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ALL SIEGEL HECKE EIGENSYSTEMS (MOD p) ARE CUSPIDAL

Alexandru Ghitza

Abstract. Fix integers g ≥ 1 and N ≥ 3, and a prime p not dividing N . We show that

the systems of Hecke eigenvalues occurring in the spaces of Siegel modular forms (mod
p) of dimension g, level N , and varying weight, are the same as the systems occurring

in the spaces of Siegel cusp forms with the same parameters and varying weight. In

particular, in the case g = 1, this says that the Hecke eigensystems (mod p) coming
from classical modular forms are the same as those coming from cusp forms. The proof

uses both the main theorem of [Ghi04] and a modification of the techniques used there,

namely restriction to the superspecial locus.

1. Introduction

This paper is concerned with the systems of Hecke eigenvalues coming from mod-
ular forms in positive characteristic. The main result is that imposing the condition
of cuspidality has no effect on the set of eigensystems that can be obtained, at least
if we allow ourselves to change the weight of the form. We prove this in the con-
text of Siegel modular forms, but the method should apply to forms coming from
other Shimura varieties Y of PEL type, i.e. those arising as moduli spaces of abelian
varieties with specified polarizations, endomorphisms, and level structures. For the
reader’s convenience, here are the key properties of Y that we use: Y should have
an arithmetic Satake compactification X, normal and of finite type over Spec Z[ 1

N ]
for an appropriate N , containing Y as a dense open subscheme, and such that the
superspecial locus of Y ⊗ Fp is non-empty. Moreover, the Hodge line bundle ω on
Y should extend to an ample line bundle on X. According to §V.0 of [FC90], most
of these properties (except perhaps for the one regarding the non-emptiness of the
superspecial locus) hold for Shimura varieties of PEL type.

In §2 we prove the main result in the case of elliptic modular forms (g = 1). We
have two reasons for doing this: first, it will give an idea of the proof of the general
case unclouded by technical complications; second, the elliptic case is simple enough
as to allow us to give an effective version of our result, something that we cannot
accomplish in general.

The rest of the paper deals with the case g > 1. In §3 we review properties of the
arithmetic Satake compactification and use them to give our definition of Siegel cusp
forms. In the process we give a proof of the Köcher principle for the arithmetic Satake
compactification, which basically says that any Siegel modular form extends to the
Satake boundary. This is undoubtably known to the experts, but it does not seem
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to have ever been written down in this setting. Our proof of the Köcher principle
should apply to any Shimura variety of PEL type whose boundary inside the Satake
compactification has everywhere codimension at least 2.

In §5 we review the definition and properties of superspecial forms. Section 6
contains the proof of our main result. Finally, in §7 we show that our notion of Siegel
cusp form (defined using the Satake compactification) agrees with that introduced by
Chai-Faltings in [FC90] (based on the toroidal compactifications).

2. The elliptic case: g = 1

Let p be a prime, and let N ≥ 3 be an integer not divisible by p. We denote by
Mk(N) the space of modular forms (mod p) of weight k and level Γ(N), and by Sk(N)
the subspace of cusp forms. We are interested in the action of Hecke operators T�

(� � pN) on the spaces Mk(N) and Sk(N). There is a Hecke-equivariant injection

Mk(N) ↪→ Mk+p−1(N)

given by multiplication by the Hasse invariant A. The filtration of f is the smallest
integer w such that there exists f̃ ∈ Mw(N) with

f = f̃ · (some nonnegative power of A).

In this section we apply Serre’s ideas from [Ser96] to obtain a proof of the following

Theorem 1. Fix a prime p and a level N ≥ 3, p � N . Then all Hecke eigensystems
(mod p) are cuspidal. More precisely, let Φ be the eigensystem associated to some
f ∈ Mk(N), and let w be the filtration of f .

(a) Suppose p > 2, or p = 2 and w > 0. Then there exists f ′ ∈ Sw(N) or
Sw+p2−1(N) such that Φ is associated to f ′. Moreover, the first situation
(existence of such f ′ ∈ Sw(N)) occurs if and only if f ∈ Sk(N).

(b) If p = 2 and w = 0, then there exists f ′ ∈ S6(N) such that Φ is associated to
f ′.

Remark. Let N = 3, p = 2, w = 0. Then S0(3) = S3(3) = 0, so in the situation of
(b) we cannot do as well as in (a).

Proof. We fix the level N and often drop it from our notation.
Let ω be the Hodge (line) bundle on X = X(N)⊗Fp, so that Mk = H0(X, ω⊗k), and

let A ∈ Mp−1 be the Hasse invariant. Let SSk denote the cokernel of multiplication
by A, i.e.

0 −→ ω⊗(k−p+1) ×A−−→ ω⊗k −→ SSk −→ 0.

Define
SSk := H0(X, SSk) = H0(Σ,SSk|Σ),

where Σ denotes the supersingular locus of X. Using the fact that every super-
singular elliptic curve over Fp has a canonical Fp2-structure, one easily sees that
SSk = SSk+p2−1 for all k. Also SSk has a natural (away from Np) Hecke action,
coming from the fact that �-isogenies preserve supersingularity (if � � Np).

Serre shows (in particular) that if the eigensystem Φ is associated to f ∈ Mk and
w is the filtration of f , then Φ also occurs in SSw. So it is enough for us to show
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that any eigensystem Φ occurring in SSw also occurs in Sw or Sw+p2−1. To see this,
let Δ denote the divisor of cusps on X and consider the exact sequence

0 −→ ω⊗(w−p+1)(−Δ) ×A−−→ ω⊗w(−Δ) −→ SSw(−Δ) −→ 0.

Taking global sections, we get

(1) 0 −→ Sw−p+1
×A−−→ Sw −→ SSw −→ H1(X, ω⊗(w−p+1)(−Δ)),

where we used the identifications

H0(X, SSw(−Δ)) = H0(Σ,SSw(−Δ)|Σ) = H0(Σ,SSw|Σ) = SSw

since Δ ∩ Σ = ∅.
The canonical sheaf of X is Ω1

X , which is isomorphic (by Kodaira-Spencer) to
ω⊗2(−Δ). So by Serre duality we have

H1(X, ω⊗m(−Δ)) ∼= H0
(
X,

(
ω⊗m(−Δ)

)∨ ⊗ ω⊗2(−Δ)
)∨ ∼= M∨

2−m,

where ·∨ denotes the dual. So if m > 2 we conclude that H1(X, ω⊗m(−Δ)) = 0. In
particular, if w > p + 1 we know that the map Sw → SSw from (1) is surjective, and
therefore Φ occurs in Sw.

If p = 2 and w = 0, we have w + 2(p2 − 1) = 6 > 3 = p + 1, so the map
S6 → SS6 = SS0 is surjective, and therefore Φ occurs in S6. This settles (b).

In the situation of (a), w + p2 − 1 > p + 1 so the map

Sw+p2−1 −→ SSw+p2−1 = SSw

is surjective, and therefore Φ occurs in Sw+p2−1.
It remains to prove the last statement of (a). Saying that w is the filtration of

f implies that if we put n = (k − w)/(p − 1) then there exists f̃ ∈ Mw such that
Anf̃ = f . Since the divisor Σ of A is disjoint from the cusps Δ, we have that f ∈ Sk if
and only if f̃ ∈ Sw. So on one hand if f ∈ Sk then f̃ ∈ Sw and f and f̃ have the same
eigensystem, so we may put f ′ = f̃ and we are done. Conversely, suppose f ′ ∈ Sw,
then f ′ and f̃ have the same eigensystem, hence also the same Fourier coefficients.
Moreover, they have the same weight w, so by the q-expansion principle f̃ = f ′. So
f̃ ∈ Sw, therefore f ∈ Sk. �

Corollary 2. If f ∈ Mk(N) is an eigenform and has filtration w > p + 1, then f is
a cusp form.

Proof. This follows from the proof of Theorem 1: if w > p+1 then the restriction-to-Σ
map Sw → SSw is surjective, so there exists f ′ ∈ Sw with the same eigensystem as
f . But then the last statement of the Theorem tells us that f is a cusp form. �

We conclude this section with some explicit numerical examples, in which the cusp
eigenforms we exhibit are taken from W. Stein’s database [MFD].

Example 1. Let p = 5, N = 1, and let f = E4 be the Eisenstein series of weight 4.
We know that f is a Hecke eigenform with eigensystem

(1 + �3)� �=5 = (4, 3, 4, 2, 3, 4, 0, 3, 0, 2, 4, . . . )

Of course, f is nothing but the Hasse invariant (mod 5), so its filtration is w = 0.
Since f is not a cusp form, Theorem 1 predicts the existence of a cuspidal eigenform
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f ′ of weight w + p2 − 1 = 24 with the same eigensystem. Indeed, there is a cusp
eigenform (mod 5) of weight 24 with q-expansion

f ′(q) = q + 4q2 + 3q3 + 3q4 + 2q6 + 4q7 + 2q9 + 2q11 + 4q12 + 3q13 + q14 + q16 + 4q17 + 3q18

+2q21 + 3q22 + 3q23 + 2q26 + 2q28 + 2q31 + 4q32 + q33 + q34 + q36 + 4q37 + O(q38).

Similarly, E6 has filtration 6 and eigensystem

(1 + �5)� �=5 = (3, 4, 3, 2, 4, 3, 0, 4, 0, 2, 3, . . . ).

There exists a cusp eigenform (mod 5) of weight 30 with q-expansion

q + 3q2 + 4q3 + 2q4 + 2q6 + 3q7 + 3q9 + 2q11 + 3q12 + 4q13 + 4q14 + q16 + 3q17 + 4q18

+2q21 + q22 + 4q23 + 2q26 + q28 + 2q31 + 3q32 + 3q33 + 4q34 + q36 + 3q37 + O(q38).

Example 2. Let p = 7, N = 1. We consider the Eisenstein series of weights 4, 6,
and 8:

(a) f1 = E4 has filtration 4 and eigensystem

(1 + �3)� �=7 = (2, 0, 0, 2, 0, 0, 0, 2, 2, 0, 2, . . . )

There is a cusp eigenform (mod 7) of weight 52 with q-expansion

f ′
1(q) = q + 2q2 + 3q4 + 4q8 + q9 + 2q11 + 5q16 + 2q18 + 4q22

+2q23 + q25 + 2q29 + 6q32 + 3q36 + 2q37 + O(q38).

(b) f2 = E6 has filtration 0 and eigensystem

(1 + �5)� �=7 = (5, 6, 4, 3, 0, 6, 4, 5, 2, 6, 5, . . . )

There is a cusp eigenform (mod 7) of weight 48 with q-expansion

f ′
2(q) = q + 5q2 + 6q3 + 4q5 + 2q6 + q8 + 3q9 + 6q10 + 3q11 + 3q15 + 5q16 + 6q17 + q18 + 4q19

+q22 + 5q23 + 6q24 + 6q25 + 2q27 + 2q29 + q30 + 6q31 + 4q33 + 2q34 + 5q37 + O(q38).

(c) f3 = E8 has filtration 8 and eigensystem

(1 + �7)� �=7 = (3, 4, 6, 5, 0, 4, 6, 3, 2, 4, 3, . . . )

There is a cusp eigenform (mod 7) of weight 56 with q-expansion

f ′
3(q) = q + 3q2 + 4q3 + 6q5 + 5q6 + q8 + 6q9 + 4q10 + 5q11 + 3q15 + 3q16 + 4q17 + 4q18 + 6q19

+q22 + 3q23 + 4q24 + 3q25 + 5q27 + 2q29 + 2q30 + 4q31 + 6q33 + 5q34 + 3q37 + O(q38).

3. The arithmetic Satake compactification

For the remainder of the paper we assume that g > 1.
Fix an integer N ≥ 3, and let Ag,N denote the moduli space of g-dimensional

principally polarized abelian varieties with symplectic level N structure.
There are several ways to compactify Ag,N ; we will work with the arithmetic Satake

(also known as minimal) compactification A ∗
g,N , whose existence and properties are

described in Theorem V.2.5 of [FC90]. For now, we just need to know that A ∗
g,N is a

normal scheme, proper and of finite type over Spec Z[ 1
N ], containing Ag,N as a dense

open subscheme.
Note that in the classical case g = 1, these are the usual modular curves A1,N =

Y (N) and A ∗
1,N = X(N).
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There is a universal abelian scheme

Auniv

π

��

Ω1
Auniv/Ag,N

��
��
��
��

Ag,N E := π∗Ω1
Auniv/Ag,N

,

and we can therefore define the Hodge bundle E on Ag,N . It has rank g, so given a
representation ρ of the algebraic group GLg, we can define the twist of E by ρ, by
applying ρ to the transition functions of E. The result is denoted Eρ and it has rank
equal to the dimension of ρ.

We want to see how much of this can be extended to the minimal compactification
A ∗

g,N . For this we need the following technical result:

Theorem 3. Let X be a locally noetherian scheme which is locally of finite type over
a quotient R0/I of a regular ring R0. Let U be an open subset of X such that the
complement Z of U has everywhere codimension at least 2 in X. Let i : U ↪→ X
denote the canonical inclusion. Let F be a torsion-free coherent OU -module. Then
i∗F is a coherent OX-module. If, moreover, X is normal and F is reflexive, so is
i∗F , and it is the unique reflexive coherent sheaf on X extending F .

Proof. We start by noticing that X is locally embeddable in a regular scheme, i.e. that
any point x ∈ X has an open neighborhood isomorphic to a subscheme of a regular
scheme. This follows directly from the fact that X is locally of finite type over R0/I,
i.e. locally embeddable in affine space over R0/I. In turn, this is embeddable in a
regular scheme, namely affine space over the regular ring R0.

Since F is torsion-free, the support of F is all of U . Also U is dense in X, so
Ū = X. Since Z is everywhere of codimension at least 2 in X, we have that for any
irreducible component U ′ of Ū = X,

codim(Z ∩ U ′, U ′) ≥ 2.

So we may now apply the following result with n = 1 to conclude that i∗F is a
coherent OX -module:

Proposition VIII.3.2 in [SGA2]: Let X be a locally noetherian
scheme which is locally embeddable in a regular scheme. Let U be an
open subscheme of X and let i : U → X be the canonical embedding.
Let n ∈ Z, and let F be a coherent Cohen-Macaulay OU -module.
Then the following are equivalent:
(a) The sheaf Rp i∗F is coherent for all p < n.
(b) Let S denote the support of F and let S̄ be the closure of S in

X. For any irreducible component S′ of S̄, we have

codim(S′ ∩ (X − U), S′) > n.

Finally, to prove the statement about reflexivity, we employ an argument used by
Serre in the complex-analytic category (see Proposition 7 of [Ser66]). First notice
that i∗OU = OX : let V be an open subset of X and let f ∈ OU (U ∩ V ). We know
that U ∩V is dense in V and that its complement Z ∩V has everywhere codimension
at least 2 in V . So f defines a rational function on V ; assume that f has at least one
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pole. Consider the locus D of its poles; by assumption D ⊂ Z ∩ V , but on the other
hand D is a Weil divisor on V , so it has codimension one, which is absurd since Z∩V
has codimension at least 2.

Next we claim that if R is a reflexive sheaf on X then

i∗i∗R = R.

To see this, let D = R∨. Since R is reflexive we have R = D∨ = Hom(D ,OX), so
i∗R = Hom(i∗D ,OU ). Therefore

i∗i∗R = i∗Hom(i∗D ,OU ) = Hom(D , i∗OU ) = Hom(D ,OX) = D∨ = R,

as claimed.
Now assume F is reflexive, and let G be a coherent sheaf on X extending F .

Let G ∨∨ be the bidual of G , then G ∨∨ extends F and is reflexive. Hence G ∨∨ =
i∗i∗G ∨∨ = i∗F , from which we conclude that i∗F is reflexive and that if G is reflexive
then G = i∗F . �

In particular, we can apply Theorem 3 with X = A ∗
g,N , U = Ag,N , F = Eρ (we

know that the codimension of X − U in X is g, so by our assumptions at least 2).
We will denote the pushforward i∗Eρ by E∗

ρ. We stress the fact that E∗
ρ is in

general only a coherent sheaf on A ∗
g,N , not necessarily locally free. This causes some

complications in working with the minimal compactification, but as we shall see they
are not essential.

A notable exception to this caveat, of which we will make crucial use in our main
argument, is the following result (part of Theorem V.2.5 in [FC90]):

Fact 4 (Chai-Faltings). The invertible sheaf ω := Edet on Ag,N extends to an invert-
ible sheaf ω∗ on A ∗

g,N relatively ample over Spec Z.

We have the following result:

Proposition 5 (Köcher principle). If g > 1, then for any ρ and for any Z[ 1
N ]-module

M there is a natural identification

H0(A ∗
g,N , E∗

ρ ⊗ M) = H0(Ag,N , Eρ ⊗ M).

Proof. This is presumably well-known but we prove it here for lack of a reference. See
Theorem 10.14 of [BB66] for the complex-analytic version of a more general result.

Any Z[ 1
N ]-module M is a direct limit of finitely generated Z[ 1

N ]-modules; since
cohomology and tensor products commute with direct limits, we may safely assume
that M is finitely generated. Using the classification of finitely generated Z[ 1

N ]-
modules and the additivity of cohomology, we may further reduce to the case where
M = Z[ 1

N ] or M = Z/nZ for some integer n coprime to N . In both cases M is
actually a ring, which we denote by R.

Let X = A ∗
g,N ⊗ R and Y = Ag,N ⊗ R. Since E∗

ρ = i∗Eρ, we have

H0(X, i∗Eρ) = (i∗Eρ)(X) = Eρ(Y ) = H0(Y, Eρ),

as desired. �
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Given a Z[ 1
N ]-module M , the space of Siegel modular forms of weight ρ and level

N with coefficients in M is

Mρ(M) := H0(Ag,N , Eρ ⊗ M).

(We do not include N in the notation since we will always work with a fixed N .)
We define the cusps to be the boundary

Δ := A ∗
g,N − Ag,N .

We want to define a notion of cusp form in this setting. We start with the short exact
sequence of OA ∗

g,N
-modules that defines the ideal sheaf IΔ of ι : Δ ↪→ A ∗

g,N :

0 −→ IΔ −→ OA ∗
g,N

−→ ι∗OΔ −→ 0,

and we tensor it with E∗
ρ; since E∗

ρ is not necessarily locally free, we only get

IΔ ⊗ E∗
ρ −→ E∗

ρ −→ E∗
ρ|Δ −→ 0.

Define
Sρ := ker

(
E∗

ρ −→ E∗
ρ|Δ

)
.

In other words, for any open U ⊂ A ∗
g,N , Sρ(U) consists of the sections of Eρ over U

that vanish at the cusps Δ.
It is then natural to define the space of Siegel cusp forms of weight ρ and level N

with coefficients in a Z[ 1
N ]-module M to be

Sρ(M) := H0(A ∗
g,N ,Sρ ⊗ M).

Note that as a result of this definition and of the Köcher principle, Sρ(M) is a subset
of Mρ(M).

4. Hecke eigensystems (mod p)

We now fix a prime p not dividing N , and set

U := Ag,N ⊗ Fp, X := A ∗
g,N ⊗ Fp, Mρ := Mρ(Fp), Sρ := Sρ(Fp).

There is a Hecke action on Mρ given by the Hecke operators corresponding to the
primes not dividing Np. They are essentially induced by isogenies of degree coprime
to Np (for their exact definition, see §2.2.2 and §3.2.1 of [Ghi04]). We denote by
H the Z-algebra generated by these operators. It is known to be commutative (see
Satz IV.1.13 of [Fre83]).

If V is any Fp-vector space with an action of H , an element v ∈ V which is a
common eigenvector for H defines an algebra homomorphism Φ : H → Fp given by

Tv = Φ(T )v, for all T ∈ H .

This Φ is called the eigensystem associated to v.
With this terminology, a Hecke eigensystem (mod p) is one associated to an element

of Mρ. The action of H restricts to Sρ; this follows from the fact that Sρ is the space
of global sections of the coherent sheaf Sρ on X (see §2.2.2 of [Ghi04]). We say that
Φ is cuspidal if it is associated to an element of Sρ.

We can now state our main result:
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Theorem 6. Fix the characteristic p > 0, the dimension g ≥ 2, and the level N ≥
3, p � N . Then all Hecke eigensystems (mod p) are cuspidal. That is, for any Φ
associated to some f ∈ Mρ there exists some f ′ ∈ Sρ′ such that Φ is associated to f ′.

The idea of the proof is this: we use a result of [Ghi04] saying that any eigensystem
(mod p) is superspecial (see the next section for the definition), and then we show
that any superspecial eigensystem is cuspidal.

5. Superspecial forms

A g-dimensional abelian variety A over Fp is said to be superspecial if

dim
Fp

Hom(αp, A) = g,

where αp is the kernel of multiplication by p on the additive group Ga over Fp.
Equivalently, A is Fp-isomorphic to Eg, where E is any supersingular elliptic curve.

Let Σ ⊂ X denote the set of superspecial points. It has a number of remarkable
properties, including

• It is finite.
• It is closed under isogenies of degree coprime to Np.
• Any superspecial A has a canonical and functorial Fp2-structure (see Propo-

sition 6 in [Ghi04]); in particular it makes sense to talk about the space of
Fp2-rational differentials on A, and it turns out that a principal polarization
on A induces a natural hermitian form on this space. Thus if we are interested
in hermitian bases, the change-of-basis group is

GUg(Fp2) := {M ∈ GLg(Fp2) : tMM = γ(M)I for some γ(M) ∈ F×
p2},

where the “conjugation” · : Fp2 → Fp2 is a 
→ a = ap.

This suggests the following definition. Given a finite-dimensional Fp-representation

τ : GUg(Fp2) −→ W,

we set

SSτ := {f : [A, λ, α, η] −→ W such that

f([A, λ, α,Mη]) = τ(M)−1f([A, λ, α, η]) for all M ∈ GUg(Fp2)},
where [A, λ, α, η] denotes the Fp-isomorphism class of the quadruple, and

• (A, λ) is a superspecial principally polarized abelian variety over Fp;
• α is a symplectic level N structure on (A, λ);
• η is a hermitian basis of invariant Fp2-rational differentials on (A, λ).

We refer to SSτ as the space of superspecial forms of weight τ . The aforementioned
properties of Σ imply that SSτ admits an action of the Hecke algebra H and that it
has the following periodicity property:

SS
τ⊗det⊗p2−1 = SSτ for all τ.

An eigensystem Φ associated to some f ∈ SSτ is said to be superspecial.
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6. Proof of the main result

We now prove Theorem 6.
It is part of the proof of Theorem 28 in [Ghi04] (more precisely, the first paragraph

on page 380 loc. cit.) that any eigensystem (mod p) is superspecial. Therefore it
suffices to show that any superspecial eigensystem is cuspidal.

Let IΣ be the ideal sheaf of j : Σ ↪→ X; it is defined by the short exact sequence
of OX -modules

0 −→ IΣ −→ OX −→ j∗OΣ −→ 0.

Upon tensoring with the coherent sheaf Sρ introduced towards the end of §3, we get

(2) IΣ ⊗ Sρ −→ Sρ −→ Sρ|Σ −→ 0.

We can easily pass from Sρ|Σ to Eρ|Σ; since restriction to U is exact and Δ∩U = ∅,
the short exact sequence defining Sρ

0 −→ Sρ −→ E∗
ρ −→ E∗

ρ|Δ −→ 0

gives an isomorphism Sρ|U ∼= E∗
ρ|U . In particular, Sρ|Σ ∼= E∗

ρ|Σ ∼= Eρ|Σ, the latter
isomorphism coming from Σ ∩ Δ = ∅.

Therefore the surjective map from the sequence (2) gives

Sρ −→ Eρ|Σ −→ 0.

Let Kρ denote its kernel:

(3) 0 −→ Kρ −→ Sρ −→ Eρ|Σ −→ 0.

This yields a long exact sequence

0 −→ H0(X, Kρ) −→ Sρ −→ H0(Σ, Eρ|Σ) −→ H1(X, Kρ).

But it is easily seen that
H0(Σ, Eρ|Σ) = SSRes ρ,

where Res ρ denotes the restriction of ρ to the finite group GUg(Fp2).
Therefore we have a map (which we think of as restriction of cusp forms to the

superspecial locus)
rρ : Sρ → SSRes ρ,

which is Hecke-equivariant and whose cokernel is contained in H1(X, Kρ). Recall that
Fact 4 says that ω∗ is a line bundle; by tensoring the short exact sequence (3) with
ω∗, it is easy to see that

Kρ⊗det = Kρ ⊗ ω∗.

Since ω∗ is an ample line bundle on the projective scheme X over Fp, we know from
a theorem of Serre (Theorem III.5.2 in [Har77]) that for k large enough we have

H1(X, Kρ⊗detk) = H1(X, Kρ ⊗ (ω∗)⊗k) = 0.

Thus for k large enough we know that rρ⊗detk is surjective.
Now suppose we start with a superspecial eigensystem Φ, say associated to some

f ∈ SSτ . By Corollary 27 of [Ghi04], we can extend τ to GLg(Fp), i.e. there exists a
rational representation

ρ : GLg(Fp) −→ GL(V ) such that τ ⊂ Res ρ.
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This means that SSτ ⊂ SSRes ρ. Now by the periodicity property of SSτ we have

SSRes ρ = SS
Res ρ⊗detk(p2−1) for all k.

So we can pick k large enough such that

r
ρ⊗detk(p2−1) : S

ρ⊗detk(p2−1) −→ SS
Res ρ⊗detk(p2−1) = SSRes ρ ⊃ SSτ

is surjective. Therefore by a simple linear algebra argument we conclude that Φ is
associated to some f ′ ∈ S

ρ⊗detk(p2−1) .

7. Comparison with cusp forms à la Chai-Faltings

Siegel cusp forms were already defined in an algebraic-geometric way by Chai and
Faltings (see pp. 144–147 of [FC90]), at least in the scalar case, i.e. for ρ = det⊗k.
Since their definition is based on the toroidal compactifications of Ag,N , it is not
immediately obvious that it agrees with ours, and this last section is devoted to
showing this.

Chai and Faltings define so-called arithmetic toroidal compactifications ¯Ag,N of
Ag,N . These depend on certain combinatorial data, and have various nice properties
summarized in Theorem IV.6.7 of [FC90]. Most importantly, they are moduli spaces
and thus one has a Hodge bundle Ē and its twisted versions Ēρ, which we define in
the same way as we did E and Eρ in §3. In this setting, Chai and Faltings define
Siegel cusp forms with coefficients in a Z[ 1

N ]-module M to be

H0( ¯Ag,N , IΔ̄ ⊗ Ēρ ⊗ M), where IΔ̄ is the ideal sheaf of Δ̄ = ¯Ag,N − Ag,N .

In other words, cusp forms are global sections of Ēρ ⊗ M that vanish along the
boundary Δ̄ of ¯Ag,N . Moreover, this turns out to be independent of the choice of
toroidal compactification.

The key to comparing the two notions of cusp forms is the following fact (part
of Theorem V.2.5 of [FC90]): a toroidal compactification is related to the minimal
compactification by a canonical morphism π̄ : ¯Ag,N → A ∗

g,N restricting to the identity
on the open dense subscheme Ag,N . Two facts about π̄ are important for our purposes:

• The boundary Δ̄ is the scheme-theoretic preimage of Δ ⊂ A ∗
g,N under π̄: this

follows from the detailed description of the interaction between π̄ and the
stratifications of ¯Ag,N and A ∗

g,N (see Theorem V.2.5(6) of [FC90]).
• The pullback π̄∗(E∗

ρ) is Ēρ: this can be seen easily from the fact that both are
reflexive coherent sheaves on ¯Ag,N extending Eρ on Ag,N , together with the
uniqueness argument from the end of Theorem 3.

Using these it is easy to obtain the following result, whose proof we leave to the
reader:

Proposition 7. The canonical morphism π̄ : ¯Ag,N → A ∗
g,N induces via pullback an

isomorphism

π̄∗ : Sρ(M)
∼= �� H0( ¯Ag,N ,IΔ̄ ⊗ Ēρ ⊗ M)

for any Z[ 1
N ]-module M .
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