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F-PURE THRESHOLDS AND F-JUMPING EXPONENTS IN
DIMENSION TWO

Nobuo Hara

with an Appendix by Paul Monsky

Abstract. Using an argument based on an idea of Monsky, we prove the rationality of
the F-pure thresholds of curve singularities on a smooth surface defined over a finite field.

More generally, we prove in this setting the rationality and discreteness of F-jumping

exponents, the smallest positive one of which is the F-pure threshold. We also give a
lower bound for F-pure thresholds in the homogeneous case.

1. Introduction

Let D be an effective divisor on a smooth variety defined over a perfect field of
characteristic p > 0. The F-pure threshold of the pair (X, D) at x ∈ X is defined to
be the real number

fptx(X, D) = sup{t ∈ R≥0 | (X, tD) is F-pure at x},
where the pair (X, tD) is said to be F-pure at x ∈ X if the natural inclusion map
OX,x ↪→ OX(t(q − 1)D)1/q

x splits as an OX,x-module homomorphism for all powers
q = pe of p. F-purity of pairs is introduced in [HW2] as a characteristic p analog
of the notion of log canonical singularity of pairs. Indeed F-purity enjoys several
local properties similar to log canonical singularity, although the definition is very
different. Thus we are led to the concept of F-pure threshold as an “F-pure version”
of the log canonical threshold studied in [K, Section 8]. However, it is not a priori
clear that F-pure thresholds are rational numbers, while log canonical thresholds are
clearly rational by definition. Using Paul Monsky’s idea, we shall give an affirmative
answer to the simplest non-trivial case of this question.

Theorem 1.1. Let R = Fq[[x, y]] be a two-dimensional complete regular local ring
over a finite field Fq and let D = divX(f) be the divisor on X = Spec R defined by a
nonzero element f ∈ R. Then the F-pure threshold fpt(X, D) is a rational number.

The crucial point of the proof of this theorem is that the function ϕf (t) defined by
ϕf (a/q) = q−2�(R/(xq, yq, fa)) for a power q of p and 0 ≤ a < q, is a p-fractal as is
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defined and proved in [MT]. Roughly, this implies that the graph of ϕf has a sort of
self-similarity under q-times magnification near the F-pure threshold c = fpt(X, D) =
inf{t ∈ [0, 1] | ϕf (t) = 1}. Accordingly, the p-adic expansion of c becomes eventually
periodic, from which the rationality follows.

We can extend our method to prove the rationality and discreteness of F-jumping
exponents of a pair (X, D), where X = Spec R and D = divX(f) are as in Theorem
1.1. Given any nonnegative real number t, the generalized test ideal τ(f t) = τ(X, tD)
of the pair (R, f) (or, of the pair (X, D)) is defined via f t-tight closure [HY]. This
ideal satisfies the property that τ(f t) ⊇ τ(f t′) if t ≤ t′. We say that a positive real
number c is an F-jumping exponent of (R, f) if it is the infimum of those t ∈ R≥0

for which τ(f t) = τ(fc). This may be considered a characteristic p analog of the
notion of jumping coefficients for multiplier ideals; see [ELSV]. It is easily seen that
jumping coefficients for multiplier ideals of a fixed pair (X, D) form a discrete set of
rational numbers. The discreteness of the set of jumping coefficients is used to prove a
uniform Artin-Rees theorem in [ELSV], and it is natural to ask if these properties also
hold true for F-jumping exponents. We answer this question affirmatively in Theorem
2.17, under the assumptions of Theorem 1.1, using the results of Monsky’s appendix.
Indeed the arguments show the rationality and discreteness of “F-thresholds” attached
to f in the sense of [MTW].

Given any non-zero f ∈ k[[x, y]] with char k = p > 0, it is not easy to compute the
F-pure threshold even if we know that it is rational. In Section 4 of this paper, we
give further results about the F-pure threshold and the function ϕf (t) when f is a
homogeneous polynomial of degree d. Namely, we give a lower bound for the F-pure
threshold and a list of its possible values in low degrees. Also, we show that ϕf (t)
differs from a quadratic function by at most c/p2, where both the quadratic function
and c depend only on d. In his paper [M3], Monsky obtained results overlapping these
by using Mason’s theorem, while we use more geometric tools developed in [HW1].

This paper is organized as follows. In Section 2, we give results on F-singularities
of pairs, generalized test ideals and F-jumping exponents. These results combine with
results from the appendix by Monsky to yield Theorem 2.17. Section 3 is devoted to
studying the homogeneous case.

2. F-singularities of pairs, generalized test ideals,
and F-jumping exponents

In this section, we review the theory of F-singularities of pairs [HW2] and general-
ized test ideals [HY]. Although our theory has been developed for a much wider class
of rings of characteristic p, we will restrict ourselves to following situation.

Notation 2.1. Let R = k[[x1, . . . , xd]] denote a d-dimensional complete regular local
ring over a perfect field k with the maximal ideal m = (x1, . . . , xd). We assume that
char k = p > 0 unless otherwise specified, and use the letter q to denote a power pe

of p. The qth Frobenius power I [q] of an ideal I of R is the ideal generated by the
qth powers of elements of I.

Let 0 �= f ∈ m and let t be a nonnegative real number. Consider the pair (X, tD)
where X = Spec R and D = divX(f). Write the R-divisor tD as a linear combination∑r

i=1 tiDi of prime divisors Di with coefficients ti ∈ R, and let �tD� be obtained from
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tD by replacing each ti by its round-down �ti�. Similarly, 	tD
 is obtained from tD
by replacing each ti by its round-up 	ti
. We denote by OX(tD) = OX(�tD�) the
sheaf associated to the integral divisor �tD�.

We often speak of the pair (R, f t) instead of the pair (X, tD), and we use these
two expressions interchangeably.

In characteristic p > 0, we denote the absolute Frobenius morphism of X and the
associated ring homomorphism by F : X → X and F : OX → F∗OX , respectively.

Definition 2.2 ([HW2]). Let the notation be as above.
(1) We say that the pair (X, tD) is F-pure if the composition map

F e : OX → F e
∗OX((q − 1)tD),

of the eth Frobenius map OX → F e
∗OX and the natural inclusion F e

∗OX ↪→
F e
∗OX((q − 1)tD), splits as an OX -module homomorphism for every q = pe.

(2) The pair (X, tD) is strongly F-regular if for every effective divisor E on X,
there exists q = pe such that the map F e : OX → F e

∗OX((q − 1)tD + E)
splits as an OX -module homomorphism. Equivalently,1 (X, tD) is strongly
F-regular if the map F e : OX → F e

∗OX(	qtD
) splits for all sufficiently large
q = pe.

Proposition 2.3 ([HW2, Prpoposition 2.2]).
(1) If (X, tD) is strongly F-regular, then (X, tD) is F-pure.
(2) If (X, tD) is F-pure, then 	tD
 is reduced (i.e., ti ≤ 1 for every i).
(3) If (X, tD) is strongly F-regular, then �tD� = 0 (i.e., ti < 1 for every i).
(4) If (X, tD) is F-pure (resp. strongly F-regular), then so is (X, t′D) for every

t′ ∈ R with 0 ≤ t′ ≤ t.

Since (X, 0) is strongly F-regular (and so F-pure) under our assumption that R is
regular, the following “F-analog” of the log canonical threshold is defined; cf. [K].

Definition 2.4. Let X = Spec R and D = divX(f) be as in 2.1. We define the
F-pure threshold of the pair (X, D) by

fpt(X, D) = sup{t ∈ R≥0 | (X, tD) is F-pure}.
We note that 0 < fpt(X, D) ≤ 1 if D �= 0 and that fpt(X, 0) = ∞.

Remark 2.5. It easily follows from the definition (and its rephrased form in 2.2(2))
that (X, tD) is strongly F-regular if and only if t < fpt(X, D). In other words, strong
F-regularity of pairs is an open condition with respect to the coefficient, and

fpt(X, D) = sup{t ∈ R≥0 | (X, tD) is strongly F-regular};
cf. Proposition 2.8 (4). On the other hand, as we will see in Proposition 2.6 below,
F-purity of pairs is a closed condition with respect to the coefficient, i.e., (X, tD) is
F-pure if and only if t ≤ fpt(X, D).

Proposition 2.6. Let (X, D) be as in 2.4, and suppose c = fpt(X, D) < ∞. For
each e ∈ N, let re ∈ N be the integer such that the map F e : OX → F e

∗OX((re − 1)D)
splits as an OX-module, but F e : OX → F e

∗OX(reD) does not split. Then re ≥ 	cpe

for all e ∈ N. In particular, (X, cD) is F-pure, and

1This rephrasal goes through since we are assuming that R is regular, so that 1 ∈ R is a test
element; see [HY].
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fpt(X, D) = lim
e→∞

re

pe
= max{t ∈ R≥0 | (X, tD) is F-pure}.

Proof. Fix any e ∈ N and set c′ = 	cpe − 1
/pe. Then, since c′ < c = fpt(X, D), the
pair (X, c′D) is strongly F-regular by Remark 2.5. Hence there exists e′ ≥ e such
that the map F e′

: OX → F e′
∗ OX(	c′pe′

D
) = F e′
∗ OX(	cpe − 1
pe′−eD) splits. Since

this map factors through F e
∗OX(	cpe −1
D), the map F e : OX → F e

∗OX(	cpe −1
D)
also splits, so that 	cpe − 1
 ≤ re − 1. Thus re ≥ 	cpe
.

Since c > 0 and 	cpe − 1
 is the largest integer that is less than cpe, we have
�c(pe − 1)� ≤ 	cpe − 1
 ≤ re − 1. Hence the map F e : OX → F e

∗OX(�c(pe − 1)�D)
splits for all e ∈ N, so that (X, cD) is F-pure; see the proof of [HW2, Corollary 2.7].

Since {re/pe}e∈N is an increasing sequence bounded above by 1, there is a limit
lime→∞ re/pe ∈ R, which is at least c = fpt(X, D) by the above argument. It remains
to prove that c ≥ lime→∞ re/pe. If t < lime→∞ re/pe, then �t(pe − 1)� ≤ re − 1 for
all e  0, so that (X, tD) is F-pure. We conclude that c ≥ lime→∞ re/pe. �

Next we recall the definition of the generalized test ideal τ(at) of an ideal a
with exponent t ≥ 0. We restrict ourselves, for simplicity, to the case where R =
k[[x1, . . . , xd]] is a d-dimensional complete regular local ring as in Notation 2.1. Then
the injective envelope E = ER(R/m) ∼= Hd

m(R) of the residue field of R may be de-
scribed as the module of inverse polynomials E = (x1 · · ·xd)−1k[x−1

1 , . . . , x−1
d ]. The

Frobenius map F : E → E acts on this module by F (z) = zp.

Definition 2.7 ([HY]). Let (R,m) be a regular local ring of characteristic p > 0,
a ⊆ R a non-zero ideal, and let t be a nonnegative real number.

(1) The at-tight closure 0∗at

E of the zero submodule2 in E = ER(R/m) is the
submodule of E consisting of all elements z ∈ E such that for all large q = pe,

a�tq	zq = 0 in E.

(2) The generalized test ideal τ(at) of the ideal a with exponent t is defined by

τ(at) = AnnR(0∗at

E ).

In this paper, we only consider the case where a = fR is a non-zero principal ideal.
In this case, we denote the ideal τ(at) by τ(f t). Alternatively, we use the notation
τ(X, tD), where D = divX(f) is the divisor on X = Spec R defined by f .

Proposition 2.8 ([HY], [HT]). With the above notation we have the following.
(1) The pair (X, tD) is strongly F-regular if and only if τ(f t) = R.
(2) If t ≥ t′ ≥ 0, then τ(f t) ⊆ τ(f t′).
(3) If n ∈ Z≥0, then τ(fn+t) = fn · τ(f t).
(4) For any t ∈ R≥0, there exists ε > 0 such that τ(f t) = τ(f t+ε).

Proof. The proofs of (1)–(3) are standard and left to the reader; see [HY]. To prove
(4), fix any t ≥ 0 and u ∈ τ(f t). Then choosing d ∈ R◦ in [HT, Proposition 2.1] to
be f , we see that there exists e0 ∈ N and φe ∈ HomR(R1/pe

, R) for e = 0, 1, . . . , e0

2In general, we can define the at-tight closure of any submodule of a module. For example, the

at-tight closure I∗at
of an ideal I ⊆ R is defined to be the ideal consisting of all elements z ∈ R

such that a�tq�zq ⊆ I
[q]
M for all large q = pe. The generalized test ideal τ(at) is then represented as

τ(at) =
T

I⊆R(I : I∗at
), where I runs through all ideals of R.
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such that u =
∑e0

e=0 φe((d · f�tpe	)1/pe

) =
∑e0

e=0 φe(f�1+tpe	/pe

). Since 1 ∈ R is a test
element in the sense of [HY, Theorem 6.4], each φe(f�1+tpe	/pe

) lies in τ(f t+(1/pe))
again by [HT, Proposition 2.1]. So, if we put ε = 1/pe0 , then u ∈ τ(f t+ε). �
Definition 2.9. Let (R,m) be a regular local ring of characteristic p > 0 and let f ∈ m
be as in Notation 2.1. We say that a real number c > 0 is an F-jumping exponent of
the pair (R, f) (or an F-jumping coefficient of the pair (X, D)), if τ(f t) � τ(fc) for
all nonnegative t < c, or equivalently, if

c = inf{t ∈ R≥0 | τ(f t) = τ(fc)}.
This infimum is in fact a minimum because of Proposition 2.8 (4).

Remark 2.10. If f ∈ m, or equivalently, if D = divX(f) �= 0, then there exist infinitely
many F-jumping exponents of (R, f), which coincide modulo Z with F-jumping expo-
nents of (R, f) in the interval (0, 1] by Proposition 2.8 (3). Also by Proposition 2.8 (1)
and Remark 2.5, the smallest F-jumping exponent of the pair (R, f) is nothing but
the F-pure threshold fpt(X, D). When the ring R is regular, any F-jumping exponent
is an “F-threshold” defined as follows.

Definition 2.11. Let (R,m) be a regular local ring of characteristic p > 0 and let
0 �= f ∈ m. Given any ideal J containing a power of f , let re ∈ N be the integer such
that fre ∈ J [pe] and fre−1 /∈ J [pe]. Then let

cJ(f) = lim
e→∞

re

pe
.

In [MTW], this limit is called the F-threshold of (R, f) with respect to J .

Proposition 2.12. Let (R,m) be a regular local ring of characteristic p > 0 and
D = divX(f) the effective divisor on X = Spec R defined by f ∈ m as in 2.1. Then

(1) fpt(X, D) = cm(f).
(2) (Mustaţă–Takagi–Watanabe [MTW]) Let c > 0 be an F-jumping exponent of

the pair (R, f) and let J = τ(fc) = τ(X, cD). Then c = cJ(f).

Proof. (1) follows from Fedder’s criterion ([F], [HW2, Corollary 2.7]), which asserts
that (X, tD) is F-pure if and only if f�t(q−1)� /∈ m[q] for all q = pe. (2) is immediate
from [MTW, Proposition 2.7]. �
Remark 2.13. Proposition 2.12 tells us that an F-jumping exponent is an F-threshold
with respect to a generalized test ideal. On the other hand, it is implicitly proven in
[MTW, Proposition 2.7] that every F-threshold is in fact an F-jumping exponent. As
we will see below, F-jumping exponents may be considered “F-analogues” of certain
invariants defined in characteristic zero.

Discussion 2.14. Let us recall the definitions of log canonical (lc, for short) and
Kawamata log terminal (klt, for short) pairs, and of multiplier ideals. We assume
that D is an effective divisor on X = Spec R for a regular local ring (R,m) with
dim R = 2 or the base field k is of characteristic zero, because we need the existence
of a log resolution of the pair (X, D), that is, a proper birational morphism μ : Y → X
from a nonsingular variety Y such that the union of Supp(μ∗D) and the exceptional
set of μ is a simple normal crossing divisor on Y . Let t be a nonnegative real number,
KX and KY denote the canonical divisors of X and Y , respectively, and write KY =
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μ∗(KX + tD) +
∑s

i=1 aiEi with ai ∈ R and Ei a prime divisor on Y . Then the pair
(X, tD) is said to be lc (resp. klt) if ai ≥ −1 (resp. ai > −1) for all i = 1, . . . , s. Also,
the multiplier ideal sheaf J (X, tD) ⊆ OX is defined by J (X, tD) = μ∗OY (KY −
�μ∗(KX + tD)�) = μ∗OY (

∑s
i=1	ai
Ei). (Since X is an affine scheme, we identify

J (X, tD) with the ideal H0(X,OY (KY − �μ∗(KX + tD)�)) ⊆ R.) The log canonical
threshold of (X, D) is defined to be

lct(X, D) = sup{t ∈ R≥0 | (X, tD) is log canonical}.
Since J (X, tD) ⊆ J (X, t′D) for t ≥ t′, one may define jumping coefficients for the
multiplier ideal J (X, tD) as in Definition 2.9. Namely, a real number c > 0 is a
jumping coefficient of the pair (X, D) if J (X, tD) � J (X, cD) for all nonnegative t <
c. Obviously, the pair (X, tD) is klt if and only if J (X, tD) = OX ; that is to say, if and
only if t < lct(X, D). So the log canonical threshold lct(X, D) is the smallest jumping
coefficient of (X, D) (for multiplier ideals). Moreover, all the basic properties of F-
singularities, generalized test ideals and F-jumping exponents stated in Propositions
2.3 and 2.8 and Remarks 2.5 and 2.10 hold true also in this setup if we replace
“F-pure”, “strongly F-regular”, “generalized test ideal τ(X, tD)”, “F-pure threshold”
and “F-jumping exponent” by “lc”, “klt”, “multiplier ideal J (X, tD)”, “log canonical
threshold” and “jumping coefficient (for multiplier ideals)”, respectively. We refer the
reader to [K], [L] and [ELSV] for more detail.

To compare F-pure and log canonical thresholds, we assume dim X = 2, so that
we can speak of the log canonical threshold lct(X, D) in all characteristics. When the
base field k is of characteristic p > 0, the F-purity of the pair (X, tD) implies that
(X, tD) is lc [HW2, Theorem 3.3]. Hence we always have the inequality fpt(X, D) ≤
lct(X, D). This inequality may fail to be an equality. But, roughly speaking, we
have fpt(X, D) → lct(X, D) as p → ∞. This can be made precise by considering
reduction modulo p of a pair defined over a field of characteristic zero. To illustrate
this, let (X, D) be a pair defined over Q. Let (Xp, Dp) be the reduction of (X, D)
defined over Fp; this makes sense for large p. Then by [HY, Theorem 6.8], for any
t < lct(X, D), there exists p(t) ∈ N such that τ(Xp, tDp) = J (Xp, tDp) = OXp for all
primes p ≥ p(t). Therefore we have that

lct(X, D) = lim
p→∞ fpt(Xp, Dp).

Example 2.15. Let D = divX(f) be the divisor defined by f ∈ R = Fp[[x, y]] on
X = Spec R.

(1) Let f = x3 − y2. Then we obtain a log resolution μ : Y → X of (X, D) by
blowing up at a point three times. If we denote the exceptional curve of the ith
blowing-up by Ei (i = 1, 2, 3) and the strict transform of D on Y by D̃, respectively,
then KY = μ∗KX + E1 + 2E2 + 4E3 and μ∗D = D̃ + 2E1 + 3E2 + 6E3, so that
KY = μ∗(KX + tD) − tD̃ + (1 − 2t)E1 + (2 − 3t)E2 + (4 − 6t)E3. Hence (X, tD) is
lc if and only if t ≤ 5

6 , and thus lct(X, D) = 5
6 . On the other hand, using Fedder’s

criterion (Proposition 2.12) we verify that fpt(X, D) = 1
2 if p = 2; 2

3 if p = 3; 5
6 if

p ≡ 1 mod 3; and 5p−1
6p if p ≡ 2 mod 3.3 The jumping coefficients of (X, D) are 5

6 and
1 mod Z, and the F-jumping exponents are fpt(X, D) and 1 mod Z.

3There is an error in the description of [HW2, Example 2.9(3)].
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(2) Let f = xy(x + y)(x − y). Then the jumping coefficients of (X, D) are 1
2 =

lct(X, D), 3
4 and 1 mod Z. On the other hand, fpt(X, D) = 1

2 if p = 2 or p ≡ 1 mod 4;
and p−1

2p if p ≡ 3 mod 4. If p = 3, then the F-jumping exponents are 1
3 = fpt(X, D),

2
3 and 1 mod Z. The ideals J (X, cD) and τ(X, cD) corresponding to the first, second
and third (F-)jumping coefficients are m = (x, y), m2 and fR, respectively.

Looking at the above examples, we are led to some questions: If the pair (X, D) is
defined over Q, is the F-pure threshold fpt(Xp, Dp) of the modulo p reduction equal to
the log canonical threshold lct(X, D) for infinitely many primes p? This seems a very
difficult problem even in the case dimX = 2. Also, it is natural to ask the following
question since the jumping coefficients (for multiplier ideals) of a pair (X, D) form a
discrete set of rational numbers.

Conjecture 2.16. Let (R,m) be a regular local ring of characteristic p > 0 and
suppose f ∈ m as in Notation 2.1.

(1) The F-jumping exponents of (R, f) are rational numbers.
(2) The set of F-jumping exponents of (R, f) is discrete. Equivalently, the set of

ideals {τ(f t) | 0 < t ≤ 1} is finite.

There is also another way to phrase Conjecture 2.16. We may assume
R = k[[x1, . . . , xd]]. The F-threshold cJ(f) of (R, f) with respect to an ideal J that
contains a power of f is the infimum of the a/q where (a, q) runs over all pairs with
fa ∈ J [q]. Proposition 2.12 shows that (1) of Conjecture 2.16 holds if the cJ(f) are
rational, while (2) holds if the cJ(f), where J runs over the ideals containing a power
of f , form a discrete set. Monsky’s appendix shows that this is the case if d = 2 and
k is finite. Indeed Remark A.3 and Theorems A.10 and A.12 of the appendix give:

Theorem 2.17. Let (R,m) be a two-dimensional regular local ring of characteristic
p > 0 with finite residue field R/m and let 0 �= f ∈ m. Then the cJ(f), where J runs
over the ideals containing a power of f , form a discrete set of rational numbers.

The discussion above now gives Conjecture 2.16 when dimR = 2 and R/m is a
finite field. Theorem 1.1 follows immediately.

3. F-pure thresholds and the function ϕf for degree d forms

In this section, k will always denote an algebraically closed field of characteristic
p, f ∈ k[x, y] a homogeneous polynomial of degree d and D the divisor of zeros of f
on the projective line P1 over k. For a non-negative real number t, we say that the
pair (P1, tD) is F-split if the e-times iterated Frobenius map F e : O → F e

∗O of P1,
followed by the natural inclusion F e

∗O ↪→ F e
∗O(�(q − 1)tD�),

F e : O → F e
∗O(�(q − 1)tD�),

is injective for all q = pe. The following lemma, which is easily verified by computing
Čech cohomology, enables us to compute the F-pure threshold cm(f) in terms of the
geometry of P1; cf. [F] and [HW2].

Lemma 3.1. The following conditions are equivalent.
(1) The pair (k[[x, y]], f t) is F-pure.
(2) The pair (P1, tD) is F-split.
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(3) For all q = pe, f�t(q−1)� /∈ (xq, yq).
(4) The map

F e : H1(P1,O(KP1)) → H1(P1,O(qKP1 + �(q − 1)tD�))
is injective for all q = pe.

To determine the injectivity of the map in (4) of the above lemma, we employ the
following

Lemma 3.2 ([HW1]). Let A, B be integral divisors on a smooth projective curve X
with 0 ≤ B ≤ (p−1)Bred, where Bred =

∑
P∈Supp(B) P is the reduced part of B. Then

the map
F : H1(X,OX(A)) → H1(X,OX(pA + B))

is injective if deg(KX + pA + B + Bred) < 0.

Proof. The log de Rham complex Ω•
X(log Bred) with log poles along Bred induces

a complex F∗Ω•
X(log Bred)(B) = F∗(Ω•

X(log Bred) ⊗ OX(B)) of OX -modules. Since
0 ≤ B ≤ (p − 1)Bred, this complex gives rise to an exact sequence

0 → OX → F∗OX(B) → B → 0,

where B ⊂ F∗Ω1
X(log Bred)(B) = F∗OX(KX + B + Bred) is the first coboundary.

Tensoring this sequence with OX(A) and looking at the cohomology long exact se-
quence, we see that the injectivity of the Frobenius map follows from the vanishing
of H0(X,OX(A)⊗F∗OX(KX + B + Bred)) = H0(X,OX(KX + pA + B + Bred)). �

Proposition 3.3. Let f ∈ k[x, y] be a form of degree d with r linear factors, and
assume that no linear form appears in f with exponent > d/2. Then the pair (P1, tD)
is F-split for 0 ≤ t ≤ (2p − r + 2)/pd. Hence

cm(f) ≥ 2p − r + 2
pd

.

Proof. Since F-purity is a closed condition with respect to the coefficient (Proposition
2.6), it suffices to show that the pair (P1, tD) is F-split for all t < (2p− r +2)/pd. To
prove this it is enough to show the injectivity of the map

F e : H1(P1,O(KP1)) → H1(P1,O(�pe(KP1 + tD)�))
for all e ∈ N. We note that �tD� = 0 since all the coefficients of D are at most d/2
by our assumption. Hence the above map is a composition of maps

F : H1(P1,O(qKP1 + �qtD�)) → H1(P1,O(pqKP1 + �pqtD�))
with q = p0, . . . , pe−1. To these we apply Lemma 3.2 with A = qKP1 +�qtD� and B =
�pqtD�−p�qtD�. Since Bred consists of r points by our assumption and deg�pqtD� <
q(2p − r + 2) if t < (2p − r + 2)/pd,

deg(KP1 +pqKP1 +�pqtD�+Bred) < −2(1+pq)+q(2p−r+2)+r = (q−1)(2−r) ≤ 0,

giving injectivity. �

Remark 3.4. In the situation of Proposition 3.3, it is easy to see that the log canonical
threshold of the pair is 2/d.
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The above lower bound for F-pure thresholds was also obtained by Monsky by
a different method [M3]. His ideas allow us to give for each d (and p) a finite list
containing the possible values of cm(f) for forms f of degree d. For this purpose, let
q be a power of p, a an integer with 0 ≤ a ≤ q, and consider the following exact
sequence on P1,

(†) 0 → O(−c1)⊕O(−c2) → O(−p)2 ⊕O(−ad)
(xp,yp,fa)−→ O → 0

Monsky calls the absolute value |c1 − c2| the “syzygy gap.”

Definition 3.5. With notation as above, define functions ϕ = ϕf and δ = δf on [0, 1]
to be the continuous prolongations of the functions on [0, 1] ∩ Z[1/p] whose values at
a/q, where a ∈ Z ∩ [0, q] and q is a power of p, are as follows.

(1) ϕ(a/q) = q−2 dimk k[x, y]/(xq, yq, fa).
(2) δ(a/q) = |c1 − c2|/q, where |c1 − c2| is the syzygy gap for the sequence (†).

Note that the F-pure threshold is cm(f) = inf{t ∈ [0, 1] | ϕf (t) = 1}.
Lemma 3.6 ([M3]).

ϕ(t) = d · t − d2

4
t2 +

δ(t)2

4
.

The first non-trivial case is when f is a separable quartic form, i.e., d = r = 4. In
this case we have

Corollary 3.7. If d = r = 4, then cm(f) = 1/2 or (p − 1)/2p.

Proof. By Lemma 3.6, ϕ(t) = 4t − 4t2 + δ(t)2/4. This in particular implies that
δ((p − 1)/2p)2 ≤ 4/p2, so that δ((p − 1)/2p) = 0 or 2/p.

In the first case, ϕ((p−1)/2p) < 1, so that f (p−1)/2 /∈ (xp, yp). But this implies that
f (q−1)/2 /∈ (xq, yq) for all q, since for any q �= 1, f (q−1)/2 /∈ (xq, yq) ⇔ (z2 − f)q−1 /∈
(xq, yq, zq) ⇔ k[[x, y, z]]/(z2 − f) is F-pure. Hence cm(f) = 1/2 in this case.

In the second case, one has δ((p − 1)/2p) = 1, so that cm(f) ≤ (p − 1)/2p. Propo-
sition 3.3 shows that equality holds. �
Remark 3.8. If X is the elliptic curve obtained as the double cover of P1 ramified
over the four zeros of f , then X is ordinary if cm(f) = 1/2 and X is supersingular if
cm(f) = (p − 1)/2p.

The author was informed of the following result by Monsky.

Corollary 3.9 (Monsky). Suppose d = r = 5.
If p ≡ 1 mod 5, then cm(f) = 2/5 or (2p − 2)/5p;
If p ≡ 3 mod 5, then cm(f) = (2p − 1)/5p;
If p ≡ 2 mod 5, then cm(f) = (2p2 − 3)/5p2 or (2p3 − 1)/5p3;
If p ≡ 4 mod 5, then cm(f) = 2/5, (2p − 3)/5p or (2p2 − 2)/5p2.

Our method will also prove this. For example, consider the case p ≡ 4 mod 5.
Since d = 5, one has ϕ(t) = 5t−25t2/4+δ(t)2/4. It follows from ϕ((2p−3)/5p) ≤ 1

that δ((2p − 3)/5p) ≤ 3/p. This implies that the syzygy gap for q = p and a =
(2p − 3)/5 ∈ Z is 1 or 3, since c1 − c2 ≡ c1 + c2 = 2p + 5a ≡ 1 mod 2.

If δ((2p − 3)/5p) = 3/p, then ϕ((2p − 3)/5p) = 1, so that cm(f) ≤ (2p − 3)/5p.
Proposition 3.3 then gives equality.
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Now assume that the syzygy gap is 1. In this case, we prove

Claim 1. If δ((2p − 3)/5p) = 1/p, then cm(f) ≥ (2p2 − 2)/5p2.

It is enough to show the injectivity of the map

F e : H1(P1,O(KP1)) → H1(P1,O(�pe(KP1 + tD)�))
for all t < (2p2 − 2)/5p2 and all e ∈ N. We write this map as a composition of maps

F : H1(P1,O(qKP1 + �qtD�)) → H1(P1,O(pqKP1 + �pqtD�))
with q = p0, . . . , pe−1. Each of these maps with q > 1 is injective. Indeed, if q ≥ p,
then �pqt� < (2p2 − 2)q/5p ∈ Z, so that �pqt� + 1 ≤ (2p2 − 2)q/5p. Hence

deg(KP1 + pqKP1 + �pqtD� + D) = −2(1 + pq) + 5(�pqt� + 1) ≤ −2 − 2q

p
< 0,

and Lemma 3.2 applies. The injectivity for q = p0 = 1 uses the syzygy gap assump-
tion. Namely, it follows from δ((2p − 3)/5p) = 1/p that ϕ(2p − 3)/5p) < 1. So
f (2p−3)/5 is not in (xp, yp), and the map

F : H1(P1,O(KP1)) → H1(P1,O(pKP1 +
2p − 3

5
D))

is injective. However, since �pt� ≤ �(2p2 − 2)/5p� = (2p − 3)/5, this map factors
through F : H1(P1,O(KP1)) → H1(P1,O(pKP1 + �pt�D)), yielding injectivity. This
completes the proof of Claim 1.

We keep the assumption δ((2p − 3)/5p) = 1/p and consider next the syzygy gap
for q = p2 and a = (2p2 − 2)/5 ∈ 2Z. It follows from ϕ((2p2 − 2)/5p2) ≤ 1 that this
syzygy gap is 0 or 2, so that δ((2p2 − 2)/5p2) = 0 or 2/p2.

In the latter case, we have ϕ((2p2 − 2)/5p2) = 1, so that cm(f) ≤ (2p2 − 2)/5p2.
Claim 1 then shows that cm(f) = (2p2 − 2)/5p2. It remains to prove

Claim 2. If δ((2p2 − 2)/5p2) = 0, then cm(f) = 2/5.

Note that the assumption δ((2p2 − 2)/5p2) = 0 implies f (2p2−2)/5 /∈ (xp2
, yp2

), so
that the map

F 2 : H1(P1,O(KP1)) → H1(P1,O(p2KP1 +
2p2 − 2

5
D))

is injective. This is the same as saying that the map F 2 : O → F 2
∗O( 2p2−2

5 D) splits
as an O-module homomorphism. Tensoring this map with O( 2p2−2

5 D) and pushing
forward by F 2, we see that the map F 2 : F 2

∗O( 2p2−2
5 D) → F 4

∗O( 2p4−2
5 D) splits as

an F 2
∗O-module homomorphism. Composing this map with the previous one, we

obtain the splitting of F 4 : O → F 4
∗O( 2p4−2

5 D). Iterating this, we see that the map
F 2e : O → F 2e

∗ O( 2
5 (q2 − 1)D) splits as an O-module homomorphism for all q = pe.

Thus the pair (P1, 2
5D) is F-pure and cm(f) = 2/5.

This completes the proof of Corollary 3.9 in the case p ≡ 4 mod 5. The other cases
are proved similarly.

We now consider ϕf for large p.
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Theorem 3.10 (cf. [M3]). Let f ∈ k[x, y] be a separable form of degree d ≥ 2 with
char k = p > 0 and let the functions ϕ = ϕf and δ = δf be as in Definition 3.5. Then
δ(a/p) ≤ (d − 2)/p for 0 ≤ a ≤ 2p/d. In particular, for fixed d,

ϕ(t) = d · t − (d2/4)t2 + O(1/p2) on [0, 2/d].

Proof. Consider the exact sequence (†) on P1 = Proj k[x, y] used to defined δ(a/p).
We have the following commutative diagram consisting of (†) together with (†) for
a = 0.

0 > O(−c1) ⊕O(−c2) > O(−p)2 ⊕O(−ad)
(xp, yp, fa)

> O > 0

||
0 > O(−p)2

∨
> O(−p)2 ⊕O

1 ⊕ 1 ⊕ fa

∨ (xp, yp, 1)
> O > 0

It follows that ci ≥ p from the injectivity of the map O(−c1)⊕O(−c2) → O(−p)2 on
the left. Assume that c1 ≤ c2. Then c1 ≤ p + ad/2 since c1 + c2 = 2p + ad. Our goal
is to show that the syzygy gap c2 − c1 is ≤ d − 2.

We represent the map O(−c1)⊕O(−c2) → O(−p)2⊕O(−ad) in the exact sequence
(†) by a 3×2-matrix and let h1, h2, g ∈ k[x, y] be its first column entries; g : O(−c1) →
O(−ad) is a form of degree c1 − ad, and h1, h2 are forms of the same degree c1 − p.
Then the exactness of the sequence implies that fag ∈ (xp, yp).

First, we consider the case g = 0. In this case, h1, h2 �= 0 and xph1 + yph2 = 0.
Hence yp|h1, xp|h2 and deg hi ≥ p, so that 2p ≤ c1 ≤ p + ad/2 ≤ 2p. So the only
possibility is that a = 2p/d. Then fa ∈ (xp, yp), and the sequence (†) is

0 → O(−2p)2 → O(−p)2 ⊕O(−2p) → O → 0.

Thus the syzygy gap is c2 − c1 = 2p − 2p = 0.
Now assume that g �= 0, and let E be the divisor of zeros of g on P1. Suppose that

c2 − c1 > d − 2. Then c1 < p + (ad − d + 2)/2, so that

deg((p + 1)KP1 + aD + E + (aD + E)red) ≤ −2(p + 1) + d(a + 1) + 2(c1 − ad) < 0.

Hence by Proposition 3.2, the map

F : H1(P1,O(KP1)) → H1(P1,O(pKP1 + aD + E))

is injective, contradicting the fact that fag ∈ (xp, yp). Thus c2 − c1 ≤ d− 2, and this
completes the proof. �
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Appendix A

Paul Monsky

k is a field of characteristic p > 0, q will always denote a power of p, (A,m) is the
local ring k[[x1, . . . , xs]] and f �= 0 is a fixed element of m. J is an ideal of A that
contains a power of f . deg J is the colength of J ; it may be ∞.

Definition A.1. cJ = cJ(f) is the infimum of all a
q , where (a, q) runs over the pairs

with fa ∈ J [q].

Conjecture A.2 (Hara). Let J range over all ideals containing a power of f . Then
the set of all cJ has finite intersection with [0, 1].

Remark A.3. It’s easily verified that cJ [p] = p·cJ and that c[J:f ] = cJ − 1, provided
cJ ≥ 1. So if Conjecture A.2 holds, the set of all cJ is a discrete subset of [0,∞).
Furthermore, if u is in this set so are all the pnu − �pnu�. So some two of these
numbers are equal, and u ∈ Q.

Remark A.4. In the attached article Hara shows that certain rationality conjectures
for “F-pure thresholds” and “F-jumping coefficients” follow from Conjecture A.2.

Suppose from now on that s = 2 and that the field k is finite. We shall use p-
fractal techniques from [MT] to prove Conjecture A.2. Write (f) =

∏r
i=1(f

ei
i ) with

fi pairwise prime irreducibles. Since s = 2, J = HI with deg I < ∞. We shall
assume cJ < 1. Then fq−1 ∈ (H)q for large q; it follows that (H) = (

∏
f bi

i ) with
bi < ei. Since there are only finitely many possibilities for b1, . . . , br, it suffices to
prove Conjecture A.2 where J ranges over the ideals (

∏
f bi

i )I, with bi < ei fixed, and
deg I < ∞. From now on we fix b1, . . . , br.

Definition A.5. If g is a continuous non-decreasing function on [0, 1], c(g), the
critical point of g, is the infimum of all t with g(t) = g(1).

Lemma A.6. Let g1, . . . , gn be continuous non-decreasing functions on [0, 1]. If
ci = c(gi) are distinct and > 0, then g1, . . . , gn are linearly independent over R.

Proof. We may assume 0 < c1 < · · · < cn. Suppose
∑

aigi = 0. Restricting this
relation to [cn−1, cn], where each of g1, . . . , gn−1 is constant but gn is not, we find
that an = 0, and an induction completes the proof. �
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Definition A.7 (See further [MT]). Suppose deg I < ∞.
(a) ΦI : [0,∞)r → [0,∞) is the continuous function with

ΦI

(
a1

q
, . . . ,

ar

q

)
= q−2 deg(I [q],

∏
fai

i ).

(b) ΨI : [0, 1]r → [0,∞) is defined by:
(1) If any eiti ≤ bi then ΨI(t1, . . . , tr) = 0.
(2) Otherwise, ΨI(t1, . . . , tr) = ΦI(e1t1 − b1, . . . , ertr − br).

(c) ψI(t) = ΨI(t, . . . , t), 0 ≤ t ≤ 1.

Note that ψI is continuous and non-decreasing.

Lemma A.8. Suppose J = (
∏

f bi
i )I, with deg I < ∞. If cJ < 1 then cJ = c(ψI).

Proof. Since cJ < 1, fq ∈ J [q] for some q, f ∈ J ,
∏

fei−bi
i ∈ I, and ψI(1) =

ΦI(e1 − b1, . . . , er − br) = deg I. Also

fa ∈ J [q] ⇔
∏

faei−qbi

i ∈ I [q]

⇔ ΦI

(
ae1 − qb1

q
, . . . ,

aer − qbr

q

)
= deg I

⇔ ψI

(
a

q

)
= deg I,

and the lemma follows. �
Remark A.9. Suppose that the ΨI of Definition A.7 span a finite dimensional real
vector space. Then the same is true of the ψI , Lemmas A.6 and A.8 show that the
cJ that are < 1 form a finite set, and Conjecture A.2 follows.

Theorem A.10. Suppose that f is square-free, so that each ei = 1. Then Conjecture
A.2 holds.

Proof. Now b1 = · · · = br = 0, and ΨI is just the restriction of ΦI to [0, 1]r. Since k
is finite we may invoke Proposition 3.5 of [MT], concluding that the space spanned
by the ΨI is finite-dimensional. (The key to the proof of Proposition 3.5 is Lemma
3.2 which says that there are only finitely many “ideal classes” in k[[x1, x2]]/h when
k is finite and h is square-free.) �

We now treat arbitrary f , using a technique from [MT]. An independent argument
along similar lines has been given by Hara.

Let V be the vector space of functions on [0, 1]r spanned by the constant functions
together with the restrictions to [0, 1]r of the ΦI , deg I < ∞. As we’ve noted, [MT]
shows that dimV < ∞. For each integer vector d = (d1, . . . , dr) with 0 ≤ di < ei, let
X(d) consist of all (t1, . . . , tr) in [0, 1]r with each eiti in [di, 1 + di].

Lemma A.11 (See further [MT]). The restriction of ΨI to any X(d) is
(t1, . . . , tr) �→ G(e1t1 − d1, . . . , ertr − dr) for some G in V .

Since V is finite dimensional and there are only finitely many X(d), this shows
that the ΨI span a finite dimensional space and we conclude:

Theorem A.12. Theorem A.10 is true without restriction on f .
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It remains to prove Lemma A.11. Suppose first that dj < bj for some j. Then for
each (t1, . . . , tr) in X(d), ejtj − bj ≤ 0. So ΨI vanishes on X(d) and we take G = 0.
Assume then that di ≥ bi, 1 ≤ i ≤ r. Set g =

∏
fdi−bi

i and I0 = [I : g]. Suppose that
(a1

q , . . . , ar

q ) is in X(d). Then ΨI(a1
q , . . . , ar

q ) = q−2 deg(I [q],
∏

faiei−qbi

i ). Let si =
aiei−qdi, so that 0 ≤ si ≤ q. Then ΨI(a1

q , . . . , ar

q ) = q−2 deg(I [q], gq
∏

fsi
i ) = deg I−

q−2 deg(I [q] : gq
∏

fsi
i ). This is evidently equal to deg I −deg I0 + q−2 deg(I [q]

0 ,
∏

fsi
i )

= deg I − deg I0 + ΦI0(
s1
q , . . . , sr

q ). Since si

q = ei(ai

q ) − di, we conclude that Lemma
A.11 holds if we take G to be the sum of the constant function deg I −deg I0 and the
restriction to [0, 1]r of ΦI0 ; this completes the proof.

Remark A.13. The above approach to Conjecture A.2 relies heavily on Proposition
3.5 of [MT]. When s ≥ 3 there is good reason to believe that this Proposition does
not always hold. So our attack on Hara’s conjectures may have limited use in higher
dimensions.
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