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A MODULARITY LIFTING THEOREM FOR WEIGHT TWO
HILBERT MODULAR FORMS

Toby Gee

Abstract. We prove a modularity lifting theorem for potentially Barostti-Tate repre-

sentations over totally real fields, generalising recent results of Kisin.

1. Introduction

In [Kis04] Mark Kisin introduced a number of new techniques for proving mod-
ularity lifting theorems, and was able to prove a very general lifting theorem for
potentially Barsotti-Tate representations over Q. In [Kis05] this was generalised to
the case of p-adic representations of the absolute Galois group of a totally real field
in which p splits completely. In this note, we further generalise this result to:

Theorem. Let p > 2, let F be a totally real field in which p is unramified, and let E be
a finite extension of Qp with ring of integers O. Let ρ : GF → GL2(O) be a continuous
representation unramified outside of a finite set of primes, with determinant a finite
order character times the p-adic cyclotomic character. Suppose that

(1) ρ is potentially Barsotti-Tate at each v|p.
(2) ρ is modular.
(3) ρ|F (ζp) is absolutely irreducible.

Then ρ is modular.

We emphasise that the techniques we use are entirely those of Kisin. Our only
new contributions are some minor technical improvements; specifically, we are able
to prove a more general connectedness result than Kisin for certain local deformation
rings, and we replace an appeal to a result of Raynaud by a computation with Breuil
modules with descent data.

The motivation for studying this problem was the work reported on in [Gee06],
where we apply the main theorem of this paper to the conjectures of [BDJ05]. In
these applications it is crucial to have a lifting theorem valid for F in which p is
unramified, rather than just totally split.

2. Connected components

Firstly, we recall some definitions and theorems from [Kis04]. We make no attempt
to put these results in context, and the interested reader should consult section 1 of
[Kis04] for a more balanced perspective on this material.
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Let p > 2 be prime. Let k be a finite extension of Fp of cardinality q = pr, and let
W = W (k), K0 = W (k)[1/p]. Let K be a totally ramified extension of K0 of degree
e. We let S = W [[u]], equipped with a Frobenius map φ given by u �→ up, and the
natural Frobenius on W . Fix an algebraic closure K of K, and fix a uniformiser π of
K. Let E(u) denote the minimal polynomial of π over K0.

Let ′(Mod /S) denote the category of S-modules M equipped with a φ-semilinear
map φ : M → M such that the cokernel of φ∗(M) → M is killed by E(u). For any
Zp-algebra A, set SA = S⊗Zp A. Denote by ′(Mod /S)A the category of pairs (M, ι)
where M is in ′(Mod /S) and ι : A → End(M) is a map of Zp-algebras.

We let (ModFI /S)A denote the full subcategory of ′(Mod /S)A consisting of ob-
jects M such that M is a projective SA-module of finite rank.

Choose elements πn ∈ K (n ≥ 0) so that π0 = π and πp
n+1 = πn. Let K∞ =⋃

n≥1 K(πn). Let OE be the p-adic completion of S[1/u]. Let Rep
Zp

(GK∞) denote
the category of continuous representations of GK∞ on finite Zp-algebras. Let Φ MOE
denote the category of finite O-modules M equipped with a φ-semilinear map M → M
such that the induced map φ∗M → M is an isomorphism. Then there is a functor

T : ΦMOE → RepZp
(GK∞)

which is in fact an equivalence of abelian categories (see section 1.1.12 of [Kis04]).
Let A be a finite Zp-algebra, and let Rep′

A(GK∞) denote the category of continuous
representations of GK∞ on finite A-modules, and let RepA(GK∞) denote the full
subcategory of objects which are free as A-modules. Let Φ MOE ,A denote the category
whose objects are objects of Φ MOE equipped with an action of A.

Lemma 2.1. The functor T above induces an equivalence of abelian categories

TA : ΦMOE ,A → Rep′
A(GK∞).

The functor TA induces a functor

TS,A : (ModFI /S)A → RepA(GK∞); M �→ TA(OE ⊗S M).

Proof. Lemmas 1.2.7 and 1.2.9 of [Kis04]. �
Fix F a finite extension of Fp, and a continuous representation of GK on a 2-

dimensional F-vector space VF. We suppose that VF is the generic fibre of a finite flat
group scheme, and let MF denote the preimage of VF(−1) under the equivalence TF

of Lemma 2.1.
In fact, from now on we assume that the action of GK on VF is trivial, that k ⊂ F,

and that k �= Fp. In applications we will reduce to this case by base change.
Recall from Corollary 2.1.13 of [Kis04] that we have a projective scheme GRVF,0,

such that for any finite extension F′ of F, the set of isomorphism classes of finite flat
models of VF′ = VF ⊗F F′ is in natural bijection with GRVF,0(F′). We work below
with the closed subscheme GRv

VF,0 of GRVF,0, defined in Lemma 2.4.3 of [Kis04],
which parameterises isomorphism classes of finite flat models of VF′ with cyclotomic
determinant.

As in section 2.4.4 of [Kis04], if Fsep is the residue field of Ksep
0 , and σ∈Gal(K0/Qp),

we denote by εσ ∈ k ⊗Fp
F′ the idempotent which is 1 on the kernel of the map

1 ⊗ σ : k ⊗Fp
F′ → Fsep corresponding to σ, and 0 on the other maximal ideals of

k ⊗Fp
F′.
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Lemma 2.2. If F′ is a finite extension of F, then the elements of GRv
VF,0(F

′) naturally
correspond to free k ⊗Fp F′[[u]]-submodules MF′ ⊂ MF′ := MF ⊗F F′ of rank 2 such
that:

(1) MF′ is φ-stable.
(2) For some (so any) choice of k ⊗Fp

F′[[u]]-basis for MF′ , for each σ the map

φ : εσMF′ → εσ◦φ−1MF′

has determinant αue, α ∈ F′[[u]]×.

Proof. This follows just as in the proofs of Lemma 2.5.1 and Proposition 2.2.5 of
[Kis04]. More precisely, the method of the proof of Proposition 2.2.5 of [Kis04] allows
one to “decompose” the determinant condition into the condition that for each σ we
have

dimF′(εσ◦φ−1MF′/φ(εσMF′)) = e,

and then an identical argument to that in the proof of Lemma 2.5.1 [Kis04] shows
that this condition is equivalent to the stated one. �

We now number the elements of Gal(K0/Qp) as σ1, . . . , σr, in such a way that
σi+1 = σi◦φ−1 (where we identify σr+1 with σ1). For any sublattice MF in (Mod/S)F

and any (A1, . . . , Ar) ∈ M2(F((u)))r, we write MF ∼ A if there exist bases {ei
1, e

i
2}

for εσiMF such that

φ

(
ei
1

ei
2

)
= Ai

(
ei+1
1

ei+1
2

)
.

If we have fixed such a choice of basis, then for any (B1, . . . , Br) ∈ GL2(kr((u)))r

we denote by BM the module generated by
〈

Bi

(
ei
1

ei
2

)〉
, and consider BM with

respect to the basis given by these entries.

Proposition 2.3. Let F′/F be a finite extension. Suppose that x1, x2 ∈ GRv
VF,0(F

′)
and that the corresponding objects of (Mod /§)F′ , MF′,1 and MF′,2 are both non-
ordinary. Then (the images of) x1 and x2 both lie on the same connected component
of GRv

VF,0(F
′).

Proof. Replacing VF by F′⊗FvF, we may assume that F′ = F. Suppose that MF,1 ∼ A.
Then MF,2 = B · MF,1 for some B ∈ GL2(kr((u)))r, and MF,2 ∼ (φ(Bi) · Ai · B−1

i+1).
Each Bi is uniquely determined up to left multiplication by elements of GL2(F[[u]]),
so by the Iwasawa decomposition we may assume that each Bi is upper triangular. By
Lemma 2.2, detφ(Bi) det B−1

i+1 ∈ F[[u]]× for all i, which implies that det(Bi) ∈ F[[u]]×

for all i, so that the diagonal elements of Bi are μi
1u

−ai , μi
2u

ai for μi
1, μi

2 ∈ F[[u]]×,
ai ∈ Z. Replacing Bi with diag(μi

1, μ
i
2)

−1Bi, we may assume that Bi has diagonal
entries u−ai and uai .

We now show that x1 and x2 are connected by a chain of rational curves, using
the following lemma:

Lemma 2.4. Suppose that (Ni) are nilpotent elements of M2(F((u))) such that
MF,2 = (1 + N) · MF,1. If φ(Ni)ANad

i+1 ∈ M2(F [[u]]) for all i, then there is a map
P1 → GRv

VF,0 sending 0 to x1 and 1 to x2.

Proof. Exactly as in the proof of Lemma 2.5.7 of [Kis04]. �
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In fact, we will only apply this lemma in situations where all but one of the Ni are
zero, so that the condition of the lemma is automatically satisfied.

Lemma 2.5. With respect to some basis, φ : MF → MF is given by
(

1 0
0 1

)
.

Proof. This is immediate from the definition of MF (recall that we have assumed that
the action of GK on VF is trivial). �

Let v1, v2 be a basis as in the lemma, and let MF be the sub-k ⊗Fp
F[[u]]-module

generated by ue/(p−1)v1 and v2 (note that the assumption that the action of GK on VF

is trivial guarantees that e|(p−1)). Then MF corresponds to an object of GRv
VF,0(F

′),
and MF ∼ (Ai) where each Ai =

(
ue 0
0 1

)
, so that MF is ordinary.

Furthermore, every object of GRv
VF,0(F

′) is given by B · MF for some B = (Bi),
where Bi =

(
u−ai vi

0 uai

)
, and φ(Bi)AiB

−1
i+1 ∈ M2(F[[u]]) for all i. Examining the

diagonal entries of φ(Bi)AiB
−1
i+1, we see that we must have e ≥ pai − ai+1 ≥ 0 for all

i.

Lemma 2.6. We have e/(p − 1) ≥ ai ≥ 0 for all i. Furthermore, if any ai = 0 then
all ai = 0; and if any ai = e/(p − 1), then all ai = e/(p − 1).

Proof. Suppose that aj ≤ 0. Then paj ≥ aj+1, so aj+1 ≤ 0. Thus ai ≤ 0 for all i. But
adding the inequalities gives (p − 1)(a1 + · · · + ar) ≥ 0, so in fact a1 = · · · = ar = 0.
The other half of the lemma follows in a similar fashion. �

Note that the ordinary objects are precisely those with all ai = 0 or all ai =
e/(p − 1). We now show that there is a chain of rational curves linking any non-
ordinary point to the point corresponding to C · MF, where Ci =

(
u−1 0
0 u

)
.

Choose a non-ordinary point D · MF, Di =
(

u−bi wi

0 ubi

)
. We claim that there is a

chain of rational curves linking this to the point D′ ·MF, D′
i =

(
u−bi 0

0 ubi

)
. Clearly, it

suffices to demonstrate that there is a rational curve from D ·MF to the point Dj ·MF,
where

Dj
i =

{
Di, i �= j(

u−bj 0
0 ubj

)
, i = j.

But this is easy; just apply Lemma 2.4 with N = (Ni),

Ni =

{
0, i �= j(

0 −wju−bj

0 0

)
, i = j.

It now suffices to show that there is a chain of rational curves linking D′ · MF to
C · MF. Suppose that D′′ · MF also corresponds to a point of GRv

VF,0(F), where for
some j we have

D′′
i =

{
D′

i, i �= j(
u1−bj 0

0 ubj−1

)
, i = j.

Then we claim that there is a rational curve linking D′ ·MF and D′′ ·MF. Note that
D′′ = ED′, where

Ei =
{

1, i �= j(
u−1 0
0 u

)
, i = j.
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Since
(

u−1 0
0 u

)
=

(
0 1−1 2u

) (
2 −u

u−1 0

)
, and

(
0 1−1 2u

) ∈ GL2(F[[u]]), we can apply Lemma
2.4 with

Ni =

{
0, i �= j(

1 −u
u−1 −1

)
, i = j.

Proposition 2.3 now follows from:

Lemma 2.7. If e/(p − 1) > ai > 0 and e ≥ pai − ai+1 ≥ 0 for all i, and not all the
ai are equal to 1, then for some j we can define

a′
i =

{
ai, i �= j
aj − 1, i = j

and we have e ≥ pa′
i − a′

i+1 ≥ 0 for all i.

Proof. Suppose not. Then for each i, either pai−1−(ai−1) > e, or p(ai−1)−ai+1 < 0;
that is, either pai−1 − ai = e, or p − 1 ≥ pai − ai+1 ≥ 0. Comparing the statements
for i, i + 1, we see that either pai − ai+1 = e for all i, or p− 1 ≥ pai − ai+1 ≥ 0 for all
i. In the former case we have ai = e/(p − 1) for all i, a contradiction. In the latter
case, summing the inequalities gives r(p− 1) ≥ (p− 1)(a1 + · · ·+ ar) ≥ (r +1)(p− 1),
a contradiction. �

�

3. Modularity lifting theorems

The results of section 2 can easily be combined with the machinery of [Kis04] to
yield modularity lifting theorems. For example, we have the following:

Theorem 3.1. Let p > 2, let F be a totally real field, and let E be a finite extension
of Qp with ring of integers O. Let ρ : GF → GL2(O) be a continuous representation
unramified outside of a finite set of primes, with determinant a finite order character
times the p-adic cyclotomic character. Suppose that

(1) ρ is potentially Barsotti-Tate at each v|p.
(2) There exists a Hilbert modular form f of parallel weight 2 over F such that

ρf ∼ ρ, and for each v|p, ρ is potentially ordinary at v if and only if ρf is.
(3) ρ|F (ζp) is absolutely irreducible, and if p > 3 then [F (ζp) : F ] > 3.

Then ρ is modular.

Proof. The proof of this theorem is almost identical to the proof of Theorem 3.5.5 of
[Kis04]. Indeed, the only changes needed are to replace property (iii) of the field F ′

chosen there by “(iii) If v|p then ρ|GFv
is trivial, and the residue field at v is not Fp”,

and to note that Theorem 3.4.11 of [Kis04] is still valid in the context in which we
need it, by Proposition 2.3. �

For the applications to mod p Hilbert modular forms in [Gee06] it is important not
to have to assume that ρ is potentially ordinary at v if and only if ρf is. Fortunately,
in [Gee06] it is only necessary to work with totally real fields in which p is unramified,
and in that case we are able, following [Kis05], to remove this assumption.
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Theorem 3.2. Let p > 2, let F be a totally real field in which p is unramified, and let
E be a finite extension of Qp with ring of integers O. Let ρ : GF → GL2(O) be a con-
tinuous representation unramified outside of a finite set of primes, with determinant
a finite order character times the p-adic cyclotomic character. Suppose that

(1) ρ is potentially Barsotti-Tate at each v|p.
(2) ρ is modular.
(3) ρ|F (ζp) is absolutely irreducible.

Then ρ is modular.

Proof. Firstly, note that by a standard result (see e.g. [BDJ05]) we have ρ ∼ ρf ,
where f is a form of parallel weight 2. We now follow the proof of Corollary 2.13
of [Kis05]. Let S ′ denote the set of v|p such that ρ|Gv

is potentially ordinary. After
applying Lemma 3.3 below, we may assume that ρ ∼ ρf , where f is a form of parallel
weight 2, and ρf is potentially ordinary and potentially Barsotti-Tate for all v ∈ S ′.

We may now make a solvable base change so that the hypotheses on F in Theorem
3.1 are still satisfied, and in addition [F : Q] is even, and at every place v|p f is
either unramified or special of conductor 1. By our choice of f , ρf |Gv

is Barsotti-Tate
and ordinary at each place v ∈ S ′. In order to apply Theorem 3.1, we need to check
that we can replace f by a form f ′ such that ρ ∼ ρf ′ , and ρf ′ is Barsotti-Tate at all
v|p and is ordinary if and only if ρ is. That is, we wish to choose f ′ so that ρf ′ is
Barsotti-Tate and ordinary at all places v ∈ S ′, and is Barsotti-Tate and non-ordinary
at all other places dividing p. The existence of such an f ′ follows at once from the
proof of Theorem 3.5.7 of [Kis04]. The theorem then follows from Theorem 3.1. �

Lemma 3.3. Let F be a totally real field in which p is unramified, and S ′ a set of
places of F dividing p. Let f be a Hilbert modular cusp form over F of parallel weight
2, with ρf absolutely irreducible, and suppose that for v ∈ S ′ ρf |GFv

is the reduction
of a potentially Barsotti-Tate representation of GFv

which is also potentially ordinary.
Then there is a Hilbert modular cusp form f ′ over F of parallel weight 2 with

ρf ′ ∼ ρf , and such that for all v ∈ S ′, ρf ′ becomes ordinary and Barsotti-Tate over
some finite extension of Fv.

Proof. We follow the proof of Lemma 2.14 of [Kis05], indicating only the modifications
that need to be made. Replacing the appeal to [CDT99] with one to Proposition 1.1
of [Dia05], the proof of Lemma 2.14 of [Kis05] shows that we can find f ′ such that
ρf ′ ∼ ρf , and such that for all v ∈ S ′, ρf ′ becomes Barsotti-Tate over Fv(ζqv

), where
qv is the degree of the residue field of F at v. Furthermore, we can assume that the type
of ρf ′ |GFv

is ω̃1 ⊕ ω̃2, where ρf ′ |GFv
∼ ( ω1χ ∗

0 ω2

)
, where χ is the cyclotomic character,

and a tilde denotes the Teichmuller lift. Let G denote the p-divisible group over
OFv(ζqv ) corresponding to ρf ′ |Fv(ζqv ) Then by a scheme-theoretic closure argument,
G[p] fits into a short exact sequence

0 → G1 → G[p] → G2 → 0.

The information about the type then determines the descent data on the Breuil mod-
ules corresponding to G1 and G2. We will be done if we can show that G1 is mul-
tiplicative and G2 is étale. However, by the hypothesis on S ′ we can write down a
multiplicative group scheme G′

1 with the same descent data and generic fibre as G1.
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Then Lemma 3.4 below shows that G1 is indeed multiplicative. The same argument
shows that G2 is étale. �
Lemma 3.4. Let k be a finite field of characteristic p, and let L = W (k)[1/p]. Fix
π = (−p)1/(pd−1) where d = [k : Fp], and let K = L(π). Let E be a finite field
containing k. Let G and G′ be finite flat rank one E-module schemes over OK with
generic fibre descent data to L. Suppose that the generic fibres of G and G′ are
isomorphic as GL-representations, and that G and G′ have the same descent data.
Then G and G′ are isomorphic.

Proof. This follows from a direct computation using Breuil modules with descent
data. Specifically, it follows at once from Example A.3.3 of [Sav06], which computes
the generic fibre of any finite flat rank one E-module scheme over OK with generic
fibre descent data to L. �
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