
Math. Res. Lett. 13 (2006), no. 5, 787–803 c© International Press 2006

Lp-IMPROVING PROPERTIES OF X-RAY LIKE TRANSFORMS

Philip T. Gressman

1. Introduction

The purpose of this paper is to prove essentially sharp Lp-Lq estimates for non-
degenerate one-dimensional averaging operators which generalize the classical X-ray
transform. Let X and Y be C∞ manifolds with dim X =: dX and dim Y =: dY ;
we assume that X and Y are equipped with measures of smooth density and that
dY > dX . Now let M be a smooth (dY + 1)-dimensional submanifold of X × Y
(again equipped with a measure) such that the natural projections πX : M → X
and πY : M → Y have everywhere surjective differential maps. For y ∈ Y , the set
γy := {x ∈ X | (x, y) ∈ M } is a curve in X. As will be shown in the next section,
there is an induced Radon-like operator R which averages functions of X over the
curves γy. The focus of this paper is to study the Lp-boundedness of that operator.
For simplicity, the question is posed as a bilinear one: for which p, q′ does there exist
a finite constant Cp,q′ such∣∣∣∣∫ fX(πX(m))fY (πY (m))dm

∣∣∣∣ ≤ Cp,q′

(∫
|fX(x)|pdx

) 1
p

(∫
|fY (y)|q′

dy

) 1
q′

where fX and fY are functions (without loss of generality, positive functions) of X
and Y , respectively?

The canonical example of a problem of this type is the usual X-ray transform in
R

n: let X := R
n, and let Y := M1,n be the space of all affine lines in R

n. The space
Y is equipped with a natural measure dλ, and each line � ∈ M1,n is, of course, also
equipped with a measure d�. The X-ray transform is given simply by Tf(�) :=

∫
�
f .

It has long been known (see, for example, Drury [6] up to an ε-loss or Christ [4] for
the endpoint case) that∣∣∣∣∫∫

f(p)g(�)d�(p)dλ(�)
∣∣∣∣ ≤ C||f ||

L
n+1

2 (Rn)
||g||

L
n+1

n (M1,n)
,

which corresponds to L
n+1

2 → Ln+1 boundedness of the X-ray transform T . One
of the aims of this paper is to show that this particular estimate holds (at least in
a restricted weak-type sense) and is optimal for any nondegenerate overdetermined
Radon-like transform. This is not, however, the entire story: it will also be shown that
new estimates hold true for nondegenerate operators which are “more overdetermined”
than the X-ray transform.

More recently, overdetermined 1D Radon-like operators have been studied in the
plane by Ricci and Travaglini [7] and in general dimension by Brandolini, Greenleaf,
and Travaglini [1]. Both of these works concern themselves with the most basic type of
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nondegeneracy and rely heavily on oscillatory integrals of some form or another (using
the L2-decay of curve-carried measures and Fourier integral operators, respectively).
This paper, in contrast, uses the methods of geometric combinatorics pioneered by
Christ [5] to obtain optimal estimates (up to restricted weak-type) for higher versions
of nondegeneracy.

Following the spirit of the earlier works of Seeger [9], Christ, Nagel, Stein, and
Wainger [3], and Tao and Wright [11], a largely coordinate-independent approach will
be taken throughout this paper. To that end, a series of definitions are in order.
Let X1 and Y1 be those vector fields on M which are annihilated by dπX and dπY ,
respectively. Next, choose a nonvanishing representative Y1 ∈ Y1 (which exists by a
simple dimension-counting argument) and define the map T (V ) := [V, Y1] (here [·, ·] is
the Lie bracket). Now let Xj be the collection of all vector fields V ∈ Xj−1 for which
T (V ) ∈ Xj−1 + Y1. The Jacobi identity guarantees, by induction, that Xj is closed
under the Lie bracket. Finally, when V ∈ X1, let ord(V ) := sup {j > 0 | V ∈ Xj }.
The vector fields in Xj can be restricted to their values at a point m, giving a vector
space Xj |m which is contained in the tangent space of M at m. With these definitions
in hand, the nondegeneracy condition at the heart of this paper can be phrased as
follows:

Definition 1. The ensemble (M,X, Y, πX , πY ) is said to be nondegenerate through
order k at the point m ∈ M if there exist dX −1 vector fields Xl ∈ Xk such that X1|m,
Y1|m, and the commutators {T k(Xl)|m}l=1,...,dX−1 span the tangent space of M at
m.

In the simplest case, one has nondegeneracy through order 1 if and only if the
Fourier integral operator realization of the Radon-like operator has nondegenerate
canonical relation (in the spirit of Brandolini, Greenleaf, and Travaglini [1]). Loosely
speaking, (M,X, Y, πX , πY ) is nondegenerate through order k when the family curves
γy passing through x (modulo parametrization in time) may be smoothly parametrized
by the k-th order (and lower) derivatives of those curves at the point x. A prototype
of this situation is the following: let X := R×R

n, let Y := (Rn)k+1. If functions on X
are written f(t, z) for t ∈ R and z ∈ R

n, and functions on Y are written g(y0, . . . , yk)
for y0, . . . , yk ∈ R

n, let Rk be the operator given by

(1) Rkf(y0, . . . , yk) :=
∫

f(t, y0 + ty1 + · · · tkyk)dt.

The associated bilinear form is given by∫
Rkf(y0, . . . , yk)g(y0, . . . , yk)dy0 · · · dyk.

It is easy to check that (M,X, Y, πX , πY ) is nondegenerate through order k at the
origin in M := R× (Rn)k+1 (note that πX(t, y0, . . . , yk) := (t, y0 + ty1 + · · · tkyk) and
πY (t, y0, . . . , yk) := (y0, . . . , yk)).

Given the nondegeneracy condition, the formulation of the main theorem goes as
follows. Let Ck ⊂ [0, 1]2 be the convex hull of the points (0, 1), (1, 0), and (0, 0) along
with the special points, hereafter called

(
1
pj

, 1
q′

j

)
, given by{(

2
jdX − j + 2

, 1 − 2
(j + 1)(jdX − j + 2)

)}
j=1,...,k

.
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Figure 1. The set C6 ⊂ [0, 1]2, dX = 3, with the points
(

1
pj

, 1
q′

j

)
marked by dots.

The shaded region in figure 1 shows a typical set Ck (in this case k = 6 and dX = 3).
As k → ∞, the k-th special point approaches (0, 1) along a curve which is roughly a
parabola. Let C◦

k equal Ck minus the special points. One then has:

Theorem 1. Let (M,X, Y, πX , πY ) be nondegenerate through order k at m. Then
there exists an open set U ⊂ M containing m and a constant Cp,q′ < ∞ such that,
for any positive functions fX and fY on X and Y , respectively,

(2)
∫

U

fX(πX(m))fY (πY (m))dm ≤ C||fX ||p||fY ||q′

whenever
(

1
p , 1

q′

)
∈ C◦

k . Conversely, if p ≤ pk and
(

1
p , 1

q′

)
�∈ Ck, then no such constant

Cp,q′ exists.

The general method of proof used here was first used by Christ [5]. The idea is
to consider compositions of flows on M which preserve πX and πY . Unlike Christ
[5] or Tao and Wright [11], the flow corresponding to πX is multidimensional, so
some extra care is needed. In particular, it is not sufficient to consider the action of
the flows on M itself; they must instead be examined on the product space Mk for
k > 1. Studying flows on Mk allows one to guarantee that the composed flows will be
space filling (which, by dimensional considerations, will not happen in general for the
composed flows on M) and at the same time avoids the complication of having too
many free parameters in the composed flows (which happens, for example, in the work
of Christ [5]). The technique of studying the composed flows on Mk is reminiscent of
more general lifting arguments which appear in the works of Rothschild an! d Stein
[8] and Christ, Nagel, Stein, and Wainger [3].
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At this point, a brief word about the organization of this paper (and the proof of
theorem 1) is in order. The next section is devoted to preliminary material including,
for example, an examination of the nondegeneracy condition and the lemmas corre-
sponding to lemma 1 of Christ [5]. Section 3 is devoted to the first major inequality,
roughly analogous to a change of variables formula. In section 4, the second major
inequality (based on an estimate of the size of an important Jacobian determinant)
is proved and the sufficiency portion of theorem 1 is established. Finally, the neces-
sity portion of theorem 1 is taken up in section 5 (and established via a Knapp-type
example).

2. Preliminaries

It follows from the Hölder inequality, the Fubini-Tonelli theorem, and Jensen’s
inequality that (2) holds for for some Cp,q′ < ∞ provided 1

p + 1
q′ ≤ 1 and U is

some compact set. The sufficiency portion of theorem 1, then, will be obtained by
Marcinkiewicz interpolation (see, for example, Stein and Weiss [10]) of restricted
weak-type estimates which will be made for the “special points” (pj , q

′
j).

Following Tao and Wright [11], the restricted weak-type analogue of theorem 1 will
be proved in its isoperimetric formulation:

Theorem 2. Let (M,X, Y, πX , πY ) be nondegenerate through order k at m. Then
there exists an open set U ⊂ M containing m and a constant Cp,q′ < ∞ such that,
for any open set O ⊂ U

(3) |O| ≥ Cp,q′

( |O|
|πX(O)|

) q′
p+q′−pq′

( |O|
|πY (O)|

) p
p+q′−pq′

whenever
(

1
p , 1

q′

)
∈ Ck. If p ≤ pk and

(
1
p , 1

q′

)
�∈ Ck, then no such constant Cp,q′

exists.

That theorem 2 is equivalent to restricted weak-type boundedness of (2) is el-
ementary (see proposition 1.3 of Tao and Wright [11]). First note that (2) holds
for fX and fY characteristic functions if and only if it holds for fX and fY char-
acteristic functions of open sets. If (2) is true, then (3) follows from (2) by taking
fX = χπX(O) and fY = χπY (O). To obtain (2) from (3), let O = π−1

X (OX)∩ π−1
Y (OY )

when fX = χOX
and fY = χOY

. As in the strong-type case, the inequality (3) can
clearly be interpolated, so it suffices to prove (2) for the special points (pj , q

′
j).

To begin the task of proving the required restricted weak-type estimates, it is
necessary to make note of several important consequences of nondegeneracy. The
most elementary of these are given by the following lemma:

Lemma 1 (Facts about nondegeneracy). Suppose that (M,X, Y, πX , πY ) is nondegen-
erate through order k at m (let the distinguished vector fields be called X1, . . . , XdX−1).
There is an open set U ⊂ M containing m such that, for any m0 ∈ U , the following
are true.

(1) The ensemble (M,X, Y, πX , πY ) is nondegenerate through order j at m0 for
j = 1, . . . , k.
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(2) It must be the case that dY ≥ (k + 1)(dX − 1); moreover, dimm0 Xj = dY −
j(dX − 1) for j = 1, . . . , k + 1 and dim(Xj |m0)/(Xj+1|m0) = dX − 1 for
j = 1, . . . , k.

(3) If X ′
1, . . . X

′
dX−1 is a collection of vector fields in Xk which are linearly inde-

pendent at all points of U and have ord(X ′
l) = k, then the collection {T k(X ′

l)}
together with X1 and Y1 also spans the tangent space of M at m0.

Proof. Consider, first of all, property 2. The latter portion (which depends on j)
will be proved by induction on j. When j = 1, it follows from the implicit function
theorem (because dπX is surjective) that dimm0 X1 = dY − dX + 1. To compute the
dimension of the quotient space, a particular collection of dX − 1 vector fields will be
shown to form a basis pointwise modulo X2|m0 . To make this basis, observe that it
follows from the definition of the spaces Xj and the fact that Y1 is closed under Lie
brackets that T k−1(Xl) ∈ X1 + Y1. The basis is chosen as follows: let Vl ∈ X1 be a
vector field such that Vl − T k−1(Xl) ∈ Y1 for l = 1, . . . , dX − 1.

Suppose first that the Vl were not linearly independent at m0. Then there would
exist constants cl and a vector field W ∈ X2 such that

∑
clVl + W vanishes at the

point m0. Since dimm0 X1 is constant near m, one may choose a collection of vector
fields V ′

n ∈ X1, n = 1, . . . , dY −dX +1 which are linearly independent and span X1|m0

at all points near m. To accomplish this, simply take a collection which is a basis
of X1|m at m; by continuity, the chosen collection will be linearly independent at
all points near m and, hence, will be a basis because it has the correct cardinality.
Using the vector fields V ′

n as a basis, it follows that one can express
∑

l Vl + W as a
linear combination

∑
n fnV ′

n for some fn which are smooth functions defined near m;
furthermore, fn(m0) = 0 because

∑
clVl + W vanishes there. Taking the Lie bracket

with Y1, it follows that
∑

l clT (Vl)! = −T (W ) +
∑

n fnT (V ′
n) − ∑

n(Y1fn)V ′
n. Since

fn(m0) = 0, the right-hand side of this inequality is in (X1 + Y1)|m0 at m0; therefore
so is

∑
l clT (Vl)|m0 . Because Vl −T k−1(Xl) ∈ Y1, the same is true of T (Vl)−T k(Xl)

because Y1 is closed under the Lie bracket. Hence it must also be the case that∑
l clT

k(Xl)|m0 ∈ (X1 + Y1)|m0 . But this cannot be the case unless cl = 0 for all l
(by the nondegeneracy condition, if the T k(Xl) were not linearly independent modulo
X1 + Y1, the dimension of the span of X1|m + Y1|m + span{T k(Xl)} would not equal
the dimension of the tangent space of M at m).

To show that the Vl span the quotient space at m0, let V ′ ∈ X1 be any vector
field. By the nondegeneracy condition, there must exist W ∈ X1, Y ∈ Y1 and C∞

functions fl such that T (V ′) = W +Y +
∑

l flT (V ). Hence T (V ′−∑
l flVl) = W +Y +∑

l(Y1fl)Vl. The right-hand side of this equality is in X1+Y1, so V ′−∑
l flVl ∈ X2 by

definition of X2. This means that, at all points near m, V ′|m0 is a linear combination
of the vectors Vl|m0 modulo X2|m0 as desired.

This completes the case j = 1. For the induction step, assume that j ≥ 1. It follows
immediately from dim(Xj |m0)/(Xj+1|m0) = dX − 1 and dimm0 Xj = dY − j(dX + 1)
that dimm0 Xj+1 = dY −(j+1)(dX−1). To compute the dimension of the new quotient
space, one proceeds just as before: let Vl ∈ Xj+1 be such that T k−j−1(Xl)−Vl ∈ Y1.
If

∑
l clVl + Wj+2 vanishes at m0, for some constants cl and some Wj+2 ∈ Xj+2, it

must be the case that
∑

l clT (Vl)|m0 ∈ (Xj+1 + Y1)|m0 . But the vector fields T (Vl)
are (modulo some vector fields Yl ∈ Y1) precisely the basis of (Xj |m0)/(Xj+1|m0)
constructed in the previous step. Therefore the constants cj are zero. As for spanning
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the quotient space, suppose V ′ ∈ Xj+1. There exist W ∈ Xj+1, Y ∈ Y1 and C∞

functions fl such that T (V ′) = W + Y +
∑

l flT (Vl) by the fact that the vector fields
T (Vl) span (Xj |m0)/(Xj+1|m0) near m. This means that, just as before, V ′−∑

l flVl ∈
Xj+2.

The end result of this reasoning is that the latter portion of property 2 holds for j =
1, . . . , k (the induction argument must stop here because the method for choosing a
basis of the quotient space (Xj |m0)/(Xj+1|m0) is not defined for j > k. Note, however,
that after step k, one may prove just as before that dimm0 Xk+1 = dY −(k+1)(dX−1)
and, hence, dY − (k + 1)(dX − 1) ≥ 0. Property 2 is therefore completely proven.

To prove property 3, notice that if fl are C∞ functions, then the vector field
T k(

∑
l flX

′
l) −

∑
l flT

k(X ′
l) is in X1 + Y1. This assertion follows from the fact that

T j(
∑

l flX
′
l) −

∑
l flT

j(X ′
l) ∈ Xk−j+1 + Y1 for j = 0, . . . , k, which is easily proved

by induction on j using the definition of Xk−j+1 and the fact that Y1 is closed under
Lie brackets. It follows that the pointwise span of T k(X ′

l) must be the same, modulo
(X1 + Y1)|m0 as the pointwise span of T k(Xl), since the vector fields Xl may be
written as linear combinations (with variable coefficients) of the X ′

l .
Finally, property 1. As with property 3, let Vl ∈ Xk−j be a vector field which

differs from T j(Xl) by a vector field in Y1. It follows that T k−j(Vl) is equal to
T k(Xl) modulo Y1, so the T k−j(Vl) must also span the tangent space of M near m,
modulo X1 and Y1. �

As was the case in the work of Tao and Wright [11], vector fields lying in ker dπX

and ker dπY will play a central role in the proof of theorem 1. In that work, both X1

and Y1 were one-dimensional, hence the structure of each is more or less elementary
(and, for example, there was no need to be careful about choosing representatives
X ∈ X1 and Y ∈ Y1). In the case at hand, Y1 is still simple, but now X1 has
dimension greater than one. It should not come as a surprise, then, that a more
careful analysis of X1 is in order; in particular, one must put some care in the choice
of vector fields Xi,j ∈ X1 whose flows will be studied. These vector fields can be taken
to commute, but even more can be said. First, some notation. Given a C∞ vector
field V , the flow along V will be written etV m. That is, etV m is the unique solution
to the ODE

d

dt
etV m = V |etV m

with the initial condition that e0V m = m. See Warner [12], for example, for the basic
properties of flow maps. This same reference contains a treatment of the Frobenius
theorem for C∞ distributions of vector subspaces which is used heavily in the following
lemma.

Lemma 2. Suppose (M,X, Y, πX , πY ) is nondegenerate through order k at m0. There
is a neighborhood U of m0, a smooth map ρX : πX(U) → U , and dY −dX +1 linearly
independent vector fields vector fields Xi,j (indexed 1 ≤ i ≤ k and 1 ≤ j ≤ dX − 1,
and the rest, if any, indexed (k + 1, j) for j = 1, . . . , dY − (k + 1)(dX − 1)) on U such
that, for any f supported on U ,

(4)
∫

U

f(m)dm =
∫

X

∫
Rm+n−1

f(e
P

i,j si,jXi,j ρX(x))dsdx.
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The composition πX ◦ρX is the identity on πX(U), and the vector fields Xi,j commute,
satisfy dπX(Xi,j) = 0 and have ord(Xi,j) = i when i ≤ k (and ord(Xk+1,j) ≥ k + 1).

Proof. For j = 1, . . . , k +1, there exist j(dX − 1)+1 scalar functions f j
l , defined on a

neighborhood U of m0, with linearly independent gradients at m0 such that Xj anni-
hilates f j

l (this is, for example, a consequence of the Frobenius theorem because, by
property 2 of lemma 1, Xj is a (dY −j(dX−1))-dimensional Frobenius distribution near
m0). Without loss of generality, let all such functions vanish at m0. A special subcol-
lection of all such functions, with j = 1, . . . , k, is formed as follows. Let s0,1, . . . , s0,dX

be the functions f1
1 , . . . , f1

dX
. Next, take s1,1, . . . , s1,dX−1 to be a maximal collection

of the f2
l such that the s0,j together with the s1,j have linearly independent gradi-

ents. Continue in this way to define si,j for 0 ≤ i ≤ k, 1 ≤ j ≤ dX − 1. Likewise, by
Frobenius, there exists a map Φk+1 defined near m0 with values in R

dY −(k+1)(dX−1)

such that m �→ (Φk+1(m), fk+1
1 (m), . . . , fk+1

(k+1)(dX−1)+1(m)) is locally a diffeomor-
phism (without loss of generality, Φk+1(m0) = 0). We call the components of Φk+1

by the names sk+1,j where 1 ≤ j ≤ dY − (k + 1)(dX − 1).
Now let U be a small neighborhood of m0, and define Φ : U → X × R

dY −dX+1

by Φ(m) := (πX(m), {si,j}i≥1); the functions s0,j are not included. The map Φ is
locally a diffeomorphism. To see this, suppose dΦ(V ) = 0. It must be the case
that dπX(V ) = 0, which means that V ∈ X1. If V ∈ X1 and V (s1,j) = 0 for
j = 1, . . . , dX−1, then V ∈ X2 (because V ∈ X1 implies V (s0,j) = 0 for j = 1, . . . , dX ,
and if V (si,j) = 0 whenever i = 0, 1, it must be the case that V (f2

l ) = 0 for all l).
Continuing in this way, if dΦ(V ) = 0, it must be the case that V ∈ Xk+1 and
dΦk+1(V ) = 0, meaning V = 0. Therefore Φ is locally a diffeomorphism. Therefore,
there exists a smooth, positive function J defined near the point (πX(m0), 0) for which∫

M

f(m)dm =
∫

f ◦ Φ−1(x, s)J(x, s)dsdx

when f is supported near m0. One can go a step further and eliminate the factor
J(x, s) as follows. For each pair i, j, let si,j be a function of the variables ti′,j′

such that ∂
∂tk+1,1

sk+1,1(x, t) = J(x, s(t))−1 and si,j(x, t) = ti,j otherwise, plus the
constraint that s(x, 0) = 0 (this assumes, of course, that there is a function sk+1,1).
By the change of variables formula,∫

M

f(m)dm =
∫

f ◦ Φ−1(x, s(t, x))dtdx.

Let ρX(x) := Φ−1(x, s(x, 0)). This map ρX is a right-inverse of πX near πX(m0).
Let Xi,j be the push-forward of the vector field ∂

∂ti,j
via the map Φ−1(x, s(x, t)).

The vector fields Xi,j must commute because the vector fields ∂
∂ti,j

commute. Now
dΦ(Xk+1,1) = J−1(x, s) ∂

∂sk+1,1
and dΦ(Xi,j) = ∂

∂si,j
+ ci,j(s, x) ∂

∂sk+1,1
) otherwise,

for some function ci,j . Just as when showing that Φ is locally a diffeomorphism, it
must be the case that Xi,j ∈ Xi because dπX(Xi,j) = 0 and Xi,j(f l

n) = 0 whenever
l = 1, . . . , i. Therefore ord(Xi,j) ≥ i. Furthermore, if i < k + 1, there exists an f i+1

n

for some n such that Xi,j(f i+1
n ) �= 0, so that ord(Xi,j) ≤ i as well.

One final note: if there is not, in fact, any function sk+1,1, one instead makes the
change of variables ∂

∂tk,1
sk,1(x, t) = J(x, s(t))−1 and si,j(x, t) = ti,j otherwise. Had
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this change been made above, one would have Xk+1,j ∈ Xk but not necessarily Xk+1.
If there are no vector fields Xk+1,j , this is not a problem, and the rest proceeds just
as before. �

As mentioned earlier, the particular vector fields Xi,j given by lemma 2 will play a
central role in the proof of theorem 1. Throughout the rest of this paper, they will be
considered fixed. As for selecting a vector field Y1 ∈ Y1, the situation is much simpler.
The analogue of lemma 2 is that there exists Y1 ∈ Y1 and a smooth right-inverse ρY

to πY such that

(5)
∫

f(m)dm =
∫

f(etY1ρY (y))dtdy.

Throughout the rest of the paper, this choice of Y1 will also be fixed (but the particular
properties of Y1 versus some Y ′

1 will not be of critical importance).
The connection between Radon-like operators and the bilinear form appearing in

(2) can now be made explicit. Given (M,X, Y, πX , πY ), one can define operators R
and R∗ mapping functions on X to functions on Y and vice-versa by taking

(6) Rf(y) :=
∫

f(πX(etY1ρY (y)))dt,

(7) R∗g(x) :=
∫

g(πY (e
P

i,j si,jXi,j ρX(x)))ds.

It follows by (4) and (5) that∫
U

f(πX(m))g(πY (m))dm =
∫

Rf(y)g(y)dy =
∫

f(x)R∗g(x)dx.

The operator R is the Radon-like operator associated to (M,X, Y, πX , πY ). By Lp-
duality, proving boundedness of R from Lp(X) to Lq(Y ) is equivalent to proving
boundedness of (2) on Lp(X) × Lq′

(Y ) for 1
q + 1

q′ = 1.
The next piece of background work which will be necessary to prove theorem 1 is

the estimate of the size of an arbitrary open set O ⊂ M restricted to the flows etY1

or e
P

i,j si,jXi,j . The following proposition gives the necessary inequalities, and is the
analogue of lemma 1 of Christ [5] or lemma 8.2 of Tao and Wright [11]:

Proposition 1. Let O ⊂ M be an open set, and let αX := |O|
|πX(O)| and αY := |O|

|πY (O)| .
Then there exists an open O∗ ⊂ O for which

(8) χO∗(m)
∫

χO(e
P

i,j si,jXi,j m)dt ≥ 1
4
αXχO∗(m),

(9) χO∗(m)
∫

χO(etY1m)dt ≥ 1
4
αY χO∗(m),

and |O∗| ≥ 1
4 |O|.

Proof. Let Õ be the set of m ∈ O for which
∫

χO(e
P

i,j si,jXi,j m)ds > 1
2αX . By equa-

tion (4) of lemma 2, |Õ| =
∫

πX( eO)

∫
χ eO(e

P
i,j si,jXi,j ρX(x))dsdx. Suppose that x ∈
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πX(Õ), and let m ∈ Õ such that πX(m) = x. It must also hold that e
P

i,j si,jXi,j m ∈ Õ

for all s such that e
P

i,j si,jXi,j m ∈ O because∫
χO(e

P
i,j s′

i,jXi,j e
P

i,j si,jXi,j m)ds′ =
∫

χO(e
P

i,j(s
′
i,j+si,j)Xi,j m)ds′

(by virtue of the fact that the Xi,j commute) and the right-hand side is equal to∫
χO(e

P
i,j s′

i,jXi,j m)ds′ (by a linear change of variables). Therefore it must be that∫
χ eO(e

P
i,j si,jXi,j ρX(x))ds =

∫
χO(e

P
i,j si,jXi,j ρX(x))ds > 1

2αX . Of course, if x ∈
πX(O) but x �∈ πX(Õ), then the integral

∫
χO(e

P
i,j si,jXi,j ρX(x))ds ≤ 1

2αX and the
corresponding integral

∫
χ eO(e

P
i,j si,jXi,j ρX(x))ds for Õ is zero. It follows that, for

all x,

χπX( eO)(x)
∫

χ eO(e
P

i,j si,jXi,j ρX(x))ds

≥ χπX(O)(x)
(∫

χO(e
P

i,j si,jXi,j ρX(x))ds − 1
2αX

)
.

Integrating over x, it follows from (4) and the definition of αX that |Õ| ≥ 1
2 |O|. By

the definition of Õ, any subset O∗ ⊂ Õ satisfies (8). In that spirit, let

O∗ :=

{
m ∈ Õ

∣∣∣∣∣
∫

χ eO(etY1m)dt >
1
2

|Õ|
|πY (Õ)|

}
.

Just as before, |O∗| ≥ 1
2 |Õ| ≥ 1

4 |O|. But | eO|
|πY ( eO)| ≥ 1

2
|O|

|πY ( eO)| ≥ 1
2

|O|
|πY (O)| = 1

2αY , so
(9) holds by the same reasoning as was given for (8). �

The final piece of necessary preparation is to make a quantitative statement which
reflects the following observation: by construction, the vector field Xi,j behaves triv-
ially when commuted with Y1 up until the i-th commutator, so one expects that the
composed flow etY1e

P
i,j si,jXi,j m should also be somehow trivial up to the (i − 1)-st

order in t. The way to make this precise is to consider the projection of the flow via
πX :

Proposition 2. Suppose (M,X, Y, πX , πY ) is nondegenerate through order k at m,
and let Xi,j be the vector fields as described in lemma 2. For all real numbers t
sufficiently small, there exist time dependent vector fields Y t

i,j and V t
i,j, defined near

m, for which

(10) dπXdetY1(Xi,j) = dπX(Y t
i,j) + tidπX(V t

i,j)

such that Y t
i,j ∈ Y1 and at t = 0, Y 0

i,j = 0 and V 0
i,j = 1

i!T
i(Xi,j).

Proof. Consider the vector field detY1(Xi,j) at a fixed point m as time t varies. By
Taylor’s theorem,

detY1(Xi,j) =
i−1∑
l=0

tl

l!

(
d

dt

)l
∣∣∣∣∣
t=0

detY1(Xi,j) + tiV t
i,j

where V 0
i,j = 1

i!

(
d
dt

)i
∣∣∣
t=0

detY1(Xi,j). Using the identity

(11)
d

dt
detA(B)|m = detA([B,A])|m,
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it follows that V 0
i,j = 1

i!T
i(Xi,j). Furthermore, as ord(Xi,j) = i, it must be the

case that
(

d
dt

)l
∣∣∣
t=0

detY1(Xi,j) = T l(Xi,j) is in X1 + Y1 when l < i. Without loss

of generality, then, let T l(Xi,j) = X l
i,j + Y l

i,j for X l
i,j ∈ X1 and Y l

i,j ∈ Y1. Letting

Y t
i,j =

∑i−1
l=1

tl

l! Y
l
i,j (there is no l = 0 term because T 0(Xi,j) = Xi,j) establishes the

proposition, because dπX(X l
i,j) = 0. �

The proof of theorem 2 (and hence theorem 1) will proceed as follows. Fix an
open set O ⊂ M contained in some sufficiently small neighborhood of m (where
(M,X, Y, πX , πY ) is nondegenerate through order k) and let E := πX(O). By property
1 of lemma 1, it suffices to prove the isoperimetric inequality (3) at the special point
( 1

pk
, 1

q′
k
). Section 3 is devoted to a proof of the inequality

(12)
∫ k∏

l=1

χE(πX(etlY e
P

i,j si,jXi,j m))|Jk(t, s)|dtds ≤ C|E|k

(for C independent of E) where Jk(t, s) is essentially the Jacobian determinant of the
map from R

kdX to Xk given by

({tl}l=1,...,k, {si,j}i=1,...,k; j=1,...dX−1) �→ {πX(etlY e
P

i,j si,jXi,j m)}l=1,...,k.

Roughly speaking, equation (12) can only hold if this mapping has bounded multi-
plicity. Section 4 is devoted to the complementary inequality

(13)
∫ k∏

l=1

χE(πX(etlY e
P

i,j si,jXi,j m0))|Jk(t, s)|dtds ≥ CαXα
k(k+1)

2 (dX−1)+k

Y

(with C independent of E, αX , and αY ) which itself follows from proposition 1 and
an estimate of the size of |Jk(t, s)|. Here Vandermonde polynomials necessarily enter
the picture. But in this case, they present no significant difficulties in any number
of dimensions. Finally, at the end of section 4, the inequalities (12) and (13) will be
combined to yield an isoperimetric inequality, from which theorems 2 and 1 follow.

A word about notation: Throughout the remainder of the paper, the notation
A � B will mean that there exists a constant C independent of the particular open
set O ⊂ M and its projections E := πX(O) and F := πY (O) (and, hence αX and
αY ). The relation A � B is defined similarly, and A ∼ B means A � B � A.

3. Change of variables

As just noted, the purpose of this section is to establish (12). To this end, it is
necessary to understand the behavior of the intersection of curves πX(etY1m) and
πX(etY1m′). The following lemma is an idealization of the nondegenerate case and
shows that the curves behave like polynomial expressions, namely, that each curve is
determined by its position at a bounded number of times tj :

Lemma 3. Let U ⊂ R × R
lk be a neighborhood of the origin, and let γ : U → R

l

be a C∞ map for which γ(0, s) = 0 whenever (0, s) ∈ U (γ(t, s) may be described as
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a family of curves, parametrized by s, passing through the origin at t = 0). Suppose
that the map Γ := R

lk → (Rl)k given by

Γ(s) :=
{(

∂j

∂tj
γ

)
(0, s)

}
j=1,...,k

is invertible on a neighborhood of the origin. Then there exists an open V ⊂ R
lk

containing the origin and a T > 0 such that for any 0 < t1 < t2 < · · · < tk < T , the
parameter s ∈ V is uniquely determined by the position of the curve γ(t, s) at times
t1, . . . , tk.

Proof. Let γj(s) := ( ∂j

∂tj γ)(0, s) for j = 1, . . . , k. By Taylor’s theorem, γ(t, s) =∑k
j=1

tj

j! γ
j(s) + Gk+1(t, s) for some smooth map Gk+1(t, s). Suppose that there exist

s and s′ satisfying γ(tj , s) = γ(tj , s′) for 0 = t0 < t1 < t2 < · · · < tk, where T := |tk|
is no greater than one. Given any bounded neighborhood V of the origin in R

lk, there
exists a constant C independent of the times tj for which |Γ(s)−Γ(s′)| ≤ CT |s− s′|,
where |·| is the Euclidean norm. This is proved by a repeated application of Rolle’s the-
orem to the function (γ(t, s))i − (γ(t, s′))i for i = 1, . . . , l as follows: since (γ(t, s))i −
(γ(t, s′))i vanishes k+1 times, its k-th derivative must also vanish at some time t∗ with
|t∗| < T , so (γk(s))i − (γk(s′))i = ∂k

∂tk ((Gk+1(t, s))i − (Gk+1(t, s′))i)
∣∣
t=t∗

. The differ-
entiability of Gk+1 ensures |(γk(s))i − (γk(s′))i| ≤ CT |s− s′| for some C independent
of T . Now step backwards: the (k− 1)-st time derivative of (γ(t, s))i − (γ(t, s′))i also
vanishes at some time t∗∗ with |t∗∗| < T . Now |(γk−1(s))i−(γk−1k(s′))i| ≤ CT |s−s′|
by virtue of the differentiability of Gk+1 and the estimate just made for the k-th de-
rivative. Continuing in this way gives |Γ(s) − Γ(s′)| ≤ CT |s − s′| as desired.

To complete the proof, observe that there exists ε > 0 and a neighborhood V ⊂ R
lk

containing the origin such that ε|s − s′| ≤ |Γ(s) − Γ(s′)| for s, s′ ∈ V by virtue of the
invertibility of Γ. Choosing T < C−1ε, the inequality ε|s − s′| ≤ CT |s − s′| can only
be true if s = s′. �

To use lemma 3 in the general case, one must first fix sk+1,j for all j, if any
such vector fields Xk+1,j exist by lemma 2. Fix a smooth function f0 on a neigh-
borhood of πX(m) (with f0(πX(m)) = 0) such that dπX(Y1)(f0) �= 0; this must be
possible because the nondegeneracy condition cannot be satisfied at m0 if Y1|m0 ∈
X1|m0 (the dimension of the span of X1, Y1 and the T k(Xl) would be too small
at m0). Then, near m, there exists a vector field Y ′

1 proportional to Y1 such that
f0(πX(etY ′

1 e
P

i,j si,jXi,j m)) = t for small s and t (this is merely a reparametrization
of time in relation to the Radon-like operator (6)). Let Φ(t, s) := etY ′

1 e
P

i,j si,jXi,j m;
it follows that whenever two curves πX(Φ(t, s)) and πX(Φ(t′, s′)) intersect, the time
parameters must be equal, since t = f0(πX(Φ(t, s))) = f0(πX(Φ(t′, s′))) = t′.

Take f to be any C∞ function which is constant along the curve πX(Φ(t, 0)). It
follows from proposition 2 that

∂

∂si,j
f(πX(Φ(t, s))) = dπX(Y t

i,j

∣∣
Φ

+ ti V t
i,j

∣∣
Φ
)(f).

But when s = 0, dπX(Y t
i,j

∣∣
Φ
)(f) is simply a multiple of d

dtf(πX(Φ(t, 0))), and so must
vanish. Differentiating i times in t and setting t = 0, there will be only one nonzero
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term, which arises from applying all time derivatives to the power ti. Recalling that
V 0

i,j = 1
i!T

i(Xi,j), it follows that

∂i

∂ti
∂

∂si,j

∣∣∣∣
t=0,s=0

f(πX(Φ(t, s))) = dπX(T i(Xi,j)
∣∣
m

)(f).

Now let f1, . . . , fdX−1 be a (maximal) collection of functions which are constant along
πX(Φ(t, 0)), have linearly independent gradients, and satisfy fl(πX(m)) = 0. Since
(M,X, Y, πX , πY ) is nondegenerate through order k (and the extraneous sk+1,j are
fixed), by the previous lemma, the parameter si,j , 1 ≤ i ≤ k, 1 ≤ j ≤ dX − 1,
corresponding to the curve in R

dX−1, given by

(f1(πX(Φ(t, s))), · · · , fdX−1(πX(Φ(t, s)))),

is uniquely determined by the values of fl(πX(Φ(t, s))) at k distinct times t > 0.
Now f0, f1, · · · , fdX−1 form a coordinate system on X. Therefore, if two curves

πX(Φ(t, s)) and πX(Φ(t′, s′)) intersect at k positions (other than at πX(m) at time
0), it must be the case that these curves reach the same points at the same times
(since t = t′). But the uniqueness of the values of fl for any k fixed times ensures
that s′ = s.

The end result obtained by this line of reasoning is that locally, when the appro-
priate sk+1,j are fixed, the curves πX(etY1e

P
i,j si,jXi,j m) are uniquely determined by

any k-tuple of points (aside from πX(m)) that they pass through. This means that
the map Φk(t, s) taking R

kdX into Xk, defined by

Φk(t, s) := (πX(et1Y1e
P

i,j si,jXi,j m), · · · , πX(etkY1e
P

i,j si,jXi,j m)),

is one-to-one for small parameters t, s. Thus there is an open set U ⊂ R
kdX containing

the origin such that, for any open E ⊂ X,∫
U

k∏
l=1

χE(πX(etlY e
P

i,j si,jXi,j m))|Jk(t, s)|dtds � |E|k

(for some suppressed constant independent of E), where Jk(t, s)dtds is the pull-back
of the integration form dx1∧· · ·∧dxk via the map Φk. This follows from the change of
variables formula applied to the regions where dΦk is nonvanishing and the fact that
the set where dΦk vanishes is a closed set of measure zero (to be described explicitly
in the next section).

4. Jacobian factor

Now the attention is turned to inequality (13). The first and most complicated
piece to put in place is to estimate the size of |Jk(t, s)|. It is not too difficult to see
that Jk(t, s) must vanish if tl = 0 for any l or if tl = tl′ for any l �= l′. By the following
lemma, these are the only situations in which Jk(s, t) may vanish. Also of importance
is the rate of vanishing, which is also given explicitly:

Lemma 4. If (M,X, Y, πX , πY ) is nondegenerate through order k at m and sk+1,j is
fixed for all j (if any), then the Jacobian determinant Jk(t, s) of the map Φk(t, s) :=
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(πX(etlY1e
P

i,j si,jXi,j m))l=1,...,k satisfies

(14) |Jk(t, s)| ≥ C

∣∣∣∣∣∣
k∏

n=1

tn
∏
i<j

(tj − ti)

∣∣∣∣∣∣
dX−1

for some C > 0, provided t and s are sufficiently small.

Proof. To establish the claim, we will show that the Jacobian determinant can be fac-
tored by the polynomial in t suggested by (14). The factorization will be accomplished
by a series of elementary matrix operations.

In a suitable coordinate system, the Jacobian factor is, up to multiplication by
some nonvanishing function of s and t, equal to the absolute value of the deter-
minant of a (kdX) × (kdX) matrix of a form to be described. Let B(t) be a col-
umn vector of length dX whose entries are the components of dπX(Y1) (which equals
∂
∂tπX(etY1e

P
i,j si,jXi,j m)), and let Ai(t) be a dX×(dX−1) matrix whose j-th column is

the component representation of dπXdetY1(Xi,j) (which is ∂
∂si,j

πX(etY1e
P

i,j si,jXi,j m))
for j = 1, . . . , dX − 1. It follows that Jk(t, s) is of the form

det

⎡⎢⎢⎢⎣
B(t1) 0 · · · 0 A1(t1) A2(t1) · · · Ak(t1)

0 B(t2) · · · 0 A1(t2) A2(t2) · · · Ak(t2)
...

...
. . .

...
...

...
. . .

...
0 0 · · · B(tk) A1(tk) A2(tk) · · · Ak(tk)

⎤⎥⎥⎥⎦ .

By (10), one may take Ai(t) to be the components of tidπX(V t
i,j) (since dπX(Y t

i,j)
is a multiple of B(t)). One may immediately factor Jk(t, s) by (

∏k
n=1 tn)dX−1 as

follows: multiply column n by tn (for n = 1, . . . , k) then factor each row in the the
n-th group by tn. Observe that the power is dX −1 instead of dX . This is because one
multiplied the determinant by a factor of t1 · · · tk in order to factor off (t1 · · · tk)dX .
Also notice that the form of the matrix is preserved, but in the place of Ai(t), one
now has ti−1dπX(V t

i,j).
Next, take column 1 and add to it columns 1 through k. Then subtract the rows in

the first group from each of the subsequent groups. Using the identity f(x)− f(y) =
(x−y)

∫ 1

0
df
dx (θx+(1−θ)y)dθ and the same sort of factoring trick just used (multiplying

column n by tn − t1 for n > 1 and factoring all rows in the n-th group by tn − t1
for n > 1), one can factor off an additional (

∏k
l=2(tl − t1))dX−1, and the matrix now

becomes

det

⎡⎢⎢⎢⎣
B(t1) 0 · · · 0 A1(t1) A2(t1) · · · Ak(t1)

B(1)(t2) B(t2) · · · 0 A
(1)
1 (t2) A

(1)
2 (t2) · · · A

(1)
k (t2)

...
...

. . .
...

...
...

. . .
...

B(1)(tk) 0 · · · B(tk) A
(1)
1 (tk) A

(1)
2 (tk) · · · A

(1)
k (tk)

⎤⎥⎥⎥⎦ ,

where f (1)(x) :=
∫ 1

0
df
dx (θx + (1 − θ)t1)dθ. This process is repeated: add columns 3

through k to column 2, then subtract the second group of rows from each of the 3rd
through k-th groups. Multiplying columns 3 through k by (t3 − t2) through (tk − t2)
and factoring by rows gives (

∏
l>2(tl − t2))dX−1. When the process is completed,
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one has factored (V (t)
∏k

n=1 tn)dX−1 off the determinant, where V (t) is the Vander-
monde polynomial in t. The remaining determinant may be evaluated when t = 0.
Here one uses the fact that Ai(t) is the component-wise representation of the vec-
tors ti−1dπX(V t

i,j) and A(l)i(0) = 1
l! [

(
d
dt

)l
Ai](0). It follows that A

(l)
i (t) vanishes for

l < i − 1, and the remaining determinant has the form (at t = 0)

det

⎡⎢⎢⎢⎣
B(0) 0 · · · 0 A1(0) 0 · · · 0
∗ B(0) · · · 0 ∗ d

dtA2(0) · · · 0
...

...
. . .

...
...

...
. . .

...
∗ ∗ · · · B(0) ∗ ∗ · · · 1

(k−1)!
dk−1

dtk−1 Ak(0)

⎤⎥⎥⎥⎦ .

This determinant is easily evaluated (after shuffling the columns, it becomes block
lower-diagonal). Modulo a constant, it is equal to

k∏
i=1

det(dπX(Y1), {dπX(T i(Xi,j))}j=1,...,dX−1),

which is nonzero by virtue of the fact that (M,X, Y, πX , πY ) is nondegenerate through
order k and property 3 of lemma 1. For small s and t, the lemma follows by continuity.

�

With lemma 4 in place, one may proceed to inequality (13). Recall the situation
as given at the end of section 2: let O ⊂ M be open and contained in some prescribed
open set where (14) holds with some uniform constant C, and let E = πX(O),F =
πY (O). By proposition 1 (applied to O and then again to O∗), there exists m0 ∈ O

such that
∫

χO∗(e
P

i,j si,jXi,j m0)ds � αX . Let this m0 be fixed. By definition of E,
it follows that

k∏
l=1

χE(πX(etlY e
P

i,j si,jXi,j m0)) ≥
k∏

l=1

χO(etlY e
P

i,j si,jXi,j m0)

Once again, proposition 1 is invoked: provided e
P

i,j si,jXi,j m0 ∈ O∗, there is a set
of times t of measure 1

2αY or greater such that etY1e
P

i,j si,jXi,j m0 ∈ O. For any
measurable I ⊂ R, there is a constant cn for which

(15)
∫

I

∣∣∣∣∣tn +
n−1∑
l=0

clt
l

∣∣∣∣∣ dt ≥ cn|I|n+1.

One can see that this must be the case, for example, because the set of points t where∣∣∣tn +
∑n−1

l=0 clt
l
∣∣∣ ≤ |I|n has size � |I| (see lemma 1.2 of Carbery, Christ, and Wright

[2], for example). This fact, together with proposition 1 and inequality (14) show
that it must be the case that∫ k∏

l=1

χE(πX(etlY e
P

i,j si,jXi,j m0))|Jk(t, s)|dt

� α
k(k+1)

2 (dX−1)+k

Y χO∗(e
P

i,j si,jXi,j m0)
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by estimating the iterated integrals in t1, . . . , tk separately using (15). All together,∫ k∏
l=1

χE(πX(etlY e
P

i,j si,jXi,j m0))|Jk(t, s)|dtds � αXα
k(k+1)

2 (dX−1)+k

Y .

Now recall, from the previous section, that

|E|k �
∫ k∏

l=1

χE(πX(etlY e
P

i,j si,jXi,j m0))|Jk(t, s)|dtds.

The conclusion is an isoperimetric inequality: given that (M,X, Y, πX , πY ) is nonde-
generate through order k at m, there exists an open neighborhood U of m such that,
for any open O ⊂ U ,

(16) |O| k(k+1)
2 (dX−1)+(k+1) � |πX(O)|k+1|πY (O)| k(k+1)

2 (dX−1)+k.

This is precisely the isoperimetric inequality needed for the desired restricted weak-
type estimate.

5. Necessity

Let m ∈ M be a point where (M,X, Y, πX , πY ) is nondegenerate through order k,
and let Zl := T k(Xk,l). Fix an ε > 0 sufficiently small and let Oδ be the set{

etY1e
P

i,j si,jXi,j e
P

l ulZlm
∣∣∣ |t| ≤ εδ, |si,j | ≤ εδmax{0,k+1−i}, |ul| ≤ εδk+1

}
.

Setting Φ(t, s, u) := etY1e
P

i,j si,jXi,j e
P

l ulZl , it follows from the linear independence
of Y1, Xi,j and Zl that the map Φ is locally a diffeomorphism, so it must be the
case that |Oδ| ∼ δ1+

(k+1)(k+2)
2 (dX−1). Likewise, πY ◦ Φ independent of t and locally a

diffeomorphism when t is fixed. It follows that |πY (Oδ)| ∼ δ
(k+1)(k+2)

2 (dX−1).
Finally, consider the projection of Oδ under πX . To that end, let Ψ(τ, s, p) :=

eτY1e
P

i,j si,jXi,j p. Consider the following nonlinear ODE for τ(θ):

τ̇(θ)Y1|Ψ(τ(θ),(1−θ)s,p) =
∑
i,j

si,jY
τ(θ)
i,j |Ψ(τ(θ),(1−θ)s,p)

where Y t
i,j is defined in proposition 2 (and is a multiple of Y1, making the ODE

for τ(θ) well-defined). Since everything is smooth, there must be local existence of
τ(θ). Moreover, suppose τ(0) = t for |t| ≤ δ. If s is sufficiently small and p is in
some sufficiently small neighborhood of a point m, there exists C < ∞ for which
|τ̇(θ)| ≤ Cδ since Y 0

i,j = 0; in fact, if s is sufficiently small, the constant C may also
be taken small. Thus, the solution τ(θ) must exist until at least θ = 1. Now let f be
a smooth function on X, and consider the derivative with respect to θ of the function
f(πX(Ψ(τ(θ), (1 − θ)s, p))). Exploiting the ODE which τ(θ) satisfies, it follows that

d

dθ
f(πX(Ψ(τ(θ), (1 − θ)s, p))) = −

∑
i,j

si,jτ(θ)idπX(V τ(θ)
i,j |Ψ(τ(θ),(1−θ)s,p))(f).

Already it is known that |τ(θ)| ≤ Cδ when |τ(0)| ≤ δ. Furthermore, if |si,j | ≤
δmax{0,k+1−i}, it must be the case that | d

dθf(πX(Ψ(τ(θ), (1 − θ)s, p)))| ≤ Cfδk+1

for some Cf which depends on f , but is independent of t and s (provided they are
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sufficiently small) and p (provided it is sufficiently near m). Integrating the derivative
from θ = 0 to θ = 1 gives

(17)
∣∣∣f(πX(eτ(1)Y1p)) − f(πX(etY1e

P
i,j si,jXi,j p))

∣∣∣ ≤ Cfδk+1.

If p := e
P

l ulZlm for |u| ≤ δk+1, it follows that

(18)
∣∣∣f(πX(eτ(1)Y1m)) − f(πX(etY1e

P
i,j si,jXi,j e

P
l ulZlm))

∣∣∣ ≤ Cfδk+1

as well. Since |τ(1)| ≤ Cδ, equations (17) and (18) combined show that, if one chooses
a coordinate system defined near πX(m), then πx(Oδ) must be contained within a
Cδk+1-neighborhood of the curve segment πX(etY1m) with |t| ≤ Cδ for some C.
Clearly, then, it must be the case that |πX(Oδ)| � δ1+(k+1)(dX−1).

If the equation |Oδ| ≤ C|πX(Oδ)| 1p |πY (Oδ)|
1
q′ is to be satisfied for some finite

constant C, it must be the case that

1 ≥ 1 + (k + 1)(dX − 1)
p

− (k + 1)(k + 2)(dX − 1)
2q

where 1
q + 1

q′ = 1. Since (M,X, Y, πX , πY ) is also nondegenerate through order j for
j < k (by property 1 of lemma 1), it follows that

1 ≥ 1 + (j + 1)(dX − 1)
p

− (j + 1)(j + 2)(dX − 1)
2q

for 0 ≤ j ≤ k. These constraints give precisely the necessity portion of theorem 1.

6. Remarks

(1) If one is in the special case dY = (k + 1)(dX − 1) and (M,X, Y, πX , πY )
is nondegenerate through order k, then the region of boundedness indicated
by theorem 1 is, in fact, valid for all 1 ≤ p ≤ ∞. This can be seen by a
computation, analogous to the one just completed, for which Fδ is a ball of
radius δ and Oδ = π−1

Y (Fδ).
(2) Recall the prototype Radon-like transform (1). In proving (12), it was shown

that all nondegenerate Radon-like transforms (6) behave locally like the pro-
totype (possibly modulo a few extra parameters).

(3) The fact that theorems 1 and 2 are local results is essential. The proto-
type operator Rk possesses two scaling symmetries, corresponding to scalings
(t, s) �→ (δt, s) and (t, s) �→ (t, μs) on R × R

n, which together dictate that
Rk is only of restricted weak-type (pk, qk) globally, where ( 1

pk
, 1

q′
k
) is the k-th

special point of Ck.
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