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A MODULARITY LIFTING THEOREM FOR WEIGHT TWO
HILBERT MODULAR FORMS

ToBY GEE

ABSTRACT. We prove a modularity lifting theorem for potentially Barostti-Tate repre-
sentations over totally real fields, generalising recent results of Kisin.

1. Introduction

In [Kis04] Mark Kisin introduced a number of new techniques for proving mod-
ularity lifting theorems, and was able to prove a very general lifting theorem for
potentially Barsotti-Tate representations over Q. In [Kis05] this was generalised to
the case of p-adic representations of the absolute Galois group of a totally real field
in which p splits completely. In this note, we further generalise this result to:

Theorem. Letp > 2, let I be a totally real field in which p is unramified, and let E be
a finite extension of Q, with ring of integers O. Let p : Gp — GLa(O) be a continuous
representation unramified outside of a finite set of primes, with determinant a finite
order character times the p-adic cyclotomic character. Suppose that

(1) p is potentially Barsotti-Tate at each v|p.
(2) p is modular.
(3) Plr(c,) is absolutely irreducible.

Then p is modular.

We emphasise that the techniques we use are entirely those of Kisin. Our only
new contributions are some minor technical improvements; specifically, we are able
to prove a more general connectedness result than Kisin for certain local deformation
rings, and we replace an appeal to a result of Raynaud by a computation with Breuil
modules with descent data.

The motivation for studying this problem was the work reported on in [Gee06],
where we apply the main theorem of this paper to the conjectures of [BDJ05]. In
these applications it is crucial to have a lifting theorem valid for F' in which p is
unramified, rather than just totally split.

2. Connected components

Firstly, we recall some definitions and theorems from [Kis04]. We make no attempt
to put these results in context, and the interested reader should consult section 1 of
[Kis04] for a more balanced perspective on this material.
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Let p > 2 be prime. Let k be a finite extension of F, of cardinality ¢ = p”, and let
W =W(k), Ko = W(k)[1/p]. Let K be a totally ramified extension of K, of degree
e. We let & = W{[u]], equipped with a Frobenius map ¢ given by u — uP, and the
natural Frobenius on W. Fix an algebraic closure K of K, and fix a uniformiser 7 of
K. Let E(u) denote the minimal polynomial of 7 over Kj.

Let '(Mod /&) denote the category of G-modules 2 equipped with a ¢-semilinear
map ¢ : M — M such that the cokernel of ¢* (M) — M is killed by E(u). For any
Zy-algebra A, set 64 = & ®z, A. Denote by '(Mod /&) 4 the category of pairs (9, )
where 9 is in /(Mod /&) and ¢ : A — End(9M) is a map of Z,-algebras.

We let (ModFI /&), denote the full subcategory of '(Mod /&) 4 consisting of ob-
jects M such that M is a projective & 4-module of finite rank.

Choose elements m, € K (n > 0) so that 7o = 7 and 7/ ; = m,. Let Ko =
U,>1 K(mn). Let Og be the p-adic completion of &[1/u]. Let Repy, (Gk.. ) denote
the category of continuous representations of G on finite Z,-algebras. Let ® Mo,
denote the category of finite O-modules M equipped with a ¢-semilinear map M — M
such that the induced map ¢*M — M is an isomorphism. Then there is a functor

T:®Mo, — Repy (Gk..)

which is in fact an equivalence of abelian categories (see section 1.1.12 of [Kis04]).
Let A be a finite Z,-algebra, and let Rep/s(Gk_ ) denote the category of continuous
representations of Gx__ on finite A-modules, and let Rep,(Gk. ) denote the full
subcategory of objects which are free as A-modules. Let ® Mo, 4 denote the category
whose objects are objects of ® Mo, equipped with an action of A.

Lemma 2.1. The functor T above induces an equivalence of abelian categories
Ta:®Mo, a4 — Rep/s(Gk..).
The functor Ty induces a functor
Ts.a: (ModFI/8)4 — Repy(Gr..); M — Ta(Os @5 M).

Proof. Lemmas 1.2.7 and 1.2.9 of [Kis04]. O

Fix F a finite extension of IF,, and a continuous representation of G on a 2-
dimensional F-vector space Vg. We suppose that Vf is the generic fibre of a finite flat
group scheme, and let My denote the preimage of Vi(—1) under the equivalence Tr
of Lemma 2.1.

In fact, from now on we assume that the action of G on Vg is trivial, that k C I,
and that k # F,,. In applications we will reduce to this case by base change.

Recall from Corollary 2.1.13 of [Kis04] that we have a projective scheme GRy; o,
such that for any finite extension F’ of F, the set of isomorphism classes of finite flat
models of Vim = Vp ®p F' is in natural bijection with GRy, o(F'). We work below
with the closed subscheme GRY,  of GRy; 0, defined in Lemma 2.4.3 of [Kis04],
which parameterises isomorphism classes of finite flat models of V with cyclotomic
determinant.

As in section 2.4.4 of [Kis04], if F5°P is the residue field of K", and c€Gal(K(/Q,),
we denote by ¢, € k ®p, F' the idempotent which is 1 on the kernel of the map
1®o : k®p, F' — F*P corresponding to o, and 0 on the other maximal ideals of
k ®]Fp F.
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Lemma 2.2. IfF is a finite extension of F, then the elements of GRY, o(F') naturally
correspond to free k @, F'[[u]]-submodules My C My := My ®p F' of rank 2 such
that:

(1) My is ¢-stable.

(2) For some (so any) choice of k @, F'[[u]]-basis for Mg, for each o the map

¢ eeMpr — €50p-1 My
has determinant au®, a € F'[[u]]*.

Proof. This follows just as in the proofs of Lemma 2.5.1 and Proposition 2.2.5 of
[Kis04]. More precisely, the method of the proof of Proposition 2.2.5 of [Kis04] allows
one to “decompose” the determinant condition into the condition that for each o we
have

dimp (€gop—1 My /d(ea Mr)) = e,
and then an identical argument to that in the proof of Lemma 2.5.1 [Kis04] shows
that this condition is equivalent to the stated one. (I

We now number the elements of Gal(Ky/Q,) as o1,...,0,, in such a way that
oit1 = 0;0¢~ ! (where we identify 0,1 with o1). For any sublattice My in (Mod/&S)p
and any (Aj,...,A,) € Ma(F((u)))", we write My ~ A if there exist bases {e!,e}}

for €,, Mp such that
i i+1
el \_ 4 (€
o(d)-2(3)

If we have fixed such a choice of basis, then for any (B, ..., B;) € GLa(k((u)))"

7

we denote by BT the module generated by <Bi < 2% )>7 and consider B with
2

respect to the basis given by these entries.

Proposition 2.3. Let I'/F be a finite extension. Suppose that x1,x2 € GRY, o(F')
and that the corresponding objects of (Mod /§)r, Mp 1 and Mp o are both non-
ordinary. Then (the images of) 1 and x4 both lie on the same connected component

of GRY, o(F).

Proof. Replacing Vg by F' @pup, we may assume that F' = F. Suppose that Mg 1 ~ A.
Then My o = B - My,1 for some B € GLa(k,((u)))", and Mr o ~ (¢(B;) - A; - B;ll).
Each B; is uniquely determined up to left multiplication by elements of GLa(F[[u]]),
so by the Iwasawa decomposition we may assume that each B; is upper triangular. By
Lemma 2.2, det ¢(B;) det B}, € F[[u]]* for all i, which implies that det(B;) € F[[u]]*
for all i, so that the diagonal elements of B; are pfu~%, pbu® for pi, ub € Flu]]*,
a; € Z. Replacing B; with diag(u, ub) =1 B;, we may assume that B; has diagonal
entries v~ % and u®.

We now show that x; and x4 are connected by a chain of rational curves, using
the following lemma:

Lemma 2.4. Suppose that (N;) are nilpotent elements of Ma(F((u))) such that
Mro = (1+N) Mp1. If ¢(N;)ANXY, € Ma(F([u]]) for all i, then there is a map
P! — GRY, , sending 0 to 1 and 1 to x,.

Proof. Exactly as in the proof of Lemma 2.5.7 of [Kis04]. O
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In fact, we will only apply this lemma in situations where all but one of the N; are
zero, so that the condition of the lemma is automatically satisfied.

Lemma 2.5. With respect to some basis, ¢ : Mg — Mg is given by (3 9).

Proof. This is immediate from the definition of M (recall that we have assumed that
the action of Gk on Vf is trivial). O

Let vy, v2 be a basis as in the lemma, and let Mp be the sub-k @, F[[u]]-module
generated by /P~y and vy (note that the assumption that the action of Gk on Vi
is trivial guarantees that e|(p—1)). Then My corresponds to an object of GRY, o(F'),
and My ~ (A4;) where each A; = (“f; (1)), so that My is ordinary.

Furthermore, every object of GRY; ((F') is given by B - My for some B = (B;),
where B; = (“;ai i ), and ¢(B;)A; B, € M>(F[[u]]) for all i. Examining the
diagonal entries of (b(Bi)AiBi;ll, we see that we must have e > pa; — a;+1 > 0 for all
i.

Lemma 2.6. We have e/(p—1) > a; > 0 for all i. Furthermore, if any a; = 0 then
all a; = 0; and if any a; =e/(p — 1), then all a; = e/(p —1).

Proof. Suppose that a; < 0. Then pa; > a;11,50 aj41 < 0. Thus a; <0 for all 7. But
adding the inequalities gives (p — 1)(a1 +---+a,) >0, s0 in fact a1 = --- = a, = 0.
The other half of the lemma follows in a similar fashion. O

Note that the ordinary objects are precisely those with all a; = 0 or all a; =
e/(p —1). We now show that there is a chain of rational curves linking any non-

ordinary point to the point corresponding to C - My, where C; = (“81 3)

Choose a non-ordinary point D - My, D; = (“;bi ;‘{j ). We claim that there is a
chain of rational curves linking this to the point D’ -9y, D} = ("Bbi u‘gi ) Clearly, it

suffices to demonstrate that there is a rational curve from D -9y to the point D7 -9,

where o
Dia Z#]

—b; . .

(u01u2j>, i=7j.

But this is easy; just apply Lemma 2.4 with N = (N;),

0, i F ]
NZ{ Ofwju_bj 4
(9-e™), =i

It now suffices to show that there is a chain of rational curves linking D’ - My to
C - Mg. Suppose that D" - My also corresponds to a point of GRY, o(F), where for

some j we have
{ Dj, i#]

1-b; 0 .
(u 0 ubj—l ) 7’_]'

Then we claim that there is a rational curve linking D’ - Mg and D" - M. Note that

D" = ED’, where
1, i
Ei:{ (5" 9), i=1.
0 u/”’

DI =

?
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Since (v," 0) = (% 4) (uzl '), and (% 4),) € GLy(F[[u]]), we can apply Lemma
2.4 with

0, i F]
N; = ( 1 —u) .
wl-1) =D
Proposition 2.3 now follows from:

Lemma 2.7. Ife/(p—1) > a; >0 and e > pa; — a;41 > 0 for all i, and not all the
a; are equal to 1, then for some j we can define

a;{aia Z#J

aj—1, i=j

and we have e > pa; — aj ; >0 for all i.

Proof. Suppose not. Then for each i, either pa;—1—(a;—1) > e, or p(a;—1)—a;4+1 < 0;
that is, either pa;_1 —a; = e, or p—1 > pa; — a;41 > 0. Comparing the statements
for ¢, i + 1, we see that either pa; —a;41 = e for all 4, or p—1 > pa; — a;41 > 0 for all
i. In the former case we have a; = e¢/(p — 1) for all i, a contradiction. In the latter
case, summing the inequalities gives r(p—1) > (p—1)(a1 +---+a,) > (r+1)(p—1),
a contradiction. (|

O

3. Modularity lifting theorems

The results of section 2 can easily be combined with the machinery of [Kis04] to
yield modularity lifting theorems. For example, we have the following:

Theorem 3.1. Let p > 2, let F be a totally real field, and let E be a finite extension
of Q, with ring of integers O. Let p: Gp — GL2(O) be a continuous representation
unramified outside of a finite set of primes, with determinant a finite order character
times the p-adic cyclotomic character. Suppose that

(1) p is potentially Barsotti-Tate at each v|p.

(2) There exists a Hilbert modular form f of parallel weight 2 over F such that
Py~ P, and for each vlp, p is potentially ordinary at v if and only if py is.

(3) Plr(c,) is absolutely irreducible, and if p > 3 then [F((p) : F] > 3.

Then p is modular.

Proof. The proof of this theorem is almost identical to the proof of Theorem 3.5.5 of
[Kis04]. Indeed, the only changes needed are to replace property (iii) of the field F’
chosen there by “(%ii) If v|p then p|Gp, is trivial, and the residue field at v is not F,,”,
and to note that Theorem 3.4.11 of [Kis04] is still valid in the context in which we
need it, by Proposition 2.3. (I

For the applications to mod p Hilbert modular forms in [Gee06] it is important not
to have to assume that p is potentially ordinary at v if and only if p; is. Fortunately,
in [Gee06] it is only necessary to work with totally real fields in which p is unramified,
and in that case we are able, following [Kis05], to remove this assumption.
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Theorem 3.2. Let p > 2, let F' be a totally real field in which p is unramified, and let
E be a finite extension of Q, with ring of integers O. Let p : Gp — GL2(O) be a con-
tinuous representation unramified outside of a finite set of primes, with determinant
a finite order character times the p-adic cyclotomic character. Suppose that

(1) p is potentially Barsotti-Tate at each v|p.
(2) p is modular.
(3) Plr(c,) is absolutely irreducible.

Then p is modular.

Proof. Firstly, note that by a standard result (see e.g. [BDJO05]) we have p ~ py,
where f is a form of parallel weight 2. We now follow the proof of Corollary 2.13
of [Kis05]. Let &’ denote the set of v|p such that p|g, is potentially ordinary. After
applying Lemma 3.3 below, we may assume that p ~ p¢, where f is a form of parallel
weight 2, and py is potentially ordinary and potentially Barsotti-Tate for all v € S’.

We may now make a solvable base change so that the hypotheses on F' in Theorem
3.1 are still satisfied, and in addition [F' : Q] is even, and at every place v|p f is
either unramified or special of conductor 1. By our choice of f, ps|q, is Barsotti-Tate
and ordinary at each place v € §’. In order to apply Theorem 3.1, we need to check
that we can replace f by a form f’ such that p ~ Py, and py is Barsotti-Tate at all
v|p and is ordinary if and only if p is. That is, we wish to choose f’ so that ps is
Barsotti-Tate and ordinary at all places v € §’, and is Barsotti-Tate and non-ordinary
at all other places dividing p. The existence of such an f’ follows at once from the
proof of Theorem 3.5.7 of [Kis04]. The theorem then follows from Theorem 3.1. O

Lemma 3.3. Let F be a totally real field in which p is unramified, and S’ a set of
places of F' dividing p. Let f be a Hilbert modular cusp form over F' of parallel weight
2, with py absolutely irreducible, and suppose that for v € S’ ﬁf|Gp1, is the reduction
of a potentially Barsotti-Tate representation of G, which is also potentially ordinary.

Then there is a Hilbert modular cusp form f' over F of parallel weight 2 with
Py~ Py, and such that for allv € §', psr becomes ordinary and Barsotti-Tate over
some finite extension of F.

Proof. We follow the proof of Lemma 2.14 of [Kis05], indicating only the modifications
that need to be made. Replacing the appeal to [CDT99] with one to Proposition 1.1
of [Dia05], the proof of Lemma 2.14 of [Kis05] shows that we can find f’ such that
Py~ Py, and such that for all v € S’, py becomes Barsotti-Tate over F,((y,), where
@y 1s the degree of the residue field of F' at v. Furthermore, we can assume that the type
of pyrlap, is @1 @ Dy, where pylay, ~ (“6% o, ), where x is the cyclotomic character,
and a tilde denotes the Teichmuller lift. Let G denote the p-divisible group over
OF,(c,,) corresponding to Py F,(¢,,) Then by a scheme-theoretic closure argument,

Glp] fits into a short exact sequence
0—G1 —G[p]| — G2 — 0.

The information about the type then determines the descent data on the Breuil mod-
ules corresponding to G; and G3. We will be done if we can show that G; is mul-
tiplicative and Go is étale. However, by the hypothesis on &’ we can write down a
multiplicative group scheme G] with the same descent data and generic fibre as G;.
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Then Lemma 3.4 below shows that G; is indeed multiplicative. The same argument
shows that Gs is étale. O

Lemma 3.4. Let k be a finite field of characteristic p, and let L = W (k)[1/p]. Fiz
T = (—p)l/(pd_l) where d = [k : Fp], and let K = L(w). Let E be a finite field
containing k. Let G and G' be finite flat rank one E-module schemes over Ok with
generic fibre descent data to L. Suppose that the generic fibres of G and G' are
isomorphic as Gr-representations, and that G and G' have the same descent data.
Then G and G' are isomorphic.

Proof. This follows from a direct computation using Breuil modules with descent
data. Specifically, it follows at once from Example A.3.3 of [Sav06], which computes
the generic fibre of any finite flat rank one F-module scheme over Ok with generic
fibre descent data to L. (Il
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