by o’(S,) = o(P,), the packing condition (24) (with Ejs replaced by Q*)

and (27) we get that / |Bldo’" < Co'(Q).
Q

Similar arguments work to show / |C|do” < Co’(Q). Therefore we are done. [
Q
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