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MODULAR INVARIANCE, MODULAR IDENTITIES AND
SUPERSINGULAR j-INVARIANTS

Antun Milas

Abstract. To every k-dimensional modular invariant vector space we associate a mod-

ular form on SL(2, Z) of weight 2k. We explore number theoretic properties of this
form and find a sufficient condition for its vanishing which yields modular identities

(e.g., Ramanujan-Watson’s modular identities). Furthermore, we focus on a family of

modular invariant spaces coming from suitable two-dimensional spaces via the symmet-
ric power construction. In particular, we consider a two-dimensional space spanned by

graded dimensions of certain level one modules for the affine Kac-Moody Lie algebra of

type D
(1)
4 . In this case, the reduction modulo prime p = 2k + 3 ≥ 5 of the modular

form associated to the k-th symmetric power classifies supersingular elliptic curves in

characteristic p. This construction also gives a new interpretation of certain modular

forms studied by Kaneko and Zagier.

1. Introduction and notation

An especially interesting feature of every rational vertex operator algebra is the
modular invariance of graded dimensions (see [27] for a precise statement). What
distinguishes modular invariant spaces coming from representations of vertex operator
algebras is the fact that these spaces are equipped with special spanning sets indexed
by irreducible modules of the algebra, and are subject to the Verlinde formula (cf.
[11]). Moreover, every irreducible graded dimension (or simply, character) admits a
q-expansion of the form

qh̄
∞∑

n=0

anqn,

where h̄ ∈ Q and an ∈ Z≥0.
In [16] we showed that the internal structure of certain vertex operator algebras can

be conveniently used to prove some modular identities without much use of the theory
of modular forms. The key ingredient in our approach was played by certain Wron-
skian determinants which are intimately related to ordinary differential equations
with coefficients being holomorphic modular forms. Additionally, these differential
equations are closely related to certain finiteness condition on the vertex operator
algebra in question. In a joint work with Mortenson and Ono [18] we studied differ-
ential equations associated to (2, 2k + 1) Andrews-Gordon series and observed that a
suitably normalized constant coefficient in these ODEs (expressible as a quotient of
two Wronskians), when restricted modulo prime p = 2k + 1 is essentially the locus
of supersingular j-invariants in characteristic p. It is an open problem to find an
alternative description of the modular forms considered in [18].

Received by the editors January 4, 2006.

2000 Mathematics Subject Classification. 11F03, 11F30, 17B67, 17B69.

729



730 ANTUN MILAS

The aim of this note is to build a framework for studying modular forms expressed
as a quotient of two Wronskians as in [18]. In addition we present a very elegant
way of constructing supersingular polynomials by using symmetric products. Thus
we are able to explicitly determine our modular forms and to relate them to known
constructions in the literature (cf. [14]).

First we show how to construct a modular form of weight 2k from a k-dimensional
modular invariant space. Let V be modular invariant vector space with a basis

f1(τ), ..., fk(τ) 1, i.e., for every i and γ =
[

a b
c d

]
∈ SL(2, Z), there exist constants

γi,j such that

fi

(
aτ + b

cτ + d

)
=

k∑
j=1

γi,jfj(τ).

Let us denote the Wronskian determinant of f1(τ),...fk(τ) by

WV = W(q d
dq )(f1, ..., fk),

where we use the Ramanujan’s derivative
(
q d

dq

)
. This is an automorphic form on

SL(2, Z) (more precisely, a modular form with a character) of weight k(k − 1) and
its properties have been recorded in the literature (cf. [1], [16], [17], [15], [19]). It
is not hard to see that the sixth power of WV is a modular form. In addition, the
Wronskian of the derivatives of f1(τ), ..., fk(τ),

W ′
V = W(q d

dq )(f
′
1, ..., f

′
k),

is also an automorphic form of weight k(k + 1) with the same character as WV (cf.
[17]). Unlike WV and W ′

V ,

(1.1)
W ′

V (τ)
WV (τ)

is independent of the particular choice of the basis of V . This quotient, which is the
main object of our study, is a (meromorphic) modular form for SL(2, Z) of weight
2k (possibly zero) [17], [18]. We also denote by WV (resp. W ′

V ) the normalization
of WV (resp. W ′

V ) (if nonzero) in which in the q-expansion the leading coefficient is
one. Clearly, WV and WV do not depend on the basis chosen.

Alternatively, we can think of W ′
V

W as follows. There is a unique linear differential
operator DV of order k,

DV =
k∑

i=0

Pi,V (q)
(

q
d

dq

)i

,

which satisfies DV y = 0 for every y ∈ V , and Pk,V = 1. Under these conditions

P0,V (τ) = (−1)k W ′
V (τ)

WV (τ)
,

so W ′
V

W is , up to a sign, just the evaluation DV (1).
This paper is organized as follows. In Section 2 we obtain a sufficient condition for

the vanishing of W ′
V (τ)

WV (τ) (see Theorem 2.2). Then in Section 3 we focus on modular

1We refer to Section 2 for precise conditions on fi(τ).
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invariant spaces obtained via the symmetric power construction (cf. Theorem 3.2). In
Section 4 we apply results from sections 2 and 3 to prove some modular identities, such
as the Ramanujan-Watson’s modular identities for the Rogers-Ramanujan’s continued
fraction (cf. Theorem 4.1). In Section 5 we derive a recursion formula (cf. Lemma
5.1) which can be used to give another proof of Theorem 4.1. We derive the same
recursion in Section 6 in the framework of vertex operator algebras (this part can be
skipped without any loss of continuity). In Section 7 we gather some results about
supersingular elliptic curves and modular forms. Finally, in Section 8 we focus on
supersingular congruences for modular forms obtained from V = Symm(U), where U

is spanned by the graded dimensions of level one modules for D
(1)
4 (see also [18] for a

related work). Our main result, Theorem 8.3, gives a nice expression for W ′
V (τ)

WV (τ) as a
coefficient of a certain generating series studied in [14].

Throughout the paper the Eisenstein series will be denoted by

(1.2) G2k(τ) =
−B2k

2k!
+

2
(2k − 1)!

∞∑
n=1

n2k−1qn

1 − qn
, k ≥ 1.

We will also use normalized Eisenstein series

(1.3) E2k(τ) = (
−B2k

2k!
)−1G2k(τ).

As usual, the Dedekind η-function and the discriminant are defined as

η(τ) = q1/24
∞∏

n=1

(1 − qn)

Δ(τ) = E4(τ)3 − E6(τ)2.(1.4)

Then the j-function is defined as

j(τ) =
1728E4(τ)3

Δ(τ)
.

A holomorphic modular form for SL(2, Z) is assumed to be holomorphic in H (the
upper half-plane) with a possible pole at the infinity. The order of vanishing at the
infinity of f will be denoted by ordi∞(f). The graded ring of holomorphic modu-
lar forms including at the infinity will be denoted by M = C[E4, E6]. Its graded
components will be denoted by Mk. Every f(τ) ∈ Mk can be written uniquely as

(1.5) f(τ) = Δt(τ)Eδ
4(τ)Eε

6(τ)F̃ (f, j(τ)),

where F̃ (f, j) is a polynomial of degree ≤ t and

k = 12t + 4δ + 6ε,

where 0 ≤ δ ≤ 2 and 0 ≤ ε ≤ 1.

2. On the vanishing of W ′
V (τ)

WV (τ)

The goal of this section is to obtain a sufficient condition for the vanishing of W ′
V (τ)

WV (τ) .
All our modular invariant spaces are assumed to have a basis {f1(τ), ..., fk(τ)} of
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holomorphic functions in H with the q-expansion of the form

(2.6) fi(τ) = qhi

∞∑
n=0

a(i)
n qn,

where hi ∈ Q. The rationale for this assumption rests on the general form of irre-
ducible characters of rational vertex operator algebras [6] (see also [1]). In fact, in all
our applications a

(i)
n are nonnegative integers. We start with an auxiliary result:

Lemma 2.1. Let {f1(τ), ..., fk(τ)} be a basis of V with q-expansions as in (2.6).
Then we can find a (new) basis of V

(2.7) f̄i(τ) = qh̄i

∞∑
n=0

ā(i)
n qn, ā

(i)
0 �= 0, i = 1, ..., k,

where

(2.8) h̄1 < h̄2 < · · · < h̄k,

so that

ordi∞WV (τ) =
k∑

i=1

h̄i.

The numbers h̄i are uniquely determined.

Proof: The uniqueness of h̄i follows easily by the induction on k. Clearly,
W(q d

dq )(f̄1, ..., f̄k) is a nonzero multiple of W(q d
dq )(f1, ..., fk). Now, the leading co-

efficient in the q-expansion of WV is (up to a sign) the Vandermonde determinant
V (h̄1, ..., h̄k) =

∏
i<j(h̄i − h̄j) �= 0, and the leading power of q is

∑k
i=1 h̄i. �

The vanishing of W ′
V simply means that there is a linear relation

(2.9)
k∑

i=1

λifi(τ) = C �= 0.

The following result gives a sufficient condition for the vanishing of W ′
V .

Theorem 2.2. Let {f1(τ), ..., fk(τ)} be a basis of a modular invariant space V sat-
isfying (2.7) and (2.8) such that

(i) W ′
V (τ)

WV (τ) is holomorphic (i.e., WV (τ) is nonvanishing in H).
(ii) There exists r ≥ �k

6 � and fi0(τ), ..., fir (τ) with

(2.10) ordi∞fij (τ) = j, for j = 0, ..., r.

Then W ′
V (τ)

WV (τ) is identically zero. If in addition fi0(τ),...,fir
(τ) are the only fi with

positive integer powers of q, then there exist constants λi, C, such that
r∑

j=0

λifij
(τ) = C �= 0.
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Proof: Clearly, h̄ij = j for j = 0, ..., r. Because of ordi∞f ′
i0

(τ) ≥ 1 and ordi∞f ′
ij

(τ) =
j for j ≥ 1, we can find constants λj such that

(2.11) ordi∞(
r∑

j=0

λjf
′
ij

(τ)) ≥ r + 1.

We claim that W ′
V (τ)

WV (τ) is zero. Suppose that W ′
V (τ)

WV (τ) �= 0. By Lemma 2.1, we have

ordi∞WV (τ) =
∑k

i=1 h̄i and ordi∞W ′
V (τ) ≥ r + 1 +

∑k
i=1 h̄i (keep in mind that W ′

V

is just the Wronskian of f ′
1(τ), ..., f ′

k(τ)). Thus,

ordi∞
W ′

V (τ)
WV (τ)

≥ r + 1 > �k

6
�.

It is known that the order of vanishing at the infinity of a nonzero holomorphic
modular form of weight 2k is at most �k

6 �. The first claim holds.
Suppose now that fi0(τ),...,fir

(τ) are the only fi with positive integer powers of
q. Because of (2.7) q-powers of fi are integral if and only if h̄i is an integer. If∑r

j=0 λjf
′
ij

(τ) is nonzero, then ordi∞
∑r

j=0 λjf
′
ij

(τ) is finite and therefore ordi∞W ′
V

is also finite and W ′
V is nonzero. We have a contradiction. �

3. Wronskians and symmetric powers

Definition 3.1. Let U be a modular invariant space and m a positive integer. The
modular invariant space spanned by

{f1 · · · fm : fi ∈ U},
is called the m-th symmetric power 2 of U and is denoted by Symm(U).

For dim(U) ≥ 3 it is a nontrivial task to find even the dimension of V = Symm(U),
let alone to extract any information regarding W ′

V (τ)
WV (τ) . However, if dim(U) = 2, the

situation is much better and we have the following result.

Theorem 3.2. Let U be a two-dimensional modular invariant space, then V =
Symm(U) is (m + 1)-dimensional and

WV (τ) = WU (τ)
m(m+1)

2 .

If in addition WU (τ) is nonvanishing, then W ′
V (τ)

WV (τ) is a holomorphic modular form of
weight 2m + 2 and

(3.12) WV (τ) = η(τ)2m(m+1).

Proof: Let f1 and f2 form a basis of U . Then the set

(3.13) {f i
1f

m−i
2 : i = 0, ...,m},

is linearly independent (otherwise f1/f2 would be a constant), so it gives a basis of
V . Now, by using basic properties of the Wronskian, we have

2This terminology will be explained later in Section 5.
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WV (τ) = W(q d
dq )(f

m
1 , fm−1

1 f2, ..., f1f
m−1
2 , fm

2 )

= (fm
1 )m+1W(q d

dq )(1, (f2/f1), ..., (f2/f1)m)

= f
m(m+1)
1 W(q d

dq )((f2/f1)′, ..., ((f2/f1)m)′)

= f
m(m+1)
1 ((f2/f1)′)mW(q d

dq )(1, (f2/f1), ..., (m − 1)(f2/f1)m−1)

= m!fm(m+1)
1 ((f2/f1)′)mW(q d

dq )(1, (f2/f1), ..., (f2/f1)m−1)

=

(
m∏

k=1

k!

)
f

m(m+1)
1 ((f2/f1)′)m(m+1)/2

=

(
m∏

k=1

k!

)
(f ′

2f1 − f ′
1f2)m(m+1)/2

=

(
m∏

k=1

k!

)
WU (τ)m(m+1)/2.

If WU is nonvanishing then WU (τ) = η(τ)4 (cf. [17]) and (3.12) follows. �

4. Ramanujan-Watson’s modular identities

The Rogers-Ramanujan continued fraction [2] is defined as

R(q) :=
q1/5

1 +
q

1 +
q

1 + · · ·

.

In one of his notebooks Ramanujan stated that R(e−π
√

r) can be exactly found for
every positive rational number r. The main identities that support Ramanujan’s
claim are the Rogers-Ramanujan identities (cf. [2]) and a pair of modular identities
recorded by Ramanujan [21]:

Theorem 4.1. We have

(4.14)
1

R(q)
− 1 − R(q) =

η(τ/5)
η(5τ)

,

(4.15)
1

R(q)5
− 11 − R(q)5 =

(
η(τ)
η(5τ)

)6

.

The first proof of Theorem 4.1 was obtained by Watson [25]. There are other proofs
in the literature that use methods similar to those available to Ramanujan (see [3]
for another proof and [4] for a discussion on this subject). More analytic proofs use
nontrivial facts such as explicit forms of Hauptmodules for certain modular curves
(see [8] for a nice review). We will prove (4.15) by using Theorem 2.2.

Firstly, we will need the following well-known fact (we refer the reader to [5] for a
discussion in the context of the two-dimensional conformal field theory):
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Lemma 4.2. Let U be the vector space spanned by

(4.16) ch1(τ) := q11/60
∞∏

n=0

1
(1 − q5n+2)(1 − q5n+3)

,

(4.17) ch2(τ) := q−1/60
∞∏

n=0

1
(1 − q5n+1)(1 − q5n+4)

.

The modular transformation

τ �→ −1
τ

,

induces an endomorphism of U , which in the basis {ch1, ch2} is represented by the
matrix

S =
2√
5

[ −sin
(

2π
5

)
sin

(
4π
5

)
sin

(
4π
5

)
sin

(
2π
5

) ]
.

Proof: By using Jacobi Triple Product Identity we first rewrite (4.16)-(4.17) as quo-
tients of two theta constants

ch1(τ) =
q9/40

∑
n∈Z

(−1)nq
5n2+3n

2

η(τ)
,(4.18)

ch2(τ) =
q1/40

∑
n∈Z

(−1)nq
5n2+n

2

η(τ)
.(4.19)

Now, apply the formula

(4.20) η(−1/τ) =
√−iτη(τ).

and the modular transformation formulas for the two theta constants in the numer-
ators of (4.18)-(4.19), under τ �→ −1

τ . For an explicit computations in this case see,
for instance, [8]. �
Proof of (4.14): Observe first that

ch1(τ) · ch2(τ) =
η(5τ)
η(τ)

.

From (4.20) we have

(4.21) ch1(−1/τ)ch2(−1/τ) =

√−iτ/5η(τ/5)√−iτη(τ)
=

1√
5

η(τ/5)
η(τ)

.

On the other hand because of the lemma and a few trigonometric identities for
sin

(
2π
5

)
and sin

(
4π
5

)
(4.22) ch1(−1/τ)ch2(−1/τ) =

1√
5

(−ch1(τ)ch2(τ) − ch1(τ)2 + ch2(τ)2
)
.

Now, after we equate the right-hand sides of (4.21) and (4.22), cancel the factor 1√
5

and multiply both sides by

1
ch1(τ)ch2(τ)

=
η(τ)
η(5τ)

,
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we get

(4.23) −1 − ch1(τ)
ch2(τ)

+
ch2(τ)
ch1(τ)

=
η(τ/5)
η(5τ)

.

Finally, we recall the Rogers-Ramanujan identities [2]:

R(q) = q1/5

∏∞
n=0(1 − q5n+1)(1 − q5n+4)∏∞
n=0(1 − q5n+2)(1 − q5n+3)

and observe that R(τ) = ch1(τ)
ch2(τ) . �

Proof of (4.15): We will prove the following equivalent statement:

ch2(τ)5

ch1(τ)5
− 11 − ch1(τ)5

ch2(τ)5
=

(
1

ch1(τ)ch2(τ)

)6

,

which can be rewritten as

(4.24) ch2(τ)11ch1(τ) − 11ch1(τ)6ch2(τ)6 − ch1(τ)11ch2(τ) = 1.

Consider the 12-th symmetric power of U with a basis

{chi
1(τ)ch12−i

2 (τ), 0 ≤ i ≤ 12}.
If we let chi

1(τ)ch12−j
2 (τ) = qh̄j + · · · , then the exponents h̄j satisfy h̄0 < h̄1 < · · · <

h̄12. The crucial observation here is that

chi
1(τ)ch12−i

2 (τ) ∈ Q[[q]],

if and only if i = 1, i = 6 or i = 11. For all other i the powers are nonintegral. More
precisely,

ch1(τ)ch11
2 (τ) = 1 + 11q + 67q2 · · · ,

ch6
1(τ)ch6

2(τ) = q + 6q2 + · · · ,

ch11
1 (τ)ch2(τ) = q2 + · · · .(4.25)

Observe that

(4.26) ordi∞((ch1(τ)ch11
2 (τ))′ − 11(ch6

1(τ)ch6
2(τ))′ − (ch11

1 (τ)ch2(τ))′) ≥ 3.

Now, we are ready to apply Theorem 2.2. Here k = 13, r = 2, and WSym12(U)(τ) =
Δ(τ)13 is nonvanishing (cf. [16] and Theorem 3.2). Now, (4.26) and Theorem 2.2
imply

(4.27) ch2(τ)11ch1(τ) − 11ch1(τ)6ch2(τ)6 − ch1(τ)11ch2(τ) = C �= 0.

The constant C is clearly 1. �

Remark 1. It is possible to prove (4.15) without referring to Theorem 2.2 and [16].
Notice that (4.26) implies that ordi∞(W ′

V ) ≥ 16. But there is no modular form of
weight 13 · 14 = 182 with this behavior at the cusp.
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Our Theorem 2.2 can be applied in a variety of situations as long as the degree
of the symmetric power is not too big. Here we apply our method in the case of the
vector space spanned by

f1(τ) =
∑

n∈Z
qn2

η(τ)
,

f2(τ) =
∑

n∈Z
q(n+1/2)2

η(τ)
.

Those familiar with the theory of affine Kac-Moody Lie algebras will recognize these
series as modified graded dimensions of two distinguished irreducible representations
of the affine Lie algebra of type A

(1)
1 [12]. It is not hard to see that the vector space

spanned by f1(τ) and f2(τ) is modular invariant [5], [12]. Then we have the following
analogue of Theorem 4.1:

Proposition 4.3. We have

(4.28) 2
f1(τ)
f2(τ)

− 2
f2(τ)
f1(τ)

=
(

η(τ/2)
η(2τ)

)4

,

and

(4.29) f1(τ)5f2(τ) − f2(τ)5f1(τ) = 2.

The identity (4.29) is equivalent to the following classical identity for Weber modular
functions:

(4.30)
∞∏

n=1

(1 + q2n−1)8 − 16q
∞∏

n=1

(1 + q2n)8 =
∞∏

n=1

(1 − q2n−1)8.

Proof: Firstly, we apply the Jacobi Triple Product Identity [2] so that

(4.31) f1(τ) =
∏∞

n=1(1 − q2n)(1 + q2n−1)2

η(τ)
,

(4.32) f2(τ) =
2q1/4

∏∞
n=1(1 − q2n)(1 + q2n)2

η(τ)
.

For (4.28), notice that

f1(τ)f2(τ) = 2
(

η(2τ)
η(τ)

)4

.

Now apply τ �→ −1
τ and proceed as in the proof of (4.14).

Similarly, (4.29) follows from analysis of f i
1(τ)f6−i

2 (τ), by following the steps as in
the proof of (4.15). The identity (4.30) is now a consequence of (4.29), (4.31) and
(4.32). �
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5. Vanishing of W′
V (τ)

WV (τ) : ODE approach

We have seen that W ′
V (τ)

WV (τ) = 0 can be deduced by a careful analysis of the order of

vanishing of W ′
V (τ)

WV (τ) (or W ′
V ) at the infinity. In this section we deduce a related result

by using elementary theory of ordinary differential equations.
To every second order homogenous ODE of the form

(5.33)
(

q
d

dq

)2

y + P (q)
(

q
d

dq

)
y + Q(q)y = 0,

we associate its m-th symmetric power ODE which is by the definition a homogeneous
ODE of minimal order with a fundamental system of solutions

{f igm−i i = 0, ...,m},
where {f, g} is a fundamental system of solutions of (5.33). See [24] for more about
symmetric powers of ODEs in general. Now, unlike symmetric powers for equations
of the order three, the m-th symmetric power of (5.33) is always of order m + 1 (cf.
Section 3) and is given by

(−1)m+1
W(q d

dq )(y, fm, fm−1g, ..., fgm−1, gm)

W(q d
dq )(fm, fm−1g, ..., fgm−1, gm)

= 0.

By expanding the determinant in the numerator we obtain

(5.34)
(

q
d

dq

)m+1

y +
m∑

i=0

Qm,i(q)
(

q
d

dq

)i

y = 0.

Clearly, the ”constant” coefficient Qm,0(q) is equal to

(5.35) (−1)m+1
W(q d

dq )((f
m)′, (fm−1g)′, ..., (fgm−1)′, (gm)′)

W(q d
dq )(fm, fm−1g, ..., fgm−1, gm)

.

We will show that it is possible to compute Qm,0(q) via a certain recursion formula.
Let

(5.36) Θh :=
(

q
d

dq

)
+ hG2(q).

Then Θh : Lk −→ Lk+2, where Lk stands for any modular invariant space of weight k
for SL(2, Z), in particular, the vector space of holomorphic modular forms of weight
h. We will use notation

Θk := Θ2k ◦ · · · ◦ Θ2 ◦ Θ0.

From now on we will focus on the following ODE:

(5.37) Θ2y + Q(q)y = 0,

where Q(q) is a (meromorphic) modular form of weight 4.

Lemma 5.1. Fix m ≥ 2. Let

R1 = mQ,

R2 = mΘQ,

Ri+1 = ΘRi + (i + 1)(m − i)QRi−1, i = 2, ...,m − 1.(5.38)
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Then
Qm,0 = Rm.

Proof: Fix a positive integer m. The m-th symmetric power of (5.37) is given by

Dm+1y = 0,

where Dm+1 is obtained recursively from

D0 = 1,

D1 = Θ
Di+1 = ΘDi + i(m − i + 1)Q(q)Di−1, 0 < i ≤ m.(5.39)

This recursion formula can be proven by induction and seems to be known in the
literature (see for instance Theorem 5.9 in [7]). For example, the second symmetric
power (m = 2) of (5.37) is given by

D3y = 0, where D3 = Θ3 + 4QΘ + 2Θ(Q).

Since every differential operator Di (which depends on m) admits an expansion

Di =
i∑

j=0

Rj,i(q)Θi,

if we let now
Rj−1 = Rj,0, j ≥ 2,

then from the formula (5.39) we have

R1 = R2,0 = mQ,

R2 = R3,0 = mΘQ,

Ri+1 = Ri,0 = ΘRi + (i + 1)(m − i)QRi−1, 2 ≤ i ≤ m − 1.

�
Now, we specialize everything to an ODE of type

(5.40) Θ2y + λG4(τ)y = 0, λ ∈ C.

Lemma 5.2. Let m = 12 and Q = λG4(τ). Then

(5.41) R12 = 0, if and only if λ ∈ {−11
5

,−25
4

,−15,−40, 0}.

Proof: Follows after some computation by using Lemma 5.1 and the formulas

ΘG4 = 14G6,

ΘG6 =
60G2

4

7
,(5.42)

known to Ramanujan. �
The following proposition is from [15] (it was also proven in [16]):

Proposition 5.3. The series ch1(τ) and ch2(τ) form a fundamental system of solu-
tions of

(5.43) Θ2y − 11
5

G4(τ)y = 0.
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Proof of (4.15): The Proposition 5.3 and the vanishing of Q12,0(q) in Lemma 5.2 for
λ = − 11

5 implies the vanishing of W ′
V (τ)

WV (τ) . The proof now follows. �

6. The recursion (5.38) via vertex operator algebras

In [16] we obtained a representation theoretic proof of a pair of Ramanujan’s identi-
ties based on an internal structure of certain irreducible representations of the Virasoro
algebra. The same framework can be used to prove the formula (4.15).

In this section we will use the notation from [16]. Let U be as in Section 4. Notice
that Sym12(U) is just the vector space spanned by graded dimensions of irreducible
modules of the tensor product vertex operator algebra L(−22/5, 0)⊗

12
[10], where

L(−22/5, 0) is the vertex operator algebra associated to M(2, 5) Virasoro minimal
models [9] [16]. Let L(n) and L[n] be two sets of generators of the Virasoro algebra
as in [27], [16]. We showed in [16] that

(6.44) tr|W o(L[−2]21)qL(0)+11/60 = 0,

for every L(−22/5, 0)–module W . For 0 ≤ i ≤ 12, let

vi = i!S(L[−2]1 ⊗ · · · ⊗ L[−2]1 ⊗ 1 ⊗ · · · ⊗ 1) ∈ L(−22/5, 0)⊗
12

,

where in the first i tensor slots we have the vector L[−2]1, and on the remaining
(12− i) tensor slots the vector 1, and S denotes the symmetrization (e.g., S(L[−2]⊗
L[−2]⊗1) = L[−2]⊗L[−2]⊗1+L[−2]⊗1⊗L[−2]+1⊗L[−2]⊗L[−2]). It is known
(see for instance [27], [16]), that for every vertex operator algebra V , a V -module M,
and a homogeneous vector w the following identity holds

tr|Mo(L[−2]w)qL(0)−c/24 =
((

q
d

dq

)
+ deg(w)G2(τ)

)
tr|Mo(w)qL(0)−c/24

+
∞∑

i=1

G2i+2(τ)tr|Mo(L[2i]w)qL(0)−c/24.

From (6.44) and the previous formula applied for V = L(−22/5, 0)⊗
12

and v = vi,
we get

tr|Mo(vi+1)qLtot(0)+11/5 = tr|Mo(Ltot[−2]vi)qLtot(0)+11/5

= Θ
(
tr|Mo(vi)qLtot(0)+ 11

5

)
+ i(12 − i + 1)(−11

5
G4(τ))tr|Mo(vi−1)qLtot(0)+11/5,

which is equivalent to the formula (5.39). Furthermore,

1
12!

tr|Mo(Ltot[−2] · v12)qLtot(0)+ 11
5 = tr|Mo(L[−2]21 ⊗ · · · ⊗ L[−2]1)qLtot(0)+ 11

5 + · · ·
+tr|Mo(L[−2]1 ⊗ · · · ⊗ L[−2]21)qLtot(0)+ 11

5 = 0,

because of (6.44). Here Ltot[−2] is a Virasoro generator acting on the tensor product
vertex operator algebra via comultiplication. Now we can proceed as in Lemma 5.1,
and we get R12 = 0.
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6.1. On L(c2,5, 0)⊗
12

and L(c2,27, 0). In this section we give a combinatorial inter-
pretation of (4.15) in terms of colored partitions and discuss some related work.

Let us recall [2] that q−11/60ch1(q) (resp. q1/60ch2(q)) is actually the generating
series for the number of partitions in parts congruent to ±2 mod 5, (resp. ±1 mod 5).
Let Pj1,j2,j3,j4,j5(n) denotes the number of colored partitions of n where every part of
size i mod 5 can be colored in at most ji colors. Then we have

Proposition 6.1. For every n ≥ 2,

P11,1,1,11,0(n) = 11P6,6,6,6,0(n − 1) + P1,11,11,1,0(n − 2).

Proof: It is known that the generating functions of colored partitions in which every
part of size j can be colored with at most cj colors is given by

∞∏
j=1

1
(1 − qj)cj

.

The statement now follows from (4.15). �

Remark 2. Modular forms W′
V (τ)

WV (τ) associated to irreducible characters of M(2, 2k+1)
Virasoro minimal models (essentially Andrews-Gordon series [9]) have recently been
studied in [18] in connection with supersingular j-invariants. We proved that the
quotient W′

V (τ)
WV (τ) is trivial if and only if k = 6s2 − 6s + 1, s ≥ 2, which is equivalent to

a family of q-series identities among irreducible characters. For s = 2, (k = 13) the
vanishing is equivalent to the following three term combinatorial identity:

P27,12(n) = P27,6(n − 1) + P27,3(n − 2),

where Pa,b(n) denotes the number of partitions of n into parts which are not congruent
to 0,±b mod a. This identity, compared with Proposition 6.1, indicates that vertex
operator algebra L(−22/5, 0)⊗

12
shares some similarities with L(c2,27, 0). For exam-

ple, both vertex operator algebras have exactly 13 linearly independent irreducible
characters.

Remark 3. Four constants − 11
5 , −25

4 ,−15 and −40, appearing in Lemma 5.2 all give
rise to two-dimensional modular invariant spaces coming from irreducible characters
of certain integrable lowest weight representations of Kac-Moody Lie algebras (e.g.,
in the λ = − 25

4 case, for a fundamental system of solutions of Θ2y − 25
4 G4y = 0 we

can take f1 and f2 as in Proposition 4.3). Similarly for λ = −40 (see Section 8) and
λ = −15 (cf. [19]). Only the λ = 0 case has no interpretation in terms of graded
dimensions, in which case for a fundamental system of solutions we can take

g1(τ) =
∫ i∞

τ

η(s)4ds and g2(τ) = 1.
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7. Supersingular j-invariants

In this section we closely follow [20]. Let f(τ) ∈ Mk and F̃ (f, x) as in (1.5). Also,
let

hk(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if k ≡ 0 (mod 12),
x2(x − 1728) if k ≡ 2 (mod 12),

x if k ≡ 4 (mod 12),
x − 1728 if k ≡ 6 (mod 12),

x2 if k ≡ 8 (mod 12),
x(x − 1728) if k ≡ 10 (mod 12).

Then, we define the divisor polynomial F (f, x) by

(7.45) F (f, x) := hk(x)F̃ (f, x).

Let us recall a few known results about supersingular j-invariants. We say that an
elliptic curve over a field K of characteristic p > 0 is supersingular if the group E(K̄)
has no torsion [23]. It is known that there are only finitely many supersingular curves
over F̄p. If p ≥ 5 is prime, then the supersingular loci Sp(x) and S̃p(x) are defined
in Fp[x] by the following products over isomorphism classes of supersingular elliptic
curves:

Sp(x) :=
∏

E/Fp supersingular

(x − j(E)),

(7.46) S̃p(x) :=
∏

E/Fp supersingular
j(E) �∈{0,1728}

(x − j(E)).

It is known that the polynomial Sp(x) splits completely in Fp2 [23]. Define εω(p) and
εi(p) by

εω(p) :=

{
0 if p ≡ 1 (mod 3),
1 if p ≡ 2 (mod 3),

εi(p) :=

{
0 if p ≡ 1 (mod 4),
1 if p ≡ 3 (mod 4),

The following proposition relates Sp(x) to S̃p(x) [23].

Proposition 7.1. If p ≥ 5 is prime, then

Sp(x) = xεω(p)(x − 1728)εi(p) ·
∏

α∈Sp

(x − α) ·
∏

g∈Mp

g(x)

= xεω(p)(x − 1728)εi(p)S̃p(x).

Deligne found the following congruence (see [22]).

Theorem 7.2. If p ≥ 5 is prime, then

F (Ep−1, x) ≡ Sp(x) (mod p).
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Remark 4. The Von-Staudt congruences imply for primes p, that 2(p−1)
Bp−1

≡ 0
(mod p), where Bn denotes the usual nth Bernoulli number. It follows that

Ep−1(τ) ≡ 1 (mod p).

If p ≥ 5 is prime, then Theorem 7.2 combined with the definition of divisor polyno-
mials, implies that if f(τ) ∈ Mp−1 and f(τ) ≡ 1 (mod p), then

F (f, j(τ)) ≡ Sp(j(τ)) (mod p).

8. Symmetric powers associated to level one representations of D
(1)
4

In this section we focus on a particular family of modular forms which give supersin-
gular j-invariants in prime characteristics. In what follows p ≥ 5 is prime and

(8.47) p = 2m + 3.

It is known [12] (see also [19]) that the graded dimensions of level one highest weight
modules for D

(1)
4 span a two-dimensional vector space U with a basis consisting of

eighth powers of two Weber modular functions:

f8 = q−1/6
∞∏

n=1

(1 + qn−1/2)8

f82 = q1/3
∞∏

n=1

(1 + qn)8.

Notice that 1
3 − 1

6 = 1
6 , so WU (τ) = η(τ)4 by [17]. Thus, (cf. [17] or [15]):

Lemma 8.1. The infinite products f8 and f82 form a fundamental set of solutions of
the ODE (5.40) with λ = −40.

We will focus on the m-th symmetric power of U . As we already mentioned
Symm(U) is (m + 1)-dimensional. In what follows we will use a result from [14].
In that paper, among other things, Kaneko and Zagier studied the generating series
of the form

Gα(x) = (1 − 3E4x
4 + 2E6x

6)α,

for some special α ∈ Q. For l ∈ N and α ∈ Q let us define

Gl,α = Coeffx2l(1 − 3E4x
4 + 2E6x

6)α ∈ Q[E4, E6].

The following result is from [14].

Proposition 8.2. For every prime p ≥ 5

G p−1
2 , p−3

6
≡ 12

p−1
2 (mod p).

The main idea behind the proof of Proposition 8.2 is the congruence

(8.48) (1 − 3E4x
4 + 2E6x

6)(p−3)/6 ≡ (1 − 3E4x
4 + 2E6x

6)−1/2 (mod p),

the Von-Staudt congruences (cf. Remark 4) and a parametrization of the elliptic
curve Eτ by using the Weierstrass ℘-function (see [14] for details).
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Let us recall again that the graded vector space M = C[E4, E6] admits a graded
map Θ (5.36) from Mk to Mk+2, which can be written as [26]

(8.49) Θ = −E6

3
∂

∂E4
− E2

4

2
∂

∂E6
.

The goal of this section is to prove the following result.

Theorem 8.3. Let V = Symm(U). Then
(i) For every m ≥ 1,

W ′
V (τ)

WV (τ)
= (−1)m+1 (m + 1)!

6m+1
Coeffx2m+2(1 − 3E4x

4 + 2E6x
6)

m
3 .

(ii) For m and p as in (8.47)

W ′
V (τ)

WV (τ)
≡ (−1)(p−1)/2

(
2
p

) (
p − 1

2

)
! (mod p),

where
(

·
p

)
is the Legendre symbol.

(iii) For m and p as in (8.47)

F (
W ′

V (τ)
WV (τ)

, j(τ)) ≡ Sp(j(τ)) (mod p).

Proof: Firstly,

(8.50) (1 + x + y)m/3 =
∞∑

r=0,s=0

m/3(m/3 − 1) · · · (m/3 − r − s + 1)
r!s!

xrys,

gives

(8.51) (1 − 3E4x
4 + 2E6x

6)m/3

=
∞∑

l=0

⎛⎝ ∑
r,s≥0,2r+3s=l

m/3(m/3 − 1) · · · (m/3 − r − s + 1)
r!s!

(−3E4)r(2E6)s

⎞⎠ x2l.

Clearly,

Gl,m/3 = Coeffx2l(1 − 3E4x
4 + 2E6x

6)m/3

=
∑

r,s≥0,2r+3s=l

m/3(m/3 − 1) · · · (m/3 − r − s + 1)
r!s!

(−3E4)r(2E6)s.(8.52)

Now, let

Ḡl,m/3 =
l!

2l3l
Gl,m/3.

Claim: We have

Ḡ2,m/3 =
−mE4

18
, Ḡ3,m/3 =

mE6

54
,

and for l = 2r + 3s ≥ 4,

(8.53) Ḡl,m/3 = ΘḠl−1,m/3 + (l − 1)(m − l + 2)
−E4

18
Ḡl−2,m/3.
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To prove the claim it is enough to consider the coefficient of Er
4Es

6 on both sides of
(8.53) and check the initial conditions. The coefficient of Er

4Es
6 on the left-hand side

of (8.53) is equal to

(8.54)
(2r + 3s)!m/3(m/3 − 1) · · · (m/3 − r − s + 1)(−1)r

r!s!22r+2s2r+3s
.

The coefficient of Er
4Es

6 of the right-hand side of (8.53) is

(8.55)
(2r + 3s − 1)!m/3(m/3 − 1) · · · (m/3 − r − s + 1)(−1)r

r!(s − 1)!22r+3s3r+3s−1

+
(2r + 3s − 1)!m/3(m/3 − 1) · · · (m/3 − r − s + 2)(−1)r+1

(r − 2)!s!22r+2s−13r+3s+1

+
(2r + 3s − 2)!

(r − 1)!s!22r+2s−13r+3s+1

· (m/3)(m/3 − 1) · · · (m/3 − r − s + 2) · (−1)r(2r + 3s − 1)(m − 2r − 3s + 2),

where for r = 0 (resp. r = 1) the second and third (resp. second) term drops. From
the identity

(8.56)
3s(m

3 − r − s + 1)
2r + 3s

− 2r(r − 1)
3(2r + 3s)

+
2r(m − 2r − 3s + 2)

3(2r + 3s)
=

m

3
− r − s + 1,

it follows that (8.54) is equal to (8.55). Thus, the recursion holds. It is easy to see
that

(8.57) Ḡ2,m/3 =
−mE4

18
= (−40)mG4, Ḡ3,m/3 =

mE6

54
= (−40)mΘG4.

Now, equations (8.53) and (8.57), together with Lemma 5.1 and (5.35) imply that
Ḡl,m/3 satisfy the same recursion and the same initial conditions as Rl−1 in Lemma
5.1, for Q = −40G4. Thus the formula (i) holds. The part (ii) now follows from Propo-
sition 8.2 and ((p−1)/2)!

6(p−1)/2 12(p−1)/2 ≡ ((p − 1)/2)!
(

2
p

)
(mod p). Finally, the equation

(iii) follows from (ii) and Remark 4. �

Remark 5. Notice that our proof provides also a description of Gl,m/3 for every
l ≤ m via the recursion in Lemma 5.1. Also, for m ≡ 0 (mod 3) the vanishing of
W ′

V (τ)
WV (τ) is equivalent to (4.30).

Remark 6. It would be nice to have a purely representation theoretic proof of The-
orem 8.3 via certain differential equations of order two studied in [14] and [13], by
using techniques from [16].
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