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LIPSCHITZ HARMONIC CAPACITY AND BILIPSCHITZ IMAGES
OF CANTOR SETS

John Garnett, Laura Prat and Xavier Tolsa

Abstract. For bilipschitz images of Cantor sets in Rd we estimate the Lipschitz har-
monic capacity and prove that this capacity is invariant under bilipschitz homeomor-

phisms. A crucial step of the proof is an estimate of the L2 norms of the Riesz tranforms

on L2(G, p) where p is the natural probability measure on the Cantor set E and G ⊂ E
has p(G) > 0.

1. Introduction

Let Lip1
loc be the set of locally Lipschitz real functions on Euclidean space Rd, let

E be a compact subset of Rd, and let

L(E, 1) = {f ∈ Lip1
loc : supp(∆f) ⊂ E, ||∇f ||∞ ≤ 1;∇f(∞) = 0}

be the set of locally Lipschitz functions harmonic on Rd \ E and normalized by the
conditions ||∇f ||∞ ≤ 1 and ∇f(∞) = 0. The Lipschitz harmonic capacity of E is
defined by

κ(E) = sup{|〈∆f, 1〉| : f ∈ L(E, 1)}.
It was introduced by Paramonov [P] to study problems of C 1 approximation by
harmonic functions in Rd.

If d = 2 and if the Hausdorff measure Λ2(E) = 0, then f ∈ L(E, 1) if and only if
F (z) = fx − ify is an analytic function on C \E such that ∂̄F is real and |F (z)| ≤ 1.
In that case it then follows from Green’s theorem that κ(E) = 2πγR(E), where

γR(E) = sup{| lim
z→∞

zF (z)| : F is analytic on C \ E, |F | ≤ 1, F (∞) = 0, ∂̄F real}

is the so called real analytic capacity of E. (See [P].) Moreover, by the main result
of [T1], γR(E) ≤ γ(E) ≤ CγR(E) where γ is the analytic capacity of E and C is a
constant.

Now let T : Rd → Rd be a bilipschitz homeomorphism:

(1) A−1|x− y| ≤ |Tx− Ty| ≤ A|x− y|.

This paper is concerned with the following conjecture.

Conjecture 1.1. If T is a bilipschitz homeomorphism, then

κ(T (E)) ≤ C(A)κ(E),

where A is the constant in (1).
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When d = 2 this conjecture was established in [T2] using the connection between
analytic capacity and Menger curvature obtained in [T1]. The papers [T1] and [T2]
were preceded by two papers [MTV] and [GV] that estimated the analytic capacity of
planar Cantor sets and of their bilipschitz images. The recent paper [MT] estimated
the Lipschitz harmonic capacity of certain Cantor sets in Rd, and our purpose here
is to establish Conjecture 1.1 for bilipschitz images of these Cantor sets. Thus in the
language of fractions, this paper is to [MT] as paper [GV] was to [MTV] or paper
[T2] was to [T1].

For fixed ratios λn such that

(2) 2−
d

d−1 ≤ λn ≤ λ0 <
1
2
,

we write

σn =
n∏

k=0

λk,

and define the sets

(3) E =
∞⋂

n=0

En, En =
⋃
|J|=n

Qn
J ,

where J = (j1, j2, . . . , jn) is a multi-index of length n with jk ∈ {1, 2, . . . 2d} and the
Qn

J are compact sets such that

Qn+1
(J,jn+1)

⊂ Qn
J , for all n and J,

and such that for all n and J ,

(4) c1σn ≤ diam(Qn
J) ≤ c2σn,

and

(5) dist(Qn
J , Qn

K) ≥ c3σn, J 6= K.

for positive constants c1, c2, and c3.

When Qn
J is a cube with sides parallel to the coordinate axes and side-length σn

and
{Qn+1

(J,jn+1)
⊂ Qn

J : jn+1 = 1, . . . , 2d}

consists of the 2d corner subcubes of Qn
J , the set defined by (3) is the Cantor set

studied in [MT], and a set E is the bilipschitz image of such a Cantor set if and only
if E satisfies (3), (4), and (5). Write

θn =
2−nd

σd−1
n

and θ(Q) = θn if Q = Qn
J . Note that by (2),

θn+1 ≤ θn.

For Cantor sets it was proved in [MT] that

C−1
( ∞∑

n=0

θ2
n

)− 1
2 ≤ κ(E) ≤ C

( ∞∑
n=0

θ2
n

)− 1
2
,
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where C depends only on the constant λ0 in (2) and we extend their result to bilips-
chitz images of Cantor sets.

Theorem 1.2. If E is defined by (3), (4), and (5), then there is constant

C = C(c1, c2, c3, λ0)

such that

C−1
( ∞∑

n=1

θ2
n

)− 1
2 ≤ κ(E) ≤ C

( ∞∑
n=1

θ2
n

)− 1
2
.

The proof of Theorem 1.2 follows the reasoning in [MT], but with certain changes.
In Section 2 we give some needed geometric properties of the sets E. In Section
3 we obtain L2 estimates for the (truncated) Riesz transforms with respect to the
probability measure p on E defined by p(Qn

J) = 2−nd but restricted to a subset
G ⊂ E with p(G) > 0. In Section 4 we derive Theorem 1.2 from the L2-estimates
in section 3 by applying the dyadic T (b) Theorem of M. Christ to a measure used in
[MTV] and [MT].

2. The geometry of E

Fix E such that (2) - (5) hold.

Lemma 2.1. There is c4 = c4(λ0, c1, c2, c3) such that for j = 1, 2, . . . , d, and all Qn
J

(6) sup
Qn

J∩E
xj − inf

Qn
J∩E

xj ≥ c4σn.

Proof. Write
w = sup

Qn
J∩E

xj − inf
Qn

J∩E
xj .

Let P be the hyperplane

xj =
1
2
( sup
Qn

J∩E
xj + inf

Qn
J∩E

xj),

and let Q̃k
K be the orthogonal projection of Qk

K onto P. If

w <
c3

2
σn+p

then for k = n + 1, · · · , n + p, (5) and the Pythagorean Theorem give

dist(Q̃k
J′

, Q̃k
J′′

) ≥
√

3
2

c3σk

when Q̃k
J′
∪ Q̃k

J′′
⊂ Qn

J . Consequently there are (d − 1)-dimensional balls Bk
J′ with

diameter comparable to the diameter of Q̃k
J′ such that

dist(Q̃k
J′ , B

k
J′) ≤

√
3

4
csσk

and
Bk

J ∩Bm
K = ∅, when k ≥ m.
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Hence for constants c5 > c6 depending only on d and c1, c2, and c3,

c5σ
d−1
n ≥ Λd−1

( p⋃
k=1

⋃
|K|=k

Bn+k
(J,K)

)

=
p∑

k=1

∑
|K|=k

Λd−1

(
Bn+k

(J,K)

)

≥
p∑

k=1

c62kdσd−1
n+k,

and by (2) this can only happen if p ≤ c5
c6

. Thus (6) holds with c4 = c32
−d

d−1
c5
c6
−1. �

Define the probability measure p on E by p(Qn
J) = 2−nd.

Lemma 2.2. There exist c7, c8, and 0 < γ < 1, depending only on λ0, c1, c2, and c3

such that for j = 1, 2, . . . , d, there exist at least c72n disjoint slabs of the form

Sk = {ak ≤ xj ≤ bk}

such that bk − ak ≤ c7σn, p(Sk) < c7γ
n, and p(

⋃
Sk) ≥ c8.

Proof. Condition (4) implies that there exist disjoint slabs Sk satisfying all the con-
ditions of the lemma except possibly p(Sk) ≤ c7γ

n. However, by Lemma 2.1 there
exists m0 such that if m ≤ n−m0, then for each Qm

J at most 2d − 1 cubes Qm+1
K ⊂

Qm
J can meet Sk. Hence the number of Qn

L with Qn
L ∩ Sk 6= ∅ does not exceed

(2d − 1)(n−m0)2dm0 and p(Sk) ≤ (1− 2−d)n−m0 ≤ c7γ
n. �

3. The L2 estimate

Let E satisfy properties (2) - (5). For x ∈ E we define Qn
x = Qn

J to be the unique
Qn

J such that x ∈ Qn
J . If f ∈ L2(p) and j = 1, 2, . . . , d, we define the truncated Riesz

transform as

Rj
Nf(x) =

∫
y/∈QN

x

Kj(y − x)f(y)dp(y),

where Kj(y − x) =
(y − x)j

|y − x|d
. By (5) it is clear that ‖Rj

N‖L2(p) < ∞.

Theorem 3.1. Let 0 < α < 1 and let G ⊂ E be a closed set such that p(G) > α.
There are constants C1(α) and C2, both depending on λ0, c1, c2 and c3, such that for
all N big enough,

(7) C1

( N∑
n=0

θ2
n

) 1
2 ≤ ‖Rj

N‖L2(G,p) ≤ C2

( N∑
n=0

θ2
n

) 1
2
.



LIPSCHITZ HARMONIC CAPACITY AND BILIPSCHITZ IMAGES 869

To begin we prove the upper bound in (7). Since the norm ‖Rj
N‖L2(G,p) increases

with G we may assume G = E, which also means C2 does not depend on α. The proof
of the upper bound in (7) follows the paper [MT], but for convenience we repeat their
argument. By the T (1)-Theorem for spaces of homogeneous type from [Ch1] we have

‖Rj
N‖L2(p) ≤ C sup

n≤N
sup
|J|=n

p(Qn
J)

σd−1
n

+ C sup
n≤N

sup
|J|=n

‖Rj
N (χQn

J
)‖L2(Qn

J ,p)

p(Qn
J)

1
2

.

Therefore the upper bound in (7) will be an immediate consequence of the following
two lemmas. For convenience we fix j, write K(y − x) = Kj(y − x), and define

Rmf(x) =
∫

Qm
x \Q

m+1
x

Kj(y − x)f(y)dp(y).

Lemma 3.2. If n ≤ m, there is c9 such that

‖RmχQn
J
‖L2(Qn

J ,p) ≤ c9θmp(Qn
J)

1
2

Proof. For y ∈ Qm
x \Qm+1

x , (5) gives

|K(y − x)| ≤ 1
cd−1
3 σd−1

m+1

.

Hence by (2)

|RmχQn
J
| ≤ 2d

cd−1
3

θm,

and

||RmχQn
J
||L2(Qn

J ,p) ≤
2d

c3
d−1

θmp(Qn
J)

1
2 .

�

Lemma 3.3. There is a constant C depending only on λ0, c1, c2 and c3 such that
for all N > n and all J ,

‖Rj
NχQn

J
‖2L2(Qn

J ,p) ≤ C
N∑

k=n

θ2
kp(Qn

J).

Proof. Fix j = 1, . . . , d, then for x ∈ Qn
J

Rj
NχQn

J
(x) =

N−1∑
m=n

RmχQn
J
(x).

We claim that for m 6= k,

(8)
∣∣∣∫ RmχQn

J
RkχQn

J
dp

∣∣∣ ≤ C2−|m−k|θmθkp(Qn
J).
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Accepting (8) for the moment, we see from Lemma 3.2 that

‖Rj
NχQn

J
‖2L2(Qn

J ) = ‖
N−1∑
m=n

RmχQn
J
‖2L2(Qn

J )

=
N−1∑
m=n

‖RmχQn
J
‖2L2(Qn

J ) + 2
∑

n≤k<m≤N−1

〈RmχQn
J
, RkχQn

J
〉

≤ C
N−1∑
m=n

θ2
mp(Qn

J),

which gives the right-hand inequality in (7).

To prove (8) assume n ≤ k < m ≤ N − 1. Then because the kernel K is odd,∫
Qm

K

RmχQn
J
(x)dp(x) =

∑
r 6=q

∫
Qm+1

(K,r)

∫
Qm+1

(K,q)

K(x− y)dp(y)dp(x) = 0,

so that for any xm
K ∈ Qm

K ,∫
Qm

K

RmχQn
J
(x)RkχQn

J
(x)dp(x) =

∫
Qm

K

RmχQn
J
(x)(RkχQn

J
(x)−RkχQn

J
(xm

K))dp(x).

But when x ∈ Qm
K , (4), (5) and (2) give

|RkχQn
J
(x)−RkχQn

J
(xm

K)| ≤ C
σmp(Qk

x)
σd

k

≤ Cθk
σm

σk
≤ C2−(m−k)θk.

Hence using Lemma 3.2

|
∫

RmχQn
J
RkχQn

J
dp| ≤ C2−(m−k)θk‖RmχQn

J
‖L1(Qn

J ,p)

≤ C2−(m−k)θkp(Qn
J)

1
2 θmp(Qn

J)
1
2

and (8) holds. �

The proof of the lower bound in (7) also follows [MT] but with two alterations
needed because G 6= E and because the sets Qn

J may be incongruent. When Q = Qn
J

we also write n = n(Q), Q ∈ Dn, and θ(Q) = θn.

Let 0 < δ < 1, fix G and define B(δ) = {Q ∈
⋃

nDn : p(G ∩Q) < δp(Q)}.

Lemma 3.4. Assume δ < α and p(G) ≥ α.
(a) Then for all n,

p(G \
⋃

Dn∩B(δ)

QJ
n) ≥ p(G \

⋃
B(δ)

Q) ≥ α− δ.

(b) For N0 ∈ N there exists M(N0) such that whenever Q /∈ B(δ), there exist Q′ ⊂ Q
with n(Q′) ≤ n(Q) + M such that for all Q′′ ⊂ Q′ with n(Q′′) ≤ n(Q′) + N0

Q′′ /∈ B(
δ

2
).
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Proof. To prove (a) let {Qj} be a family of maximal cubes in B(δ), note that

p(G ∩
⋃
B(δ)

Q) ≤
∑

p(G ∩Qj) ≤ δp(E) = δ

and subtract this quantity from p(G).

To prove (b) fix N0 and suppose (b) is false for N0, δ, Q and M = 0. Write
n = n(Q). Then there is Q1 ⊂ Q with n(Q1) ≤ n+N0 and Q1 ∈ B( δ

2 ). Set F1 = {Q1}.
Then p(Q \Q1) ≤ (1− 2−N0d)p(Q) = βp(Q). Now assume (b) is also false for N0, δ, Q
and M = N0 and write Q \ Q1 =

⋃
{Q′ : n(Q′) = n(Q1), Q′ 6= Q1}. Then for each

Q′ 6= Q1 with n(Q′) = n(Q1) there is Q2 ⊂ Q′ with n(Q2) ≤ n+2N0 and Q2 ∈ B( δ
2 ).

Set F2 = {Q2}. Then p(Q \
⋃
F1∪F2

Qj) ≤ β2p(Q). Further assume (b) is false for
N0, δ, Q and M = 2N0 and repeat the above construction in each Q′ \ Q2. After m
steps we obtain families Fj of cubes Qj ∈ B( δ

2 ) such that
⋃
Fj is disjoint and

p(Q \
m⋃

j=1

⋃
Fj

Qj) ≤ βmp(Q)

and for βm < δ
2 we obtain p(Q ∩G) ≤ δ

2

∑m
j=1

∑
Fj

p(Qj) + βmp(Q) < δp(Q), which
is a contradiction. We conclude that (b) holds for M = mN0. �

For any δ < α we say Q′ ∈ G∗(δ) if Q′ satisfies conclusion (b) of Lemma 3.4 for N0

and δ. Then by parts (b) and (a) of Lemma 3.4 we have:

Lemma 3.5. Let δ = α
2 and assume p(G) ≥ α. Then∑

G∗( δ
2 )

θ(Q′)2p(Q′ ∩G) ≥ C(M)
∑

Q/∈B(δ)

θ(Q)2p(Q ∩G) ≥ C(M,α)
∑

θ2
n.

Now let A be a large constant. As in [MT], for R ∈ D we will define a family
Stop(R) of “stopping cubes” Q ⊂ R. We say Q ∈ Stop0(R) if Q ⊂ R and Q /∈ B( δ

2 )
and if

inf
Q

∣∣∣∫
G∩(R\Q)

K(y − x)dp(y)
∣∣∣ ≥ Aθ(R).

We also say Q ∈ Stop1(R) if Q ⊂ R and Q /∈ B( δ
2 ), if θ(Q) ≤ ηθ(R) for constant η to

be chosen below, if n(Q) ≥ n(R) + N1 for constant N1 to be chosen below, and if

P ∈ Stop0(R) ⇒ n(P ) ≥ n(Q).

Then define

Stop(R) = {Q ∈ Stop0(R) ∪ Stop1(R) : Q is maximal}.

It follows from the last three conditions in the definition of Stop1(R) that either
Stop(R) ⊂ Stop0(R) or Stop(R) ⊂ Stop1(R). Inductively we define Stop1(P ) =
Stop(P ) and

Stopk(P ) =
⋃
{Stop(Q) : Q ∈ Stopk−1(P )},

Top = {P0} ∪
⋃
k≥1

Stopk(P0),
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where P0 is the unique cube in D0, and

P stp =
⋃

Stop(P )

Q.

Remark. The constants N0, N1, A, η are chosen as follows. First we take δ = α/2.
Then N1 will be determined by Lemma 3.7, η and A will be determined by the proof
of Lemma 3.8, and N0, which depends on A, η, and δ, will be determined by the proof
of Lemma 3.6.

Lemma 3.6. Let δ = α
2 and assume p(G) ≥ α. If N0 = N0(A, η, δ) is sufficiently

large, then for all Q ∈ G∗( δ
2 ) there exists a cube P ⊂ Q such that P ∈ Top and

n(P ) ≤ n(Q) + N0.

Proof. Let Q ∈ G∗( δ
2 ) and let R be the smallest cube R ∈ Top such that Q ⊂ R. We

assume the conclusion of the lemma is false for Q. Thus Q /∈ Top, and Q /∈ Stop(R).
Hence by definition there is x0 ∈ Q such that∣∣∣∫

G∩R\Q
K(y − x0)dp(y)

∣∣∣ ≤ Aθ(R).

Then for x ∈ Q (5) gives∣∣∣∫
G∩R\Q

(K(y − x)−K(y − x0))dp
∣∣∣ ≤ Cσn(Q)

n(Q)−1∑
k=n(R)

θk

σk
≤ C1θ(R)

so that

(9) sup
Q

∣∣∣∫
G∩R\Q

K(y − x)dp(y)
∣∣∣ ≤ (A + C1)θ(R).

Take x∗ ∈ Q ∩ E with x∗j = infQ xj and let Q∗ be that Q∗ ⊂ Q such that x∗ ∈ Q∗

and n(Q∗) = n(Q) + N0. Then

K(y − x∗) ≥ 0

for all y ∈ Q and by Lemma 2.1 there is a constant n0 such that if n ≤ n(Q∗) − n0,
there exists Qn

J ⊂ (Q \Q∗) such that

inf
y∈Qn

J

K(y − x∗) ≥ c

σd−1
n

.

Because θn+1 ≤ θn and because we assume the lemma is false for Q, we also have
θ(Qn

J) ≥ ηθ(R) for every such Qn
J . Hence by (5)∫

G∩Q\Q∗
K(y − x∗)dp(y) ≥ (N0 − n0)η

δ

2
θ(R)

and by the proof of (9),

(10) inf
Q∗

∫
G∩Q\Q∗

K(y − x)dp(y) ≥ ((N0 − n0)η
δ

2
− C)θ(R).

Taking N0 = N0(A) sufficiently large and comparing (10) with (9) we conclude that
Q∗ ∈ Stop0(R), which is a contradiction. �
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Note that by Lemma 3.5 and Lemma 3.6 we have for all P ,

(11)
N∑

n=0

θ2
n ≤ C(α)

N∑
n=0

∑
Dn\B(δ)

θ(Q)2p(Q) ≤ C ′(α)
∑
Top

θ(P )2p(G ∩ P ).

We define

KP 1(x) =
∑

Q∈Stop(P )

χG∩Q(x)
∫

G∩P\Q
K(y − x)dp(y)

+ χG∩P\P stp(x)
∫

G∩P\QN (x)

K(y − x)dp(y).

By construction
χGRN1 =

∑
Top

KP 1

and
‖RN1‖2L2(G) =

∑
Top

‖KP 1‖2L2(G) +
∑

P,Q∈Top,P 6=Q

〈KP 1,KQ1〉L2(G).

Lemma 3.7. If N1 is chosen big enough, then for all P ∈ Top,

(12) ‖KP 1‖2L2(G) ≥ C−1θ(P )2p(G ∩ P ),

where C = C(α), and

(13) ‖KP 1‖2L2(G) ≥ A2θ(P )2p(G ∩ P stp0),

where
P stp0 =

⋃{
Q : Q ∈ Stop(P ) ∩ Stop0(P )

}
.

Lemma 3.8.

(14)
∑

P,Q∈Top,P 6=Q

|〈KP 1,KQ1〉L2(G)| ≤ C(A−1 + c(η))
∑
Top

‖KP 1‖2L2(G),

with c(η) → 0 as η → 0.

Assuming Lemma 3.7 and Lemma 3.8 for the moment, we see that if A is large
and η is small, then

‖RN1‖2L2(G) ≥ C−1
∑
Top

θ(P )2p(G ∩ P )

and then the lower bound in (7) follows from inequality (11).

To prove Lemma 3.7, first note that (13) follows from the definitions of Stop0(P )
and Stop(P ). To prove (12), recall that K = Kj for some 1 ≤ j ≤ d. We apply
Lemma 2.2 to P with γn ∼ α to obtain sets S1 ⊂ P and S2 ⊂ P such that

sup
S1

xj = a < inf
S2

xj

and
Min(p(G ∩ S1), p(G ∩ S2)) ≥ c(α)p(P ).
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We may assume that S1, S2 are much bigger that any stopping cube of P , because if
there exists some Q ∈ Stop0(P ) with size similar to S1 or S2, then (12) follows from
(13); and if we choose N1 big enough, any cube Q ∈ Stop1(P ) will be much smaller
that S1, S2. Then we get∣∣∫

S2∩G

KP χS1(x)dp(x)
∣∣ ≥ C−1p(S2 ∩G)

p(S1 ∩G)
diam(P )d−1

.

Set
E1 = P ∩ {xj ≤ a} and E2 = P ∩ {xj > a}.

By its definition,

KP 1 = χG(x)
∑

k

χQk
(x)

∫
G∩P\Qk

K(y − x)dp(y)

where {Qk} is a cover of P by disjoint cubes from D. We also have

KP 1(x) = χG(x)
∑

i=1,2

∑
k

χQk
(x)

∫
G∩Ei\Qk

K(y − x)dp(y)

≡ KP χE1(x) + KP χE2(x).

Write Qk = Q(x) when x ∈ Qk and note that

y /∈ Q(x) ⇐⇒ x /∈ Q(y).

Hence by the antisymmetry K(y − x) = −K(x− y) we have∫
G∩E2

KP χE2(x)dp(x) = 0.

Therefore by the choices of S1, S2, E1 and E2,

(p(G ∩ E2))1/2‖KP 1‖L2(G) ≥
∣∣∫

G∩E2

KP 1(x)dp(x)
∣∣

=
∣∣∫

G∩E2

KP χE1(x)dp(x)
∣∣

≥
∣∣∫

S2∩G

KP χS1(x)dp(x)
∣∣

≥ p(G ∩ E2)
c(α)p(G ∩ P )
diam(P )d−1

,

which is (12).

To prove Lemma 3.8 we again follow [MT]. Suppose P 6= Q ∈ Top and Q ⊂ P.
Let PQ ∈ Stop(P ) be such that Q ⊂ PQ ⊂ P. By the antisymmetry of K we have∫

Q∩G
KQ1dp = 0 so that∣∣∣∫

Q∩G

KQ1(x)KP 1(x)dp
∣∣∣ =

∣∣∣ ∫
Q∩G

KQ1(x)(KP 1(x)−KP 1(xQ))dp(x)
∣∣∣

≤ ‖KQ1‖L1(Q) sup
Q
|KP 1(x)−KP 1(xQ)|,
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where xQ is a fixed point from Q. But for any x ∈ Q, standard estimates yield∣∣KP 1(x)−KP 1(xQ)
∣∣ ≤

∫
G∩P\PQ

|K(y − x)−K(y − xQ)|dp(y)

≤ C diam(Q)
∫

G∩P\PQ

dp(y)
|x− y|d

≤ C diam(Q)
∑

PQ⊂R⊂P

θ(R)
diam(R)

.

Assume first that PQ ∈ Stop0(P ). Since θ(R) ≤ θ(P ) in the last sum, we get∣∣KP 1(x)−KP 1(xQ)
∣∣ ≤ C

diam(Q)
diam(PQ)

θ(P ).

Hence by (13),∣∣〈KP 1,KQ1〉L2(G,p)

∣∣ ≤ C

A

diam(Q)
diam(PQ)

(
p(G ∩Q)

p(G ∩ P stp0)

)1/2

‖KQ1‖L2(G)‖KP 1‖L2(G),

when PQ ∈ Stop0(P ).
Consider now the case PQ ∈ Stop1(P ). This means that θ(PQ) ≤ ηθ(P ). Then it

follows from (2) that∑
PQ⊂R⊂P

{θ(R)
θ(P )

:
diam(PQ)
diam(R)

≥ c1(η)
}
≤ c2(η)

∑
PQ⊂R⊂P

θ(R)
θ(P )

so that

diam(Q)
∑

PQ⊂R⊂P

θ(R)
diam(R)

≤ c(η)
diam(Q)
diam(PQ)

θ(P ) with c(η) → 0 as η → 0.

Hence by (12),∣∣〈KP 1,KQ1〉L2(G,p)

∣∣ ≤ c(η)
diam(Q)
diam(PQ)

‖KQ1‖L2(G)‖KP 1‖L2(G),

when PQ ∈ Stop1(P ). Thus (14) follows from Schur’s lemma. �

4. Lipschitz harmonic capacity

In this section we will prove Theorem 1.2. We will assume that each cube Qn
J in

the definition of the Cantor set E (see (3)) contains a closed ball Bn
J such that

c′1σn ≤ diam(Bn
J ).

This assumption comes for free from the definition of E in Section 1. Indeed, one
easily deduces that there exists a family of balls Bn

J centered at Qn
J such that

c′1σn ≤ diam(Bn
J ) ≤ c′2σn,

and
dist(Bn

J , Bn
K) ≥ c′3σn, J 6= K.
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Then if one replaces the cubes Qn
J in the definition of E by the sets

Q̃n
J =

⋃
Qm

K⊂Qn
J

(Qm
K ∪Bm

K ),

E does not change.
Given a real Radon measure µ and f ∈ L1(µ), let

Rµ,ε(fdµ)(x) =
∫
|y−x|>ε

y − x

|y − x|d
f(y)dµ(y)

be the (truncated) (d− 1)-Riesz transform of f ∈ L1(µ) with respect to the measure
µ and set ‖Rµ‖L2(µ) = supε>0 ‖Rµ,ε‖L2(µ).

As in [MT], we need to introduce the following capacity of the sets EN :

κp(EN ) = sup{α : 0 ≤ α ≤ 1, ‖RαµN
‖L2(αµN ) ≤ 1},

where µN is a probability measure on EN such that µN (QN
J ) = 2−Nd.

The L2 estimates from the previous section yield the following lemma.

Lemma 4.1.

κp(EN ) ≈
( N∑

n=1

θ2
n

)−1/2

.

Proof. By Theorem 3.1 we have

‖RαµN
‖L2(αµN ) = α‖RµN

‖L2(µN ) ≈ α
( N∑

n=1

θ2
n

)1/2

.

The lemma follows because the sum above is ≥ 2−d. �

We will prove the following:

Lemma 4.2. There exists an absolute constant C0 such that for all N ∈ N we have

(15) κ(EN ) ≤ C0κp(EN ).

Notice that Theorem 1.2 follows from Lemma 4.2 and

(16) κ(EN ) ≥ κ+(EN ) ≥ C−1κp(EN ),

where
κ+(E) = sup{|〈∆f, 1〉| : f ∈ L(E, 1),∆f = µ ∈ M+(E)}

and M+(E) is the set of positive Borel measures supported on E. The first inequality
in (16) is just a consequence of the definitions of κ and κ+ and the second inequality
follows from a well known method that dualizes a weak (1,1) inequality (see Theorem
23 in [Ch2] and Theorem 2.2 in [MTV]. The original proof is from [DØ]).

In [Vo] it is shown that the capacities κ and κ+ are comparable for all subsets of
Rd, but we do not use that deep result.

For any s > 0, we write Λs and Λ∞s for the s-dimensional Hausdorff measure and
the s-dimensional Hausdorff content, respectively.
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Proof. The arguments are similar to those in [MTV] and [MT], but a little more in-
volved because our Cantor sets are not homogeneous. Also, instead of using the local
T (b)-Theorem of M. Christ, we will run a stopping time argument in the spirit of
[Ch1] and then use a dyadic T (b)-Theorem (see Theorem 20 in [Ch1]).

We set
Sn = θ2

1 + θ2
2 + · · ·+ θ2

n.

Without loss of generality we can assume that for each N > 1 there exists 1 ≤ M < N
such that

(17) SM ≤ SN

2
< SM+1.

Otherwise SN

2 < S1 and by Lemma 4.1 it follows that κp(EN ) ≥ C−1λd−1
1 . By [P] we

have
κ(EN ) ≤ κ(E1) ≤ CΛ∞d−1(E1) ≤ Cλd−1

1 ,

and if C0 is chosen big enough the conclusion of the lemma will follow in this case.
Assuming (17), we will now prove (15) by induction on N . For N = 1 (15) holds

clearly. The induction hypothesis is

κ(En) ≤ C0κp(En), for 0 < n < N,

where the precise value of C0 is to be determined later.
Notice that for n ≥ 0, (QN

K ∩E)n is the n−th generation of the Cantor set QN
K ∩E,

i.e. the union of 2nd sets Qn+N
J satisfying properties (4) and (5) with n replaced by

n + N . Let J∗ be the multi-index of length M such that

κ((QM
J∗ ∩ E)N−M ) = max

|J|=M
κ((QM

J ∩ E)N−M ).

We distinguish two cases.
Case 1: For some absolute constant A0 to be determined below,

κ((QM
J∗ ∩ E)N−M ) ≥ A02−Mdκ(EN ),

By the induction hypothesis (applied to (QM
J∗ ∩E)N−M ) and by Lemma 4.1 we have

that

κ(EN ) ≤ A−1
0 2Mdκ((QM

J∗ ∩ E)N−M ) ≤ A−1
0 2MdC0κp((QM

J∗ ∩ E)N−M )

≤ A−1
0 C0C2Md

(N−M∑
n=1

( 2−dn

σd−1
M+n

)2)−1/2

= A−1
0 C0C

( N∑
n=M+1

θ2
n

)−1/2

.

Now by using that SM ≤ SN/2 is equivalent to
∑N

n=1 θ2
n ≤ 2

∑N
n=M+1 θ2

n and Lemma
4.1 again, we obtain that

κ(EN ) ≤ 21/2A−1
0 C0C

( N∑
n=1

θ2
n

)−1/2

≤ CA−1
0 C0κp(EN ).

Hence if A0 = C, we obtain (15).

Case 2: For the same constant A0,

(18) κ((QM
J∗ ∩ E)N−M ) ≤ A02−Mdκ(EN ).
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Then if θ2
M+1 > SM , SM+1 = SM + θ2

M+1 ≈ θ2
M+1. Therefore

κp(EM+1) ≈ S
−1/2
M+1 ≈ θ−1

M+1 ≥ CΛ∞d−1(EM+1).

Hence by (17),

κ(EN ) ≤ κ(EM+1) ≤ CΛ∞d−1(EM+1) ≤ Cκp(EM+1) ≈ κp(EN ),

which is (15) if C0 is chosen big enough.
On the other hand, if θ2

M+1 ≤ SM , then SM+1 ≈ SM ≈ SN . Recall that we
are assuming that each cube QM

J contains some ball BM
J with comparable diameter.

Moreover, we may suppose that all the balls BM
J , J = 1, . . . , 2Md, have the same

diameter dM . We set
ẼM =

⋃
|J|=M

BM
J .

We consider now the measure
σ = κ(EN )µ′M ,

where µ′M is defined by

µ′M (K) =
∑

J

Λd−1(K ∩ ∂BM
J )

Λd−1(∂ẼM )
,

for compact sets K. Clearly σ(ẼM ) = κ(EN ).
Note that the measure σ is doubling and has (d − 1)−growth. To verify this, one

uses that
κ(EN ) ≤ κ(EM ) ≤ CΛ∞d−1(EM ) ≤ CΛd−1(∂ẼM )

and µ′M (Qn
K) = 2−nd for all 0 ≤ n ≤ M (see (4.8) and (4.9) of [MT]).

We will show that there exists a good set G ⊂ ẼM with σ(G) ≈ σ(ẼM ) such that
Rσ|G is bounded on L2(σ|G) with absolute constants. From this fact, by Theorem 3.1
we have

‖Rσ|G‖L2(σ|G) ≈ κ(EN )S1/2
M ≤ C.

So by Lemma 4.1 we infer

κ(EN ) ≤ CS
−1/2
M ≤ CS

−1/2
N ≈ Cκp(EN ),

which proves the lemma.
To establish the existence of the set G, we run a stopping time argument. First

we construct a set E′ and a doubling measure σ′ on E′. The pair (E′, σ′) is endowed
with a system of dyadic cubes Q(E′), where

Q(E′) = {Qk
β ⊂ E′ : β ∈ N, k ∈ N}

(see Theorem 11 in [Ch1]). We also define a function b′ on E′, dyadic para-accretive
with respect to this system of dyadic cubes, i.e. for every Qk

β ∈ Q(E′), there exists
Ql

γ ∈ Q(E′), Ql
γ ⊂ Qk

β , with l ≤ k + N and

|
∫

Ql
γ

b′dσ′| ≥ cσ′(Ql
γ)

for some fixed constants c > 0 and N ∈ N, and such that the function R(b′dσ′)
belongs to dyadic BMO(σ′). Therefore, the (d − 1)-Riesz transform R associated to
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σ′ will be bounded on L2(E′, σ′) by the T (b)−theorem on a space of homogeneous
type (see Theorem 20 in [Ch1]). Our set G will be contained in E′ ∩ ẼM .

Now we turn to the construction of the set E′ and the measure σ′. By definition
there exists a distribution T supported on EN such that

κ(EN ) ≤ C|〈T, 1〉|

and
‖RT‖L∞(Rd) ≤ 1.

We replace the distribution T with a real measure ν supported on EN such that
κ(EN ) ≤ C|ν(EN )| and ‖Rν‖L∞(Rd) ≤ 1. (The measure ν exists because of Volberg’s
theorem ([Vo]), but in the special case of EN considered here ν can be constructed
directly by setting ν =

∑
|J|=N νJ with νJ = hJχ∂BN

J
Λd−1 and hJ smooth on ∂BN

J

such that for all polynomials P of degree at most d,
∫

P (x)dνJ = T (P (x)ϕJ(x)),
where ϕJ is smooth and ϕJ = χQN

J
on EN . See [P].)

The definition of σ implies that

(19) |ν(EN )| ≥ C−1σ(ẼM ) > ε0σ(ẼM ),

where ε0 is a sufficiently small constant to be fixed later. Notice that for a fixed
generation n, 0 ≤ n ≤ M , there exists at least one cube Qn

K , such that |ν(Qn
K)| >

ε0σ(Qn
K), since otherwise for 0 ≤ n ≤ M

|ν(EN )| ≤
∑
|K|=n

ε0σ(Qn
K) = ε0

∑
|J|=M

σ(BM
J ) = ε0σ(ẼM ),

which contradicts (19).
We now run a stopping-time procedure. Let ε > 0 be another constant to be chosen

later, much smaller than ε0. We check whether or not the condition

(20) |ν(Q1
J)| ≤ εσ(Q1

J)

holds for the cubes Q1
J . If (20) holds for the cube Q1

J , we call it stopping-time cube.
If (20) does not hold for Q1

J , we consider the children Q2
K of Q1

J and call each such
Q2

K with (20) a stopping-time cube. We continue this procedure through generation
M , but we do not consider the cubes of later generations. We obtain in this way a
collection of pairwise disjoint stopping-time cubes {Pγ}γ , where Pγ = Qn

J , for some
0 ≤ n ≤ M and by definition each Pγ satisfies condition (20) with Q1

J replaced by Pγ .
Consider now the function

b =
∑
|J|=M

ν(QM
J )

σ(BM
J )

χBM
J

.

The function b has the following three important properties:

(1) for 0 ≤ n ≤ M ,
∫

Qn
K

bdσ = ν(Qn
K).

(2) ‖b‖∞ ≤ C.
(3) For any 0 ≤ n ≤ M ,

(21) ‖R(bχQn
K

dσ)‖L∞(Rd) ≤ C.
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To show that b is bounded it is enough to verify that

(22) |ν(QM
J )| ≤ Cσ(BM

J ), for |J | = M.

Inequality (22) can be shown by localizing the potential ν ∗ x/|x|d (see [P] and
[MPrV]) and using (18), namely

|ν(QM
J )| ≤ Cκ((QM

J ∩ E)N−M ) ≤ CA02−Mdκ(EN ) = CA0σ(BM
J ).

To see (21), notice that

(23) ‖R(χBM
J

dσ)‖L∞(Rd) ≤ C
κ(EM )

Λd−1(∂EM )
‖R(χBM

J
dΛd−1)‖L∞(Rd) ≤ C.

Since ‖R(χQn
K

dν)‖L∞(Rd) ≤ C, again by localization ([P]), in order to show (21) we
only need to estimate the following differences for 0 ≤ n < M,

R(bχQn
K

dσ)(x)−R(χQn
K

dν)(x) =
∑

QM
J ⊂Qn

K

RαM
J (x),

where αM
J =

ν(QM
J )

σ(BM
J )

χBM
J

dσ − χQM
J

dν. Since
∫

dαM
J = 0, ‖RαM

J ‖L∞(Rd) ≤ C and for

|x− c(BM
J )| > cσM ,

|R(αM
J )(x)| ≤ C

σd
M

dist(x,QM
J )d

,

(21) follows.
At this point one can finish the proof by applying Theorem 7.1 of Volberg [Vo]

with the function b, but we will give a direct argument based on [Ch1]. We thank the
referee for the route through Theorem 7.1 of [Vo].

Given a cube Qn
J , 0 ≤ n ≤ M , set

Q̃n
J =

⋃
BM

J ∩Qn
J 6=∅

BM
J .

Notice that diam(Q̃n
J) = cσn ≈ diam(Qn

J) and σ|Qn
J

= σ|Q̃n
J
. By (19) and (20) we

have

σ(ẼM \
⋃
γ

P̃γ) ≥ 1
C

∫
ẼM\

S
γ P̃γ

|b|dσ

≥ 1
C
|
∫

ẼM

bdσ| − 1
C

∑
γ

|
∫

Pγ

bdσ|

>
1
C

(ε0σ(ẼM )− ε
∑

γ

σ(Pγ)).

Therefore, for η =
ε0 − ε

C − ε
,

(24)
∑

γ

σ(Pγ) ≤ (1− η)σ(ẼM ).
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We can now define our good set G ⊂ ẼM . Set

G = ẼM \
⋃
γ

P̃γ .

By (24), ησ(ẼM ) ≤ σ(G) ≤ σ(ẼM ). We want to construct the set E′, by excising
from ẼM the union of the stopping time cubes P̃γ , and replacing each P̃γ by a union
of two spheres. For each stopping time cube P̃γ , set

Sγ = ∂B1
γ ∪ ∂B2

γ ,

where Bj
γ , j = 1, 2 are two balls with center c(Sγ) := c(B1

γ) = c(B2
γ) ∈ Pγ and such

that

2diam(B1
γ) = diam(B2

γ) =


c
2σn if Pγ = Qn

J , for some 0 ≤ n < M,

dM if Pγ = QM
J .

Set
E′ = G ∪

⋃
γ

Sγ =
(
ẼM \

⋃
γ

P̃γ

)
∪

⋃
γ

Sγ ,

and define a measure σ′ on E′ as follows:

σ′ =


σ on G

σ(Pγ)
2

( Λd−1|∂B1
γ

Λd−1(∂B1
γ)

+
Λd−1|∂B2

γ

Λd−1(∂B2
γ)

)
on Sγ .

Using that σ is doubling and has (d − 1)−growth it is easy to see that σ′ also
satisfies these two properties.

For a system of dyadic cubes in E′ satisfying the required properties (see Theorem
11 in [Ch1]), we take all cubes Q̃n

J , 0 ≤ n ≤ M , which are not contained in any
stopping time cube P̃γ , together with each Sγ , together with each ∂Bj

γ , j = 1, 2
comprising Sγ , together with subsets of the two spheres,... and repeat.

We will now modify the function b on the union ∪γSγ in order to obtain a new
function b′ defined on E′, bounded and dyadic para-accretive with respect to the
system of dyadic cubes defined above. Let

b′(x) =


b(x) if x ∈ G

gγ(x) = c1
γχ∂B1

γ
(x)− c2

γχ∂B2
γ
(x) on Sγ ,

where

c1
γ = 2ωγ , c2

γ = 2ωγ

(
1− |ν(Pγ)|

σ(Pγ)

)
and ωγ =


ν(Pγ)
|ν(Pγ)| if |ν(Pγ)| 6= 0

1 otherwise.

Notice that the coefficients cj
γ , j = 1, 2, are defined so that

(25)
∫

Sγ

gγdσ′ =
∫

Pγ

bdσ = ν(Pγ),
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and |c1
γ | = 2 and 2(1−ε) ≤ |c2

γ | ≤ 2, because Pγ is a stopping time cube. The function
b′ is bounded because of the upper bound on the coefficients cj

γ , j = 1, 2 and the fact
that ‖b‖∞ ≤ C.

For future reference, notice that, for every dyadic cube Q in E′, such that Q * Sγ

for all γ, there is a non-stopping time cube Q∗ (Q∗ = Q̃n
K for some 1 ≤ n ≤ M)

uniquely associated to Q by the identity

(26) Q = (Q∗ \
⋃

P̃γ⊂Q∗

P̃γ) ∪ (
⋃

P̃γ⊂Q∗

Sγ).

Moreover one has diam(Q) ≈ diam(Q∗) and

(27) σ′(Q) = σ(Q∗)−
∑

P̃γ⊂Q∗

σ(P̃γ) +
∑

P̃γ⊂Q∗

σ′(Sγ) = σ(Q∗).

We will check now that, by construction, the function b′ is dyadic para-accretive
with respect to the system of dyadic cubes in E′:

If for some γ, Q ⊆ Sγ , the para-accretivity of b′ follows from the definition of gγ and
the lower bound on |cj

γ |, j = 1, 2. Recall that, when examining the para-accretivity
condition on Sγ , although identity (25) holds, we have a satisfactory lower bound on
the integral over each child ∂Bj

γ of Sγ , which turns to be enough for b′ to be dyadic
para-accretive.

Otherwise, let Q∗ be non-stopping time cube defined in (26). Then due to (25)
and (27) we can write

∣∣∣∫
Q

b′dσ′
∣∣∣ =

∣∣∣∫
Q∗

bdσ
∣∣∣ ≥ εσ(Q∗) = εσ′(Q).

We must still show that R(b′σ′) belongs to dyadic BMO(σ′). It is enough to show
the following L1− inequality

(28) ‖R(b′χQ)‖L1(σ′Q) ≤ Cσ′(Q),

for every dyadic cube in E′.

Let Q be some dyadic cube in E′. We distinguish between two cases:

Case 1: For some γ, Q ⊆ Sγ . Then (28) follows from the boundedness of the
coefficients |cj

γ |, j = 1, 2, σ(Pγ) ≤ Cdiam(Pγ)d−1 and Λd−1(Sγ) ≈ diam(Pγ)d−1.
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Case 2: Otherwise, Q = (Q∗ \
⋃

P̃γ⊂Q∗

P̃γ) ∪ (
⋃

P̃γ⊂Q∗

Sγ) for some non-stopping Q∗ =

Q̃n
K , 1 ≤ n ≤ M . Due to (25) we can write

R(b′χQ)(y) = R(bχQ∗)(y)

+
∑

γ:P̃γ⊂Q∗

∫
Sγ

gγ(x)
(
K(x− y)−K(c(Sγ)− y)

)
dσ′(x)

+
∑

γ:P̃γ⊂Q∗

∫
Pγ

b(x)
(
K(c(Sγ)− y)−K(x− y)

)
dσ(x)

= A + B + C.

By (21) (or (23) if Q∗ = BM
J ), ‖R(bχQ∗)‖L∞(Rd) ≤ C. Hence∫

Q

|A|dσ′ ≤ Cσ′(Q).

We deal now with term B. Set

B1 =
∫

Q\Sγ

∣∣∣∫
Sγ

gγ(x)
(
K(x− y)−K(c(Sγ)− y)

)
dσ′(x)

∣∣∣dσ′(y)

and

B2 =
∫

Sγ

∣∣∣∫
Sγ

gγ(x)
(
K(x− y)−K(c(Sγ)− y)

)
dσ′(x)

∣∣∣dσ′(y).

For B1, let g(Q) ∈ N be such that diam(Q) ≈ σg(Q) and Pγ = Qn
J for some

0 ≤ n ≤ M . Observe that diam(Sγ) ≈diam(Pγ) ≈ σn. Denote by Qi, g(Q) ≤ i ≤ n,
the cubes in E′ contained in Q and containing Sγ such that diam(Qi) ≈ σi (note
that the Qi are either Q̃i

Js or unions of spheres replacing the stopping time cubes of
generation i). Then by the boundedness of gγ , the (d−1)-growth of σ′ and the upper
bound in (2),

B1 ≤ Cσ′(Sγ)
n−1∑

i=g(Q)

∫
Qi\Qi+1

σn

σd
i

dσ′

≤ Cσ′(Sγ)
n−1∑

i=g(Q)

σn

σi
≤ Cσ′(Sγ)

∑
i

2−i ≤ Cσ′(Sγ).

For B2 argue like in the previous case, i.e. (28) for Q = Sγ , to get that B2 ≤ Cσ′(Sγ).
Therefore by σ′(Sγ) = σ(Pγ), the packing condition (24) (with ẼM replaced by Q∗)

and (27) we get that
∫

Q

|B|dσ′ ≤ Cσ′(Q).

Similar arguments work to show
∫

Q

|C|dσ′ ≤ Cσ′(Q). Therefore we are done. �
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