LIPSCHITZ HARMONIC CAPACITY AND BILIPSCHITZ IMAGES OF CANTOR SETS

JOHN GARNETT, LAURA PRAT AND XAVIER TOLSA

ABSTRACT. For bilipschitz images of Cantor sets in \mathbb{R}^d we estimate the Lipschitz harmonic capacity and prove that this capacity is invariant under bilipschitz homeomorphisms. A crucial step of the proof is an estimate of the L^2 norms of the Riesz tranforms on $L^2(G, p)$ where p is the natural probability measure on the Cantor set E and $G \subset E$ has $p(G) > 0$.

1. Introduction

Let Lip_{loc}^1 be the set of locally Lipschitz real functions on Euclidean space \mathbb{R}^d , let E be a compact subset of \mathbb{R}^d , and let

 $L(E, 1) = \{f \in Lip_{loc}^1 : \text{supp}(\Delta f) \subset E, ||\nabla f||_{\infty} \leq 1; \nabla f(\infty) = 0\}$

be the set of locally Lipschitz functions harmonic on $\mathbb{R}^d \setminus E$ and normalized by the conditions $||\nabla f||_{\infty} \leq 1$ and $\nabla f(\infty) = 0$. The Lipschitz harmonic capacity of E is defined by

$$
\kappa(E) = \sup\{|\langle \Delta f, 1 \rangle| : f \in L(E, 1)\}.
$$

It was introduced by Paramonov [P] to study problems of $C¹$ approximation by harmonic functions in \mathbb{R}^d .

If $d = 2$ and if the Hausdorff measure $\Lambda_2(E) = 0$, then $f \in L(E, 1)$ if and only if $F(z) = f_x - if_y$ is an analytic function on $\mathbb{C} \setminus E$ such that $\overline{\partial} F$ is real and $|F(z)| \leq 1$. In that case it then follows from Green's theorem that $\kappa(E) = 2\pi \gamma_{\mathbb{R}}(E)$, where

$$
\gamma_{\mathbb{R}}(E)=\sup\{|\lim_{z\to\infty}zF(z)|: F\text{ is analytic on }\mathbb{C}\setminus E,\ |F|\leq 1,\ F(\infty)=0,\ \bar{\partial}F\text{ real}\}
$$

is the so called *real analytic capacity* of E . (See $[P]$.) Moreover, by the main result of [T1], $\gamma_{\mathbb{R}}(E) \leq \gamma(E) \leq C \gamma_{\mathbb{R}}(E)$ where γ is the analytic capacity of E and C is a constant.

Now let $T: \mathbb{R}^d \to \mathbb{R}^d$ be a bilipschitz homeomorphism:

(1)
$$
A^{-1}|x - y| \le |Tx - Ty| \le A|x - y|.
$$

This paper is concerned with the following conjecture.

Conjecture 1.1. If T is a bilipschitz homeomorphism, then

$$
\kappa(T(E)) \le C(A)\kappa(E),
$$

where A is the constant in (1) .

Received by the editors May 26, 2006.

When $d = 2$ this conjecture was established in [T2] using the connection between analytic capacity and Menger curvature obtained in [T1]. The papers [T1] and [T2] were preceded by two papers [MTV] and [GV] that estimated the analytic capacity of planar Cantor sets and of their bilipschitz images. The recent paper [MT] estimated the Lipschitz harmonic capacity of certain Cantor sets in \mathbb{R}^d , and our purpose here is to establish Conjecture 1.1 for bilipschitz images of these Cantor sets. Thus in the language of fractions, this paper is to [MT] as paper [GV] was to [MTV] or paper [T2] was to [T1].

For fixed ratios λ_n such that

$$
(2) \qquad \qquad 2^{-\frac{d}{d-1}} \leq \lambda_n \leq \lambda_0 < \frac{1}{2},
$$

we write

$$
\sigma_n = \prod_{k=0}^n \lambda_k,
$$

and define the sets

(3)
$$
E = \bigcap_{n=0}^{\infty} E_n, \ E_n = \bigcup_{|J|=n} Q_J^n,
$$

where $J = (j_1, j_2, \ldots, j_n)$ is a multi-index of length n with $j_k \in \{1, 2, \ldots, 2^d\}$ and the Q_J^n are compact sets such that

$$
Q_{(J,j_{n+1})}^{n+1} \subset Q_J^n
$$
, for all *n* and *J*,

and such that for all n and J ,

(4)
$$
c_1 \sigma_n \leq \text{diam}(Q_J^n) \leq c_2 \sigma_n,
$$

and

(5)
$$
\text{dist}(Q_J^n, Q_K^n) \ge c_3 \sigma_n, \ J \ne K.
$$

for positive constants c_1, c_2 , and c_3 .

When Q_J^n is a cube with sides parallel to the coordinate axes and side-length σ_n and

$$
\{Q_{(J,j_{n+1})}^{n+1} \subset Q_J^n : j_{n+1} = 1, \ldots, 2^d\}
$$

consists of the 2^d corner subcubes of Q_J^n , the set defined by (3) is the Cantor set studied in $[MT]$, and a set E is the bilipschitz image of such a Cantor set if and only if E satisfies (3) , (4) , and (5) . Write

$$
\theta_n = \frac{2^{-nd}}{\sigma_n^{d-1}}
$$

and $\theta(Q) = \theta_n$ if $Q = Q_J^n$. Note that by (2),

$$
\theta_{n+1} \le \theta_n.
$$

For Cantor sets it was proved in [MT] that

$$
C^{-1}\Bigl(\sum_{n=0}^\infty \theta_n^2\Bigr)^{-\frac{1}{2}}\leq \kappa(E)\leq C\Bigl(\sum_{n=0}^\infty \theta_n^2\Bigr)^{-\frac{1}{2}},
$$

where C depends only on the constant λ_0 in (2) and we extend their result to bilipschitz images of Cantor sets.

Theorem 1.2. If E is defined by (3) , (4) , and (5) , then there is constant

$$
C=C(c_1,c_2,c_3,\lambda_0)
$$

such that

$$
C^{-1} \left(\sum_{n=1}^{\infty} \theta_n^2\right)^{-\frac{1}{2}} \le \kappa(E) \le C \left(\sum_{n=1}^{\infty} \theta_n^2\right)^{-\frac{1}{2}}.
$$

The proof of Theorem 1.2 follows the reasoning in [MT], but with certain changes. In Section 2 we give some needed geometric properties of the sets E . In Section 3 we obtain L^2 estimates for the (truncated) Riesz transforms with respect to the probability measure p on E defined by $p(Q_j^n) = 2^{-nd}$ but restricted to a subset $G \subset E$ with $p(G) > 0$. In Section 4 we derive Theorem 1.2 from the L^2 -estimates in section 3 by applying the dyadic $T(b)$ Theorem of M. Christ to a measure used in [MTV] and [MT].

2. The geometry of E

Fix E such that (2) - (5) hold.

Lemma 2.1. There is $c_4 = c_4(\lambda_0, c_1, c_2, c_3)$ such that for $j = 1, 2, \ldots, d$, and all Q_J^n (6) sup $Q_J^n \cap E$ $x_j - \inf_{Q_J^n \cap E} x_j \geq c_4 \sigma_n.$

Proof. Write

$$
w = \sup_{Q_J^n \cap E} x_j - \inf_{Q_J^n \cap E} x_j.
$$

Let P be the hyperplane

$$
x_j = \frac{1}{2} \left(\sup_{Q_j^n \cap E} x_j + \inf_{Q_j^n \cap E} x_j \right),\,
$$

and let \tilde{Q}_K^k be the orthogonal projection of Q_K^k onto \mathcal{P} . If

$$
w < \frac{c_3}{2}\sigma_{n+p}
$$

then for $k = n + 1, \dots, n + p$, (5) and the Pythagorean Theorem give

$$
\textup{dist}(\tilde{Q}_{J'}^k, \tilde{Q}_{J''}^k) \geq \frac{\sqrt{3}}{2} c_3 \sigma_k
$$

when $\tilde{Q}_{J'}^k \cup \tilde{Q}_{J'}^k \subset Q_J^n$. Consequently there are $(d-1)$ -dimensional balls $B_{J'}^k$ with diameter comparable to the diameter of $\tilde{Q}_{J'}^k$ such that

$$
dist(\tilde{Q}_{J'}^k, B_{J'}^k) \le \frac{\sqrt{3}}{4} c_s \sigma_k
$$

and

 $B_J^k \cap B_K^m = \emptyset$, when $k \geq m$.

Hence for constants $c_5 > c_6$ depending only on d and c_1, c_2 , and c_3 ,

$$
c_5 \sigma_n^{d-1} \geq \Lambda_{d-1} \Big(\bigcup_{k=1}^p \bigcup_{|K|=k} B_{(J,K)}^{n+k} \Big)
$$

=
$$
\sum_{k=1}^p \sum_{|K|=k} \Lambda_{d-1} \Big(B_{(J,K)}^{n+k} \Big)
$$

$$
\geq \sum_{k=1}^p c_6 2^{kd} \sigma_{n+k}^{d-1},
$$

and by (2) this can only happen if $p \leq \frac{c_5}{c_6}$. Thus (6) holds with $c_4 = c_3 2^{\frac{-d}{d-1}} \frac{c_5}{c_6} - 1$. \Box

Define the probability measure p on E by $p(Q_j^n) = 2^{-nd}$.

Lemma 2.2. There exist c_7 , c_8 , and $0 < \gamma < 1$, depending only on λ_0 , c_1 , c_2 , and c_3 such that for $j = 1, 2, ..., d$, there exist at least $c_7 2^n$ disjoint slabs of the form

$$
S_k = \{a_k \le x_j \le b_k\}
$$

such that $b_k - a_k \leq c_7 \sigma_n$, $p(S_k) < c_7 \gamma^n$, and $p(\bigcup S_k) \geq c_8$.

Proof. Condition (4) implies that there exist disjoint slabs S_k satisfying all the conditions of the lemma except possibly $p(S_k) \leq c_7 \gamma^n$. However, by Lemma 2.1 there exists m_0 such that if $m \leq n - m_0$, then for each Q_J^m at most $2^d - 1$ cubes $Q_K^{m+1} \subset$ Q_j^m can meet S_k . Hence the number of Q_L^n with $Q_L^n \cap S_k \neq \emptyset$ does not exceed $(2^d - 1)^{(n-m_0)} 2^{dm_0}$ and $p(S_k) \le (1 - 2^{-d})^{n-m_0} \le c_7 \gamma^n$.

3. The L^2 estimate

Let E satisfy properties (2) - (5). For $x \in E$ we define $Q_x^n = Q_y^n$ to be the unique Q_j^n such that $x \in Q_j^n$. If $f \in L^2(p)$ and $j = 1, 2, ..., d$, we define the truncated Riesz transform as

$$
R_N^j f(x) = \int_{y \notin Q_x^N} K_j(y - x) f(y) dp(y),
$$

where $K_j(y-x) = \frac{(y-x)_j}{|y-x|^d}$. By (5) it is clear that $||R_N^j||_{L^2(p)} < \infty$.

Theorem 3.1. Let $0 < \alpha < 1$ and let $G \subset E$ be a closed set such that $p(G) > \alpha$. There are constants $C_1(\alpha)$ and C_2 , both depending on λ_0 , c_1 , c_2 and c_3 , such that for all N big enough,

(7)
$$
C_1 \Biggl(\sum_{n=0}^N \theta_n^2 \Biggr)^{\frac{1}{2}} \leq \| R_N^j \|_{L^2(G,p)} \leq C_2 \Biggl(\sum_{n=0}^N \theta_n^2 \Biggr)^{\frac{1}{2}}.
$$

To begin we prove the upper bound in (7). Since the norm $||R_N^j||_{L^2(G,p)}$ increases with G we may assume $G = E$, which also means C_2 does not depend on α . The proof of the upper bound in (7) follows the paper [MT], but for convenience we repeat their argument. By the $T(1)$ -Theorem for spaces of homogeneous type from [Ch1] we have

$$
||R_N^j||_{L^2(p)} \leq C \sup_{n \leq N} \sup_{|J|=n} \frac{p(Q_J^n)}{\sigma_n^{d-1}} + C \sup_{n \leq N} \sup_{|J|=n} \frac{||R_N^j(\chi_{Q_J^n})||_{L^2(Q_J^n,p)}}{p(Q_J^n)^{\frac{1}{2}}}.
$$

Therefore the upper bound in (7) will be an immediate consequence of the following two lemmas. For convenience we fix j, write $K(y - x) = K_j(y - x)$, and define

$$
R_m f(x) = \int_{Q_x^m \setminus Q_x^{m+1}} K_j(y-x) f(y) dp(y).
$$

Lemma 3.2. If $n \leq m$, there is c_9 such that

$$
||R_m \chi_{Q_J^n}||_{L^2(Q_J^n, p)} \le c_9 \theta_m p(Q_J^n)^{\frac{1}{2}}
$$

Proof. For $y \in Q_x^m \setminus Q_x^{m+1}$, (5) gives

$$
|K(y - x)| \le \frac{1}{c_3^{d-1} \sigma_{m+1}^{d-1}}.
$$

Hence by (2)

$$
|R_m \chi_{Q_J^n}| \le \frac{2^d}{c_3^{d-1}} \theta_m,
$$

and

$$
||R_m \chi_{Q_J^n}||_{L^2(Q_J^n, p)} \le \frac{2^d}{c_3 d^{-1}} \theta_m p(Q_J^n)^{\frac{1}{2}}.
$$

Lemma 3.3. There is a constant C depending only on λ_0 , c_1 , c_2 and c_3 such that for all $N > n$ and all J,

$$
||R_N^j \chi_{Q_J^n}||_{L^2(Q_J^n,p)}^2 \leq C \sum_{k=n}^N \theta_k^2 p(Q_J^n).
$$

Proof. Fix $j = 1, ..., d$, then for $x \in Q_J^n$

$$
R_N^j \chi_{Q_J^n}(x) = \sum_{m=n}^{N-1} R_m \chi_{Q_J^n}(x).
$$

We claim that for $m \neq k$,

(8)
$$
\left| \int R_m \chi_{Q_J^n} R_k \chi_{Q_J^n} dp \right| \leq C 2^{-|m-k|} \theta_m \theta_k p(Q_J^n).
$$

Accepting (8) for the moment, we see from Lemma 3.2 that

$$
||R_N^j \chi_{Q_J^n}||_{L^2(Q_J^n)}^2 = ||\sum_{m=n}^{N-1} R_m \chi_{Q_J^n}||_{L^2(Q_J^n)}^2
$$

$$
= \sum_{m=n}^{N-1} ||R_m \chi_{Q_J^n}||_{L^2(Q_J^n)}^2 + 2 \sum_{n \le k < m \le N-1} \langle R_m \chi_{Q_J^n}, R_k \chi_{Q_J^n} \rangle
$$

$$
\le C \sum_{m=n}^{N-1} \theta_m^2 p(Q_J^n),
$$

which gives the right-hand inequality in (7).

To prove (8) assume $n \leq k < m \leq N - 1$. Then because the kernel K is odd,

$$
\int_{Q_K^m} R_m \chi_{Q_J^n}(x) dp(x) = \sum_{r \neq q} \int_{Q_{(K,r)}^{m+1}} \int_{Q_{(K,q)}^{m+1}} K(x - y) dp(y) dp(x) = 0,
$$

so that for any $x_K^m \in Q_K^m$,

$$
\int_{Q_K^m} R_m \chi_{Q_J^n}(x) R_k \chi_{Q_J^n}(x) dp(x) = \int_{Q_K^m} R_m \chi_{Q_J^n}(x) (R_k \chi_{Q_J^n}(x) - R_k \chi_{Q_J^n}(x_K^m)) dp(x).
$$

But when $x \in Q_K^m$, (4), (5) and (2) give

$$
|R_k\chi_{Q_J^n}(x) - R_k\chi_{Q_J^n}(x_K^m)| \le C\frac{\sigma_m p(Q_x^k)}{\sigma_k^d} \le C\theta_k \frac{\sigma_m}{\sigma_k} \le C2^{-(m-k)}\theta_k.
$$

Hence using Lemma 3.2

$$
\begin{array}{rcl}\n|\int R_m \chi_{Q_J^n} R_k \chi_{Q_J^n} dp| & \leq & C2^{-(m-k)} \theta_k \|R_m \chi_{Q_J^n}\|_{L^1(Q_J^n, p)} \\
& \leq & C2^{-(m-k)} \theta_k p(Q_J^n)^{\frac{1}{2}} \theta_m p(Q_J^n)^{\frac{1}{2}} \\
\text{and (8) holds.}\n\end{array}
$$

The proof of the lower bound in (7) also follows [MT] but with two alterations needed because $G \neq E$ and because the sets Q_J^n may be incongruent. When $Q = Q_J^n$ we also write $n = n(Q)$, $Q \in \mathcal{D}_n$, and $\theta(Q) = \theta_n$.

Let $0 < \delta < 1$, fix G and define $\mathcal{B}(\delta) = \{Q \in \bigcup_n \mathcal{D}_n : p(G \cap Q) < \delta p(Q)\}.$

Lemma 3.4. Assume $\delta < \alpha$ and $p(G) \ge \alpha$. (a) Then for all n,

$$
p(G \setminus \bigcup_{\mathcal{D}_n \cap \mathcal{B}(\delta)} Q_n^J) \ge p(G \setminus \bigcup_{\mathcal{B}(\delta)} Q) \ge \alpha - \delta.
$$

(b) For $N_0 \in \mathbb{N}$ there exists $M(N_0)$ such that whenever $Q \notin \mathcal{B}(\delta)$, there exist $Q' \subset Q$ with $n(Q') \leq n(Q) + M$ such that for all $Q'' \subset Q'$ with $n(Q'') \leq n(Q') + N_0$

$$
Q'' \notin \mathcal{B}(\frac{\delta}{2}).
$$

Proof. To prove (a) let $\{Q_i\}$ be a family of maximal cubes in $\mathcal{B}(\delta)$, note that

$$
p(G \cap \bigcup_{\mathcal{B}(\delta)} Q) \le \sum p(G \cap Q_j) \le \delta p(E) = \delta
$$

and subtract this quantity from $p(G)$.

To prove (b) fix N_0 and suppose (b) is false for N_0 , δ , Q and $M = 0$. Write $n = n(Q)$. Then there is $Q_1 \subset Q$ with $n(Q_1) \leq n + N_0$ and $Q_1 \in \mathcal{B}(\frac{\delta}{2})$. Set $\mathcal{F}_1 = \{Q_1\}$. Then $p(Q \setminus Q_1) \leq (1 - 2^{-N_0 d})p(Q) = \beta p(Q)$. Now assume (b) is also false for N_0, δ, Q and $M = N_0$ and write $Q \setminus Q_1 = \bigcup \{Q' : n(Q') = n(Q_1), Q' \neq Q_1\}$. Then for each $Q' \neq Q_1$ with $n(Q') = n(Q_1)$ there is $Q_2 \subset Q'$ with $n(Q_2) \leq n + 2N_0$ and $Q_2 \in \mathcal{B}(\frac{\delta}{2})$. Set $\mathcal{F}_2 = \{Q_2\}$. Then $p(Q \setminus \bigcup_{\mathcal{F}_1 \cup \mathcal{F}_2} Q_j) \leq \beta^2 p(Q)$. Further assume (b) is false for N_0, δ, Q and $M = 2N_0$ and repeat the above construction in each $Q' \setminus Q_2$. After m steps we obtain families \mathcal{F}_j of cubes $Q_j \in \mathcal{B}(\frac{\delta}{2})$ such that $\bigcup \mathcal{F}_j$ is disjoint and

$$
p(Q \setminus \bigcup_{j=1}^{m} \bigcup_{\mathcal{F}_j} Q_j) \leq \beta^m p(Q)
$$

and for $\beta^m < \frac{\delta}{2}$ we obtain $p(Q \cap G) \leq \frac{\delta}{2} \sum_{j=1}^m \sum_{\mathcal{F}_j} p(Q_j) + \beta^m p(Q) < \delta p(Q)$, which is a contradiction. We conclude that (b) holds for $M = mN_0$.

For any $\delta < \alpha$ we say $Q' \in \mathcal{G}^*(\delta)$ if Q' satisfies conclusion (b) of Lemma 3.4 for N_0 and δ . Then by parts (b) and (a) of Lemma 3.4 we have:

Lemma 3.5. Let $\delta = \frac{\alpha}{2}$ and assume $p(G) \ge \alpha$. Then

$$
\sum_{\mathcal{G}^*(\frac{\delta}{2})} \theta(Q')^2 p(Q' \cap G) \ge C(M) \sum_{Q \notin \mathcal{B}(\delta)} \theta(Q)^2 p(Q \cap G) \ge C(M, \alpha) \sum \theta_n^2.
$$

Now let A be a large constant. As in [MT], for $R \in \mathcal{D}$ we will define a family Stop(R) of "stopping cubes" $Q \subset R$. We say $Q \in \text{Stop}_0(R)$ if $Q \subset R$ and $Q \notin \mathcal{B}(\frac{\delta}{2})$ and if

$$
\inf_{Q} \left| \int_{G \cap (R \setminus Q)} K(y - x) dp(y) \right| \ge A \theta(R).
$$

We also say $Q \in \text{Stop}_1(R)$ if $Q \subset R$ and $Q \notin \mathcal{B}(\frac{\delta}{2})$, if $\theta(Q) \leq \eta \theta(R)$ for constant η to be chosen below, if $n(Q) \ge n(R) + N_1$ for constant N_1 to be chosen below, and if

$$
P \in \text{Stop}_0(R) \Rightarrow n(P) \ge n(Q).
$$

Then define

$$
Stop(R) = \{Q \in Stop_0(R) \cup Stop_1(R) : Q \text{ is maximal}\}.
$$

It follows from the last three conditions in the definition of $\text{Stop}_1(R)$ that either $\text{Stop}(R) \subset \text{Stop}_0(R)$ or $\text{Stop}(R) \subset \text{Stop}_1(R)$. Inductively we define $\text{Stop}^1(P) =$ $Stop(P)$ and

$$
Stopk(P) = \bigcup \{ Stop(Q) : Q \in Stopk-1(P) \},
$$

$$
Top = \{P_0\} \cup \bigcup_{k \ge 1} Stopk(P_0),
$$

where P_0 is the unique cube in \mathcal{D}_0 , and

$$
P^{stp} = \bigcup_{\text{Stop}(P)} Q.
$$

Remark. The constants N_0, N_1, A, η are chosen as follows. First we take $\delta = \alpha/2$. Then N_1 will be determined by Lemma 3.7, η and A will be determined by the proof of Lemma 3.8, and N_0 , which depends on A, η , and δ , will be determined by the proof of Lemma 3.6.

Lemma 3.6. Let $\delta = \frac{\alpha}{2}$ and assume $p(G) \ge \alpha$. If $N_0 = N_0(A, \eta, \delta)$ is sufficiently large, then for all $Q \in \mathcal{G}^*(\frac{\delta}{2})$ there exists a cube $P \subset Q$ such that $P \in \text{Top}$ and $n(P) \leq n(Q) + N_0.$

Proof. Let $Q \in \mathcal{G}^*(\frac{\delta}{2})$ and let R be the smallest cube $R \in \text{Top}$ such that $Q \subset R$. We assume the conclusion of the lemma is false for Q. Thus $Q \notin \text{Top}$, and $Q \notin \text{Stop}(R)$. Hence by definition there is $x_0 \in Q$ such that

$$
\left| \int_{G \cap R \setminus Q} K(y - x_0) dp(y) \right| \le A \theta(R).
$$

Then for $x \in Q$ (5) gives

$$
\left| \int_{G \cap R \setminus Q} (K(y - x) - K(y - x_0)) dp \right| \leq C \sigma_{n(Q)} \sum_{k=n(R)}^{n(Q)-1} \frac{\theta_k}{\sigma_k} \leq C_1 \theta(R)
$$

so that

(9)
$$
\sup_{Q} \left| \int_{G \cap R \setminus Q} K(y - x) dp(y) \right| \leq (A + C_1) \theta(R).
$$

Take $x^* \in Q \cap E$ with $x_j^* = \inf_Q x_j$ and let Q^* be that $Q^* \subset Q$ such that $x^* \in Q^*$ and $n(Q^*) = n(Q) + N_0$. Then

$$
K(y - x^*) \ge 0
$$

for all $y \in Q$ and by Lemma 2.1 there is a constant n_0 such that if $n \leq n(Q^*) - n_0$, there exists $Q_J^n \subset (Q \setminus Q^*)$ such that

$$
\inf_{y \in Q_J^n} K(y - x^*) \ge \frac{c}{\sigma_n^{d-1}}
$$

.

Because $\theta_{n+1} \leq \theta_n$ and because we assume the lemma is false for Q, we also have $\theta(Q_j^n) \geq \eta \theta(R)$ for every such Q_j^n . Hence by (5)

$$
\int_{G \cap Q \setminus Q^*} K(y - x^*) dp(y) \ge (N_0 - n_0) \eta \frac{\delta}{2} \theta(R)
$$

and by the proof of (9),

(10)
$$
\inf_{Q^*} \int_{G \cap Q \setminus Q^*} K(y-x) dp(y) \ge ((N_0 - n_0)\eta \frac{\delta}{2} - C)\theta(R).
$$

Taking $N_0 = N_0(A)$ sufficiently large and comparing (10) with (9) we conclude that $Q^* \in \text{Stop}_0(R)$, which is a contradiction. Note that by Lemma 3.5 and Lemma 3.6 we have for all P,

(11)
$$
\sum_{n=0}^{N} \theta_n^2 \le C(\alpha) \sum_{n=0}^{N} \sum_{\mathcal{D}_n \backslash \mathcal{B}(\delta)} \theta(Q)^2 p(Q) \le C'(\alpha) \sum_{\text{Top}} \theta(P)^2 p(G \cap P).
$$

We define

 λ r

$$
K_P1(x) = \sum_{Q \in \text{Stop}(P)} \chi_{G \cap Q}(x) \int_{G \cap P \backslash Q} K(y - x) dp(y)
$$

+ $\chi_{G \cap P \backslash P^{stp}}(x) \int_{G \cap P \backslash Q^N(x)} K(y - x) dp(y).$

By construction

$$
\chi_G R_N 1 = \sum_{\text{Top}} K_P 1
$$

and

$$
||R_N1||^2_{L^2(G)} = \sum_{\text{Top}} ||K_P1||^2_{L^2(G)} + \sum_{P,Q \in \text{Top}, P \neq Q} \langle K_P1, K_Q1 \rangle_{L^2(G)}.
$$

Lemma 3.7. If N_1 is chosen big enough, then for all $P \in \text{Top}$,

(12)
$$
||K_P1||_{L^2(G)}^2 \ge C^{-1}\theta(P)^2p(G\cap P),
$$

where $C = C(\alpha)$, and

(13) $||K_P1||^2_{L^2(G)} \geq A^2 \theta(P)^2 p(G \cap P^{stp_0}),$

where

$$
P^{stp_0} = \bigcup \Big\{ Q : Q \in \text{Stop}(P) \cap \text{Stop}_0(P) \Big\}.
$$

Lemma 3.8.

(14)
$$
\sum_{P,Q \in \text{Top}, P \neq Q} |\langle K_P 1, K_Q 1 \rangle_{L^2(G)}| \le C(A^{-1} + c(\eta)) \sum_{\text{Top}} \|K_P 1\|_{L^2(G)}^2,
$$

with $c(\eta) \to 0$ as $\eta \to 0$.

Assuming Lemma 3.7 and Lemma 3.8 for the moment, we see that if A is large and η is small, then

$$
||R_N1||_{L^2(G)}^2 \ge C^{-1} \sum_{\text{Top}} \theta(P)^2 p(G \cap P)
$$

and then the lower bound in (7) follows from inequality (11).

To prove Lemma 3.7, first note that (13) follows from the definitions of $\text{Stop}_0(P)$ and Stop(P). To prove (12), recall that $K = K_j$ for some $1 \leq j \leq d$. We apply Lemma 2.2 to P with $\gamma^n \sim \alpha$ to obtain sets $S_1 \subset P$ and $S_2 \subset P$ such that

$$
\sup_{S_1} x_j = a < \inf_{S_2} x_j
$$

and

$$
\operatorname{Min}(p(G \cap S_1), \ p(G \cap S_2)) \ge c(\alpha)p(P).
$$

We may assume that S_1, S_2 are much bigger that any stopping cube of P , because if there exists some $Q \in \text{Stop}_0(P)$ with size similar to S_1 or S_2 , then (12) follows from (13); and if we choose N_1 big enough, any cube $Q \in \text{Stop}_1(P)$ will be much smaller that S_1, S_2 . Then we get

$$
\left| \int_{S_2 \cap G} K_P \chi_{S_1}(x) dp(x) \right| \ge C^{-1} p(S_2 \cap G) \frac{p(S_1 \cap G)}{\text{diam}(P)^{d-1}}.
$$

Set

$$
E_1 = P \cap \{x_j \le a\} \text{ and } E_2 = P \cap \{x_j > a\}.
$$

By its definition,

$$
K_P 1 = \chi_G(x) \sum_k \chi_{Q_k}(x) \int_{G \cap P \backslash Q_k} K(y - x) dp(y)
$$

where $\{Q_k\}$ is a cover of P by disjoint cubes from D. We also have

$$
K_P 1(x) = \chi_G(x) \sum_{i=1,2} \sum_k \chi_{Q_k}(x) \int_{G \cap E_i \setminus Q_k} K(y-x) dp(y)
$$

$$
\equiv K_P \chi_{E_1}(x) + K_P \chi_{E_2}(x).
$$

Write $Q_k = Q(x)$ when $x \in Q_k$ and note that

$$
y \notin Q(x) \Longleftrightarrow x \notin Q(y).
$$

Hence by the antisymmetry $K(y - x) = -K(x - y)$ we have

$$
\int_{G \cap E_2} K_P \chi_{E_2}(x) dp(x) = 0.
$$

Therefore by the choices of S_1, S_2, E_1 and E_2 ,

$$
(p(G \cap E_2))^{1/2} ||K_P1||_{L^2(G)} \geq \left| \int_{G \cap E_2} K_P1(x) dp(x) \right|
$$

$$
= \left| \int_{G \cap E_2} K_P \chi_{E_1}(x) dp(x) \right|
$$

$$
\geq \left| \int_{S_2 \cap G} K_P \chi_{S_1}(x) dp(x) \right|
$$

$$
\geq p(G \cap E_2) \frac{c(\alpha)p(G \cap P)}{\text{diam}(P)^{d-1}}
$$

which is (12) .

To prove Lemma 3.8 we again follow [MT]. Suppose $P \neq Q \in$ Top and $Q \subset P$. Let $P_Q \in \text{Stop}(P)$ be such that $Q \subset P_Q \subset P$. By the antisymmetry of K we have $\int_{Q \cap G} K_Q 1 dp = 0$ so that

,

$$
\begin{array}{rcl} \left| \int_{Q \cap G} K_Q 1(x) K_P 1(x) dp \right| & = & \left| \int_{Q \cap G} K_Q 1(x) (K_P 1(x) - K_P 1(x_Q)) dp(x) \right| \\ \\ & \leq & \left| |K_Q 1| \right|_{L^1(Q)} \sup_Q |K_P 1(x) - K_P 1(x_Q)|, \end{array}
$$

where x_Q is a fixed point from Q. But for any $x \in Q$, standard estimates yield

$$
\begin{array}{rcl} \left| K_P 1(x) - K_P 1(x_Q) \right| & \leq & \int_{G \cap P \setminus P_Q} \left| K(y - x) - K(y - x_Q) \right| dp(y) \\ \\ & \leq & C \operatorname{diam}(Q) \int_{G \cap P \setminus P_Q} \frac{dp(y)}{|x - y|^d} \\ \\ & \leq & C \operatorname{diam}(Q) \sum_{P_Q \subset R \subset P} \frac{\theta(R)}{\operatorname{diam}(R)}. \end{array}
$$

Assume first that $P_Q \in \text{Stop}_0(P)$. Since $\theta(R) \leq \theta(P)$ in the last sum, we get

$$
|K_P1(x) - K_P1(x_Q)| \le C \frac{\text{diam}(Q)}{\text{diam}(P_Q)} \theta(P).
$$

Hence by (13),

$$
\left| \langle K_{P} 1, K_{Q} 1 \rangle_{L^{2}(G, p)} \right| \leq \frac{C}{A} \frac{\operatorname{diam}(Q)}{\operatorname{diam}(P_{Q})} \left(\frac{p(G \cap Q)}{p(G \cap P^{stp_{0}})} \right)^{1/2} \| K_{Q} 1 \|_{L^{2}(G)} \| K_{P} 1 \|_{L^{2}(G)},
$$

when $P_Q \in \text{Stop}_0(P)$.

Consider now the case $P_Q \in \text{Stop}_1(P)$. This means that $\theta(P_Q) \leq \eta \theta(P)$. Then it follows from (2) that

$$
\sum_{P_Q \subset R \subset P} \left\{ \frac{\theta(R)}{\theta(P)} : \frac{\text{diam}(P_Q)}{\text{diam}(R)} \ge c_1(\eta) \right\} \le c_2(\eta) \sum_{P_Q \subset R \subset P} \frac{\theta(R)}{\theta(P)}
$$

so that

$$
\text{diam}(Q) \sum_{P_Q \subset R \subset P} \frac{\theta(R)}{\text{diam}(R)} \le c(\eta) \frac{\text{diam}(Q)}{\text{diam}(P_Q)} \theta(P) \quad \text{with } c(\eta) \to 0 \text{ as } \eta \to 0.
$$

Hence by (12),

$$
\left| \langle K_P 1, K_Q 1 \rangle_{L^2(G, p)} \right| \le c(\eta) \frac{\operatorname{diam}(Q)}{\operatorname{diam}(P_Q)} \left\| K_Q 1 \right\|_{L^2(G)} \left\| K_P 1 \right\|_{L^2(G)},
$$

when $P_Q \in \text{Stop}_1(P)$. Thus (14) follows from Schur's lemma.

4. Lipschitz harmonic capacity

In this section we will prove Theorem 1.2. We will assume that each cube Q_J^n in the definition of the Cantor set E (see (3)) contains a closed ball B_{J}^{n} such that

$$
c'_1 \sigma_n \leq \text{diam}(B_J^n).
$$

This assumption comes for free from the definition of E in Section 1. Indeed, one easily deduces that there exists a family of balls B_J^n centered at Q_J^n such that

$$
c'_1 \sigma_n \leq \text{diam}(B_J^n) \leq c'_2 \sigma_n,
$$

and

$$
dist(B_J^n, B_K^n) \ge c'_3 \sigma_n, \ J \ne K.
$$

Then if one replaces the cubes Q_J^n in the definition of E by the sets

$$
\tilde{Q}_{J}^{n} = \bigcup_{Q_{K}^{m} \subset Q_{J}^{n}} (Q_{K}^{m} \cup B_{K}^{m}),
$$

E does not change.

Given a real Radon measure μ and $f \in L^1(\mu)$, let

$$
R_{\mu,\epsilon}(fd\mu)(x) = \int_{|y-x|>\epsilon} \frac{y-x}{|y-x|^d} f(y) d\mu(y)
$$

be the (truncated) $(d-1)$ -Riesz transform of $f \in L^1(\mu)$ with respect to the measure μ and set $||R_{\mu}||_{L^2(\mu)} = \sup_{\epsilon > 0} ||R_{\mu,\epsilon}||_{L^2(\mu)}$.

As in [MT], we need to introduce the following capacity of the sets E_N :

$$
\kappa_p(E_N)=\sup\{\alpha:0\leq\alpha\leq 1,\|R_{\alpha\mu_N}\|_{L^2(\alpha\mu_N)}\leq 1\},\
$$

where μ_N is a probability measure on E_N such that $\mu_N(Q_J^N) = 2^{-Nd}$.

The L^2 estimates from the previous section yield the following lemma.

Lemma 4.1.

$$
\kappa_p(E_N) \approx \left(\sum_{n=1}^N \theta_n^2\right)^{-1/2}.
$$

Proof. By Theorem 3.1 we have

$$
||R_{\alpha\mu_N}||_{L^2(\alpha\mu_N)} = \alpha ||R_{\mu_N}||_{L^2(\mu_N)} \approx \alpha \Big(\sum_{n=1}^N \theta_n^2\Big)^{1/2}.
$$

The lemma follows because the sum above is $\geq 2^{-d}$. В последните последните под извести в последните се при в селото на селото на селото на селото на селото на
Селото на селото на

We will prove the following:

Lemma 4.2. There exists an absolute constant C_0 such that for all $N \in \mathbb{N}$ we have (15) $\kappa(E_N) \leq C_0 \kappa_p(E_N)$.

Notice that Theorem 1.2 follows from Lemma 4.2 and

(16)
$$
\kappa(E_N) \ge \kappa_+(E_N) \ge C^{-1} \kappa_p(E_N),
$$

where

$$
\kappa_{+}(E) = \sup\{|\langle \Delta f, 1 \rangle| : f \in L(E, 1), \Delta f = \mu \in M_{+}(E)\}\
$$

and $M_{+}(E)$ is the set of positive Borel measures supported on E. The first inequality in (16) is just a consequence of the definitions of κ and κ_{+} and the second inequality follows from a well known method that dualizes a weak $(1,1)$ inequality (see Theorem 23 in [Ch2] and Theorem 2.2 in [MTV]. The original proof is from [DØ]).

In [Vo] it is shown that the capacities κ and κ_+ are comparable for all subsets of \mathbb{R}^d , but we do not use that deep result.

For any $s > 0$, we write Λ_s and Λ_s^{∞} for the s-dimensional Hausdorff measure and the s-dimensional Hausdorff content, respectively.

Proof. The arguments are similar to those in [MTV] and [MT], but a little more involved because our Cantor sets are not homogeneous. Also, instead of using the local $T(b)$ -Theorem of M. Christ, we will run a stopping time argument in the spirit of [Ch1] and then use a dyadic $T(b)$ -Theorem (see Theorem 20 in [Ch1]).

We set

$$
S_n = \theta_1^2 + \theta_2^2 + \dots + \theta_n^2.
$$

Without loss of generality we can assume that for each $N > 1$ there exists $1 \leq M < N$ such that

(17)
$$
S_M \le \frac{S_N}{2} < S_{M+1}.
$$

Otherwise $\frac{S_N}{2} < S_1$ and by Lemma 4.1 it follows that $\kappa_p(E_N) \geq C^{-1} \lambda_1^{d-1}$. By [P] we have

$$
\kappa(E_N) \le \kappa(E_1) \le C\Lambda_{d-1}^{\infty}(E_1) \le C\lambda_1^{d-1},
$$

and if C_0 is chosen big enough the conclusion of the lemma will follow in this case.

Assuming (17), we will now prove (15) by induction on N. For $N = 1$ (15) holds clearly. The induction hypothesis is

$$
\kappa(E_n) \le C_0 \kappa_p(E_n), \text{ for } 0 < n < N,
$$

where the precise value of C_0 is to be determined later.

Notice that for $n \geq 0$, $(Q_K^N \cap E)_n$ is the n-th generation of the Cantor set $Q_K^N \cap E$, i.e. the union of 2^{nd} sets Q_J^{n+N} satisfying properties (4) and (5) with n replaced by $n + N$. Let J^* be the multi-index of length M such that

$$
\kappa((Q_{J^*}^M \cap E)_{N-M}) = \max_{|J| = M} \kappa((Q_J^M \cap E)_{N-M}).
$$

We distinguish two cases.

Case 1: For some absolute constant A_0 to be determined below,

$$
\kappa((Q_{J^*}^M \cap E)_{N-M}) \geq A_0 2^{-Md} \kappa(E_N),
$$

By the induction hypothesis (applied to $(Q_{J^*}^M \cap E)_{N-M}$) and by Lemma 4.1 we have that

$$
\kappa(E_N) \le A_0^{-1} 2^{Md} \kappa((Q_{J^*}^M \cap E)_{N-M}) \le A_0^{-1} 2^{Md} C_0 \kappa_p((Q_{J^*}^M \cap E)_{N-M})
$$

$$
\le A_0^{-1} C_0 C 2^{Md} \Big(\sum_{n=1}^{N-M} \Big(\frac{2^{-dn}}{\sigma_{M+n}^{d-1}} \Big)^2 \Big)^{-1/2} = A_0^{-1} C_0 C \Big(\sum_{n=M+1}^N \theta_n^2 \Big)^{-1/2}.
$$

Now by using that $S_M \leq S_N/2$ is equivalent to $\sum_{n=1}^N \theta_n^2 \leq 2 \sum_{n=M+1}^N \theta_n^2$ and Lemma 4.1 again, we obtain that

$$
\kappa(E_N) \le 2^{1/2} A_0^{-1} C_0 C \Big(\sum_{n=1}^N \theta_n^2\Big)^{-1/2} \le C A_0^{-1} C_0 \kappa_p(E_N).
$$

Hence if $A_0 = C$, we obtain (15).

Case 2: For the same constant A_0 ,

(18)
$$
\kappa((Q_{J^*}^M \cap E)_{N-M}) \leq A_0 2^{-Md} \kappa(E_N).
$$

Then if $\theta_{M+1}^2 > S_M$, $S_{M+1} = S_M + \theta_{M+1}^2 \approx \theta_{M+1}^2$. Therefore

$$
\kappa_p(E_{M+1}) \approx S_{M+1}^{-1/2} \approx \theta_{M+1}^{-1} \ge C \Lambda_{d-1}^{\infty}(E_{M+1}).
$$

Hence by (17),

$$
\kappa(E_N) \leq \kappa(E_{M+1}) \leq C\Lambda_{d-1}^{\infty}(E_{M+1}) \leq C\kappa_p(E_{M+1}) \approx \kappa_p(E_N),
$$

which is (15) if C_0 is chosen big enough.

On the other hand, if $\theta_{M+1}^2 \leq S_M$, then $S_{M+1} \approx S_M \approx S_N$. Recall that we are assuming that each cube Q_J^M contains some ball B_J^M with comparable diameter. Moreover, we may suppose that all the balls B_J^M , $J = 1, \ldots, 2^{Md}$, have the same diameter d_M . We set

$$
\tilde{E}_M = \bigcup_{|J|=M} B_J^M.
$$

We consider now the measure

$$
\sigma = \kappa(E_N)\mu'_M,
$$

where μ'_M is defined by

$$
\mu'_M(K) = \sum_J \frac{\Lambda_{d-1}(K \cap \partial B^M_J)}{\Lambda_{d-1}(\partial \tilde{E}_M)},
$$

for compact sets K. Clearly $\sigma(\tilde{E}_M) = \kappa(E_N)$.

Note that the measure σ is doubling and has $(d-1)$ −growth. To verify this, one uses that

$$
\kappa(E_N) \le \kappa(E_M) \le C\Lambda_{d-1}^{\infty}(E_M) \le C\Lambda_{d-1}(\partial \tilde{E}_M)
$$

and $\mu'_M(Q_K^n) = 2^{-nd}$ for all $0 \le n \le M$ (see (4.8) and (4.9) of [MT]).

We will show that there exists a good set $G \subset E_M$ with $\sigma(G) \approx \sigma(E_M)$ such that $R_{\sigma_{|G}}$ is bounded on $L^2(\sigma_{|G})$ with absolute constants. From this fact, by Theorem 3.1 we have

$$
||R_{\sigma_{|G}}||_{L^2(\sigma_{|G})} \approx \kappa(E_N)S_M^{1/2} \leq C.
$$

So by Lemma 4.1 we infer

$$
\kappa(E_N) \leq C S_M^{-1/2} \leq C S_N^{-1/2} \approx C \kappa_p(E_N),
$$

which proves the lemma.

To establish the existence of the set G , we run a stopping time argument. First we construct a set E' and a doubling measure σ' on E'. The pair (E', σ') is endowed with a system of dyadic cubes $\mathcal{Q}(E')$, where

$$
\mathcal{Q}(E') = \{Q_{\beta}^{k} \subset E' : \ \beta \in \mathbb{N}, \ k \in \mathbb{N}\}
$$

(see Theorem 11 in [Ch1]). We also define a function b' on E' , dyadic para-accretive with respect to this system of dyadic cubes, i.e. for every $Q_{\beta}^{k} \in \mathcal{Q}(E')$, there exists $Q^l_{\gamma} \in \mathcal{Q}(E'), Q^l_{\gamma} \subset Q^k_{\beta}$, with $l \leq k+N$ and

$$
|\int_{Q^l_\gamma}b'd\sigma'|\geq c\sigma'(Q^l_\gamma)
$$

for some fixed constants $c > 0$ and $N \in \mathbb{N}$, and such that the function $R(b'd\sigma')$ belongs to dyadic BMO(σ'). Therefore, the $(d-1)$ -Riesz transform R associated to

σ' will be bounded on $L^2(E', \sigma')$ by the $T(b)$ -theorem on a space of homogeneous type (see Theorem 20 in [Ch1]). Our set G will be contained in $E' \cap \tilde{E}_M$.

Now we turn to the construction of the set E' and the measure σ' . By definition there exists a distribution T supported on E_N such that

$$
\kappa(E_N) \le C |\langle T, 1 \rangle|
$$

and

$$
||RT||_{L^{\infty}(\mathbb{R}^d)} \leq 1.
$$

We replace the distribution T with a real measure ν supported on E_N such that $\kappa(E_N) \leq C |\nu(E_N)|$ and $||R\nu||_{L^\infty}(\mathbb{R}^d) \leq 1$. (The measure ν exists because of Volberg's theorem ([Vo]), but in the special case of E_N considered here ν can be constructed directly by setting $\nu = \sum_{|J|=N} \nu_J$ with $\nu_J = h_J \chi_{\partial B_J^N} \Lambda_{d-1}$ and h_J smooth on ∂B_J^N such that for all polynomials P of degree at most d, $\int P(x)d\nu J = T(P(x)\varphi_J(x))$, where φ_J is smooth and $\varphi_J = \chi_{Q_J^N}$ on E_N . See [P].)

The definition of σ implies that

(19)
$$
|\nu(E_N)| \ge C^{-1} \sigma(\tilde{E}_M) > \epsilon_0 \sigma(\tilde{E}_M),
$$

where ϵ_0 is a sufficiently small constant to be fixed later. Notice that for a fixed generation $n, 0 \le n \le M$, there exists at least one cube Q_K^n , such that $|\nu(Q_K^n)| >$ $\epsilon_0 \sigma(Q_K^n)$, since otherwise for $0 \le n \le M$

$$
|\nu(E_N)| \leq \sum_{|K|=n} \epsilon_0 \sigma(Q_K^n) = \epsilon_0 \sum_{|J|=M} \sigma(B_J^M) = \epsilon_0 \sigma(\tilde{E}_M),
$$

which contradicts (19).

We now run a stopping-time procedure. Let $\epsilon > 0$ be another constant to be chosen later, much smaller than ϵ_0 . We check whether or not the condition

$$
(20) \t\t\t |\nu(Q^1_J)| \le \epsilon \sigma(Q^1_J)
$$

holds for the cubes Q_J^1 . If (20) holds for the cube Q_J^1 , we call it stopping-time cube. If (20) does not hold for Q_J^1 , we consider the children Q_K^2 of Q_J^1 and call each such Q_K^2 with (20) a stopping-time cube. We continue this procedure through generation M, but we do not consider the cubes of later generations. We obtain in this way a collection of pairwise disjoint stopping-time cubes $\{P_{\gamma}\}_{\gamma}$, where $P_{\gamma} = Q_{J}^{n}$, for some $0 \le n \le M$ and by definition each P_{γ} satisfies condition (20) with Q_J^1 replaced by P_{γ} .

Consider now the function

$$
b = \sum_{|J|=M} \frac{\nu(Q_J^M)}{\sigma(B_J^M)} \chi_{B_J^M}.
$$

The function b has the following three important properties:

(1) for
$$
0 \le n \le M
$$
, $\int_{Q_K^n} bd\sigma = \nu(Q_K^n)$.
\n(2) $||b||_{\infty} \le C$.
\n(3) For any $0 \le n \le M$,
\n(21) $||R(b\chi_{Q_K^n} d\sigma)||_{L^{\infty}(\mathbb{R}^d)} \le C$.

To show that b is bounded it is enough to verify that

(22)
$$
|\nu(Q_J^M)| \leq C\sigma(B_J^M), \text{ for } |J| = M.
$$

Inequality (22) can be shown by localizing the potential $\nu * x/|x|^d$ (see [P] and [MPrV]) and using (18), namely

$$
|\nu(Q_J^M)| \leq C\kappa((Q_J^M \cap E)_{N-M}) \leq C A_0 2^{-Md} \kappa(E_N) = C A_0 \sigma(B_J^M).
$$

To see (21), notice that

$$
(23) \t\t\t ||R(\chi_{B_J^M}d\sigma)||_{L^{\infty}(\mathbb{R}^d)} \leq C \frac{\kappa(E_M)}{\Lambda_{d-1}(\partial E_M)} ||R(\chi_{B_J^M}d\Lambda_{d-1})||_{L^{\infty}(\mathbb{R}^d)} \leq C.
$$

Since $||R(\chi_{Q_K^n}d\nu)||_{L^\infty(\mathbb{R}^d)} \leq C$, again by localization ([P]), in order to show (21) we only need to estimate the following differences for $0 \leq n < M$,

$$
R(b\chi_{Q_K^n}d\sigma)(x) - R(\chi_{Q_K^n}d\nu)(x) = \sum_{Q_J^M \subset Q_K^n} R\alpha_J^M(x),
$$

where $\alpha_J^M =$ $\nu(Q_J^M)$ $\frac{\partial^2 (\mathcal{A}_J)}{\partial (B_J^M)} \chi_{B_J^M} d\sigma - \chi_{Q_J^M} d\nu$. Since $\int d\alpha_J^M = 0$, $\|R \alpha_J^M\|_{L^\infty(\mathbb{R}^d)} \leq C$ and for $|x - c(B_J^M)| > c\sigma_M,$

$$
|R(\alpha_J^M)(x)| \le C \frac{\sigma_M^d}{\text{dist}(x, Q_J^M)^d},
$$

(21) follows.

At this point one can finish the proof by applying Theorem 7.1 of Volberg [Vo] with the function b , but we will give a direct argument based on $[Ch1]$. We thank the referee for the route through Theorem 7.1 of [Vo].

Given a cube Q_J^n , $0 \le n \le M$, set

$$
\tilde{Q}_{J}^{n} = \bigcup_{B_{J}^{M} \cap Q_{J}^{n} \neq \emptyset} B_{J}^{M}.
$$

Notice that $\text{diam}(\tilde{Q}_{J}^{n}) = c\sigma_{n} \approx \text{diam}(Q_{J}^{n})$ and $\sigma_{|Q_{J}^{n}} = \sigma_{|\tilde{Q}_{J}^{n}}$. By (19) and (20) we have

$$
\sigma(\tilde{E}_M \setminus \bigcup_{\gamma} \tilde{P}_{\gamma}) \geq \frac{1}{C} \int_{\tilde{E}_M \setminus \bigcup_{\gamma} \tilde{P}_{\gamma}} |b| d\sigma
$$

\n
$$
\geq \frac{1}{C} |\int_{\tilde{E}_M} bd\sigma| - \frac{1}{C} \sum_{\gamma} |\int_{P_{\gamma}} bd\sigma|
$$

\n
$$
> \frac{1}{C} (\epsilon_0 \sigma(\tilde{E}_M) - \epsilon \sum_{\gamma} \sigma(P_{\gamma})).
$$

Therefore, for $\eta = \frac{\epsilon_0 - \epsilon}{C}$ $\frac{C_{\rm U} - C}{C - \epsilon},$

(24)
$$
\sum_{\gamma} \sigma(P_{\gamma}) \leq (1 - \eta) \sigma(\tilde{E}_M).
$$

We can now define our good set $G \subset \tilde{E}_M$. Set

$$
G=\tilde{E}_M\setminus\bigcup_{\gamma}\tilde{P_{\gamma}}.
$$

By (24), $\eta\sigma(\tilde{E}_M) \leq \sigma(G) \leq \sigma(\tilde{E}_M)$. We want to construct the set E', by excising from \tilde{E}_M the union of the stopping time cubes \tilde{P}_{γ} , and replacing each \tilde{P}_{γ} by a union of two spheres. For each stopping time cube \tilde{P}_{γ} , set

$$
S_{\gamma} = \partial B_{\gamma}^{1} \cup \partial B_{\gamma}^{2},
$$

where B_{γ}^j , $j = 1, 2$ are two balls with center $c(S_{\gamma}) := c(B_{\gamma}^1) = c(B_{\gamma}^2) \in P_{\gamma}$ and such that

$$
2\text{diam}(B_{\gamma}^1) = \text{diam}(B_{\gamma}^2) = \begin{cases} \frac{c}{2}\sigma_n & \text{if } P_{\gamma} = Q_J^n, \text{ for some } 0 \le n < M, \\ d_M & \text{if } P_{\gamma} = Q_J^M. \end{cases}
$$

Set

$$
E'=G\cup \bigcup_{\gamma}S_{\gamma}=\left(\tilde{E}_M\setminus \bigcup_{\gamma}\tilde{P_{\gamma}}\right)\cup \bigcup_{\gamma}S_{\gamma},
$$

and define a measure σ' on E' as follows:

$$
\sigma' = \begin{cases} \n\sigma & \text{on } G \\ \n\frac{\sigma(P_\gamma)}{2} \left(\frac{\Lambda_{d-1|\partial B_\gamma^1}}{\Lambda_{d-1}(\partial B_\gamma^1)} + \frac{\Lambda_{d-1|\partial B_\gamma^2}}{\Lambda_{d-1}(\partial B_\gamma^2)} \right) & \text{on } S_\gamma. \n\end{cases}
$$

Using that σ is doubling and has $(d-1)$ -growth it is easy to see that σ' also satisfies these two properties.

For a system of dyadic cubes in E' satisfying the required properties (see Theorem 11 in [Ch1]), we take all cubes \tilde{Q}_{J}^{n} , $0 \leq n \leq M$, which are not contained in any stopping time cube \tilde{P}_{γ} , together with each S_{γ} , together with each ∂B_{γ}^{j} , $j=1,2$ comprising S_{γ} , together with subsets of the two spheres,... and repeat.

We will now modify the function b on the union $\cup_{\gamma} S_{\gamma}$ in order to obtain a new function b' defined on E' , bounded and dyadic para-accretive with respect to the system of dyadic cubes defined above. Let

$$
b'(x) = \begin{cases} b(x) & \text{if } x \in G \\ g_{\gamma}(x) = c_{\gamma}^1 \chi_{\partial B_{\gamma}^1}(x) - c_{\gamma}^2 \chi_{\partial B_{\gamma}^2}(x) & \text{on } S_{\gamma}, \end{cases}
$$

where

$$
c_{\gamma}^{1} = 2\omega_{\gamma}, \ c_{\gamma}^{2} = 2\omega_{\gamma} \left(1 - \frac{|\nu(P_{\gamma})|}{\sigma(P_{\gamma})}\right)
$$
 and $\omega_{\gamma} = \begin{cases} \frac{\nu(P_{\gamma})}{|\nu(P_{\gamma})|} & \text{if } |\nu(P_{\gamma})| \neq 0 \\ 1 & \text{otherwise.} \end{cases}$

Notice that the coefficients c_{γ}^{j} , $j = 1, 2$, are defined so that

(25)
$$
\int_{S_{\gamma}} g_{\gamma} d\sigma' = \int_{P_{\gamma}} b d\sigma = \nu(P_{\gamma}),
$$

and $|c_{\gamma}^1| = 2$ and $2(1 - \epsilon) \le |c_{\gamma}^2| \le 2$, because P_{γ} is a stopping time cube. The function b' is bounded because of the upper bound on the coefficients c^j_γ , $j = 1, 2$ and the fact that $||b||_{\infty} \leq C$.

For future reference, notice that, for every dyadic cube Q in E', such that $Q \nsubseteq S_\gamma$ for all γ , there is a non-stopping time cube Q^* $(Q^* = \tilde{Q}_K^n$ for some $1 \leq n \leq M)$ uniquely associated to Q by the identity

(26)
$$
Q = (Q^* \setminus \bigcup_{\tilde{P}_{\gamma} \subset Q^*} \tilde{P}_{\gamma}) \cup (\bigcup_{\tilde{P}_{\gamma} \subset Q^*} S_{\gamma}).
$$

Moreover one has $\text{diam}(Q) \approx \text{diam}(Q^*)$ and

(27)
$$
\sigma'(Q) = \sigma(Q^*) - \sum_{\tilde{P}_{\gamma} \subset Q^*} \sigma(\tilde{P}_{\gamma}) + \sum_{\tilde{P}_{\gamma} \subset Q^*} \sigma'(S_{\gamma}) = \sigma(Q^*).
$$

We will check now that, by construction, the function b' is dyadic para-accretive with respect to the system of dyadic cubes in E' :

If for some $\gamma, Q \subseteq S_{\gamma}$, the para-accretivity of b' follows from the definition of g_{γ} and the lower bound on $|c_{\gamma}^{j}|$, $j = 1, 2$. Recall that, when examining the para-accretivity condition on S_{γ} , although identity (25) holds, we have a satisfactory lower bound on the integral over each child ∂B_{γ}^{j} of S_{γ} , which turns to be enough for b' to be dyadic para-accretive.

Otherwise, let Q^* be non-stopping time cube defined in (26). Then due to (25) and (27) we can write

$$
\left| \int_{Q} b' d\sigma' \right| = \left| \int_{Q^*} b d\sigma \right| \geq \epsilon \sigma(Q^*) = \epsilon \sigma'(Q).
$$

We must still show that $R(b'\sigma')$ belongs to dyadic $BMO(\sigma')$. It is enough to show the following L^1- inequality

(28)
$$
||R(b'\chi_Q)||_{L^1(\sigma'_Q)} \leq C\sigma'(Q),
$$

for every dyadic cube in E' .

Let Q be some dyadic cube in E' . We distinguish between two cases:

Case 1: For some γ , $Q \subseteq S_{\gamma}$. Then (28) follows from the boundedness of the coefficients $|c_{\gamma}^{j}|$, $j = 1, 2, \sigma(P_{\gamma}) \leq C \text{diam}(P_{\gamma})^{d-1}$ and $\Lambda_{d-1}(S_{\gamma}) \approx \text{diam}(P_{\gamma})^{d-1}$.

Case 2: Otherwise, $Q = (Q^*) \cup \cup$ $\tilde{P_{\gamma}} \subset Q^*$ $(\tilde{P}_{\gamma})\cup(\ \bigcup$ $\tilde{P_{\gamma}}{\subset}Q^*$ S_{γ}) for some non-stopping $Q^* =$ \tilde{Q}_K^n , $1 \leq n \leq M$. Due to (25) we can write

$$
R(b' \chi_Q)(y) = R(b \chi_{Q^*})(y)
$$

+
$$
\sum_{\gamma: \tilde{P}_{\gamma} \subset Q^*} \int_{S_{\gamma}} g_{\gamma}(x) \Big(K(x - y) - K(c(S_{\gamma}) - y) \Big) d\sigma'(x)
$$

+
$$
\sum_{\gamma: \tilde{P}_{\gamma} \subset Q^*} \int_{P_{\gamma}} b(x) \Big(K(c(S_{\gamma}) - y) - K(x - y) \Big) d\sigma(x)
$$

=
$$
A + B + C.
$$

By (21) (or (23) if $Q^* = B_J^M$), $||R(b\chi_{Q^*})||_{L^\infty(\mathbb{R}^d)} \leq C$. Hence

$$
\int_{Q} |A| d\sigma' \leq C\sigma'(Q).
$$

We deal now with term B. Set

$$
B1 = \int_{Q \setminus S_{\gamma}} \Big| \int_{S_{\gamma}} g_{\gamma}(x) \Big(K(x - y) - K(c(S_{\gamma}) - y) \Big) d\sigma'(x) \Big| d\sigma'(y)
$$

and

$$
B2 = \int_{S_{\gamma}} \Bigl| \int_{S_{\gamma}} g_{\gamma}(x) \Bigl(K(x - y) - K(c(S_{\gamma}) - y) \Bigr) d\sigma'(x) \Bigl| d\sigma'(y).
$$

For B1, let $g(Q) \in \mathbb{N}$ be such that $\text{diam}(Q) \approx \sigma_{g(Q)}$ and $P_{\gamma} = Q_{J}^{n}$ for some $0 \leq n \leq M$. Observe that $\text{diam}(S_{\gamma}) \approx \text{diam}(P_{\gamma}) \approx \sigma_n$. Denote by Q^i , $g(Q) \leq i \leq n$, the cubes in E' contained in Q and containing S_{γ} such that $\text{diam}(Q^i) \approx \sigma_i$ (note that the Q^i are either \tilde{Q}^i_J s or unions of spheres replacing the stopping time cubes of generation *i*). Then by the boundedness of g_{γ} , the $(d-1)$ -growth of σ' and the upper bound in (2) ,

$$
B1 \leq C\sigma'(S_{\gamma}) \sum_{i=g(Q)}^{n-1} \int_{Q^i \setminus Q^{i+1}} \frac{\sigma_n}{\sigma_i^d} d\sigma'
$$

$$
\leq C\sigma'(S_{\gamma}) \sum_{i=g(Q)}^{n-1} \frac{\sigma_n}{\sigma_i} \leq C\sigma'(S_{\gamma}) \sum_{i} 2^{-i} \leq C\sigma'(S_{\gamma}).
$$

For B2 argue like in the previous case, i.e. (28) for $Q = S_{\gamma}$, to get that $B2 \leq C\sigma'(S_{\gamma})$. Therefore by $\sigma'(S_\gamma) = \sigma(P_\gamma)$, the packing condition (24) (with \tilde{E}_M replaced by Q^*) and (27) we get that Q $|B|d\sigma' \leq C\sigma'(Q).$

Similar arguments work to show Q $|C|d\sigma' \leq C\sigma'(Q)$. Therefore we are done. \square

Acknowledgements

J. G. and L. P. were supported in part by NSF Grant DMS-0402720. L. P. was supported by a Fulbright/MECD scholarship from Secretaría de Estado de Educación y Universidades and Fondo Social Europeo. L. P. and X. T. were also partially supported by grants MTM2004-00519, Acción Integrada HF2004-0208 (Ministerio de Ciencia y Tecnología) and SGR-2005-00774 (Generalitat de Catalunya).

References

- [Ch1] M. Christ, A T(b) Theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601–628.
- [Ch2] , Lectures on singular integral operators, CBMS Regional Conference Series in Mathematics 77, Providence, RI, 1990.
- [DØ] A. M. Davie and B. Øksendal, Analytic capacity and differentiability properties of finely harmonic functions, Acta Math. 149 (1982) 127-152.
- [GV] J. Garnett and J. Verdera, Analytic capacity, bilipschitz maps and Cantor sets, Math. Res. Lett. 10 (2003), no. 4, 515–522.
- [MPrV] J. Mateu, L. Prat, and J. Verdera, The capacity associated to signed Riesz kernels, and Wolff potentials, J. Reine Angew. Math. 578 (2005) 201–223.
- [MT] J. Mateu and X. Tolsa, Riesz transforms and harmonic Lip₁-capacity in Cantor sets, Proc. London Math. Soc. 89 (2004), no. 3, 676–696.
- [MTV] J. Mateu, X. Tolsa and J. Verdera, The planar Cantor sets of zero analytic capacity and the local $T(b)$ theorem, J. Amer. Math. Soc. 16 (2003), no. 1, 19-28.
- $[P]$ P. V. Paramonov, *Harmonic approximations in the* C^1 -norm, Math. USSR-Sb. **71** (1992) 183–207.
- [T1] X. Tolsa, Painlevé's problem and the semiadditivity of analytic capacity, Acta Math. 190 (2003) 105–149.
- [T2] , Bilipschitz maps, analytic capacity and the Cauchy integral, Ann. of Math. 162 (2005) 1241–1302.
- [Vo] A. Volberg, *Calderón-Zygmund capacities and operators on nonhomogeneous spaces*, CBMS Regional Conference Series in Mathematics, 100, Providence, RI, 2003.

Department of Mathematics, UCLA, Los Angeles, CA 90095 E-mail address: jbg@math.ucla.edu

DEPARTAMENT DE MATEMÀTICA APLICADA I ANÀLISI, UNIVERSITAT DE BARCELONA, CATALUNYA E-mail address: lprat@ub.edu

ICREA AND DEPARTAMENT DE MATEMÀTIQUES, UNIVERSITAT AUTÒNOMA DE BARCELONA, **CATALUNYA**

E-mail address: xavier.tolsa@uab.cat