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Lp REGULARITY FOR KOHN’S OPERATOR

Brian Street

Abstract. In [6], Kohn constructed an example of a sum of squares of complex vector
fields satisfying Hörmander’s condition that lost derivatives, but was nevertheless hy-

poelliptic. He also demonstrated optimal L2 regularity. In this note, we announce the

corresponding Lp regularity (1 < p < ∞), and demonstrate the method in a simpler
case. The result follows from the construction of a parametrix for these operators using

NIS operators.

1. Introduction

Define the operators L = ∂z + iz̄∂t and L̄ = ∂z̄ − iz∂t (here z ∈ C and t ∈ R).
Let k > 0 be an integer and let f : R → R be a C∞ function that vanishes at 0 with
exactly order k and suppose f(x) > 0 for x > 0 (a useful example is f(x) = xk).
Define

A = LL̄ + L̄f(|z|2)L
We announce the following theorem:

Theorem 1.1. Suppose 1 < p < ∞ and let u be a distribution. Suppose Au ∈ Lp
s

near a point (z, t). Then u ∈ Lp
s−k+1 near (z, t).

Here Lp
s denotes the s-Lp Sobolev space. This may be restated as “A loses k − 1

derivatives in Lp Sobolev spaces.” The case p = 2 was handled in [6]. Since then, more
general results concerning L2 regularity and analytic hypoellipticity have been found
(see [2, 9, 10, 13] and references therein). It is well known that A gains derivatives in
Lp Sobolev spaces away from z = 0 (by the results of [11]) so Theorem 1.1 is really
only about z = 0. It is achieved by a construction of a parametrix using the NIS
operators of [3, 5, 7]. One can see from the explicit construction of the parametrix
that all of the loss actually happens in the t variable, much like the results in [2].
Also, that this loss is optimal follows just as in [2] (see Remark 5.2).

For the purposes of this note, we shall exhibit the proof in a simpler case. Namely,
define L = ∂x + ix∂t and L̄ = ∂x − ix∂t (here x, t ∈ R). We denote

A1 = LL̄

A2 = L̄x2kL

A = A1 + A2

The operator A was studied in [4]. We shall prove

Theorem 1.2. Suppose 1 < p < ∞ and let u be a distribution. Suppose Au ∈ Lp
s

near a point (x, t). Then u ∈ Lp
s−k+1 near (x, t).
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We will construct a parametrix using the pseudodifferential operators of [8], which
are closely related to NIS operators in this case. We will see here, as well, that all
of the loss happens in the t variable–ie, all of the loss in the parametrix comes from
differentiation in t. Our proof of Theorem 1.2 is related to the general framework
of [9] (see also [10] where the case p = 2 of Theorem 1.2 is established for a larger
class of operators). Their methods do not seem to lead directly to Lp estimates, since
they use the wider class of pseudodifferential operators of [1], which do not seem to
yield Lp estimates. The proof of the harder case (Theorem 1.1) is also related to their
methods, but less so, since the kernel of LL̄ is much larger in this case (see Remark
4.2). Their methods do lead to the optimal L2 estimates, but require conjugation by
a Fourier integral operator.

Kohn’s original proof [6] relied on a priori L2 estimates. The main difficulty in that
method of proof for an operator with a loss of derivatives comes from localizing the
estimates. Ie, the general commutators that arise lead to errors that are worse than
what one is trying to bound. To deal with this difficulty, Kohn used microlocalization
techniques to reduce the problem to estimates involving operators that commuted
well. We will see below that using NIS operators allows us to sweep some of that
difficulty under the rug, since NIS operators are already known to be pseudolocal.

These results will be part of my doctoral dissertation at Princeton University. They
were done under the supervision of Elias Stein, who I wish to thank for his constant
support and encouragement and for originally suggesting the problem.

2. Some background

In this section, we review the Sρ pseudodifferential operators from [8], and some
other results contained in [8]. For more details, and proofs, we refer the reader there.
If we let (ξ, τ) be dual to (x, t), then we will be using Sρ operators associated to the
metric:

ρ(x, t, ξ, τ) =
(
(ξ2 + x2τ2)2 + τ2

) 1
4

For convenience sake, for the rest of the section, we will denote z = (x, t) and ζ =
(ξ, τ).

We now define (for m ∈ R) a preliminary class Ŝm
ρ defined by, a(z, ζ) ∈ C∞(R4) is

in Ŝm
ρ provided for all ηj ∈ R

2, |ηj | ≥ 1 we have (for |ζ| ≥ 1):

|(η1, ∂ζ) · · · (ηk, ∂ζ)a(z, ζ)|

≤ Ckρ(z, ζ)m
k∏

j=1

[(
ρ(z, ηj)
ρ(z, ζ)

)
+

(
ρ(z, ηj)
ρ(z, ζ)

)2]

and for |ζ| < 1 and any multi-index α, we have:

|∂α
ζ a(z, ζ)| ≤ Cα

Sm
ρ is defined to be the largest class of symbols a(z, ζ) ∈ Ŝm

ρ such that:

∂xa(z, ζ) = a1(z, ζ)ξ + a2(z, ζ)τ + a0(z, ζ)

∂ta(z, ζ) = a′
1(z, ζ)ξ + a′

2(z, ζ)τ + a′
0(z, ζ)

where a1, a2, a
′
1, a

′
2 ∈ Sm−1

ρ and a0, a
′
0 ∈ Sm

ρ . For the most part, we will only be
using operators in Sm

ρ , where m ≤ 0. For a(z, ζ) ∈ Sm
ρ , we will denote by a(z,D) the
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operator corresponding to that symbol in the usual way, and (a ◦ b)(z, ζ) will denote
the symbol of a(z,D)b(z,D), and we will denote by Op(Sm

ρ ) the set of operators
corresponding to symbols in Sm

ρ . We shall only use a few facts about Sρ. Namely,
• If a(z, ζ) ∈ Sm1

ρ and b(z, ζ) ∈ Sm2
ρ , then a ◦ b ∈ Sm1+m2

ρ .
• If a(z, ζ) ∈ Sm

ρ , then [x, a(z,D)] ∈ Op(Sm−1
ρ ).

• Operators in Op(Sm
ρ ) are pseudolocal.

• Operators in Op(S0
ρ) are continuous Lp

s → Lp
s,loc for all s ∈ R and all 1 < p <

∞.
• If a(z, ζ) ∈ Sm

ρ , then L ◦ a(z,D) ∈ Op(Sm+1
ρ ), L̄ ◦ a(z,D) ∈ Op(Sm+1

ρ ),
and Dt ◦ a(z,D) ∈ Op(Sm+2

ρ ). Similarly for a(z,D) ◦ L, a(z,D) ◦ L̄, and
a(z,D) ◦ Dt.

• If a(z, ζ) ∈ Sm
ρ , then a(z,D)∗ ∈ Op(Sm

ρ ), where a(z,D)∗ denotes the L2

adjoint of a(z,D).

Remark 2.1. Strictly speaking, symbols in Sρ must have compact support in the z
variable, however that will not be true for some of our operators (in particular, the
ones introduced in the later part of this section). This is not an essential difference.
One can either extend the results we need to these particular operators (with exactly
the same proofs as in [8]), or one can use NIS operators, and all of our proofs would
be the same.

We will now state some results from an example in [8] that will be useful to us.
These can be found on pages 118 − 121 of [8]. For α ∈ C, define

Lα = ∂2
x + x2∂2

t − iα∂t = LL̄ + (1 − α)i∂t

notice that here we have replaced α by −α in [8].
For α �= ±1,±3,±5, . . ., there exists pα(x, ξ, τ) ∈ S−2

ρ (independent of t but not of
τ) such that

pα(x,D)Lα = Lαpα(x,D) = I

The map α 	→ pα is actually holomorphic with a simple pole at ± the odd integers.
Note that A1 = L1. Let Q be the projection onto the L2 kernel of A1. Then

Q ∈ Op(S0
ρ), and there exists P ∈ Op(S−2

ρ ) such that A1P = PA1 = 1 − Q.

Proposition 2.2. Suppose q(x, ξ, τ) ∈ S0
ρ is the symbol of Q. Then τ−mq ∈ S−2m

ρ ,
for any integer m.

Proof. The result is obvious for m negative, so we turn to m positive. Consider

L0Q = (LL̄ + L̄L)Q

= (L̄L − LL̄)Q
= 2DtQ

And so the symbol of p0(x, D)mQ is equal to 2−mτ−mq(x, ξ, τ), and therefore

τ−mq(x, ξ, τ) ∈ S−2m
ρ

�

Corollary 2.3. τ−aq ∈ S−2a
ρ for any real number a.
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Proof. Note, τ−aq = τ−a+mτ−mq. We already know that τ−mq ∈ S−2m
ρ . For any

finite number of derivatives in τ , we may take m so large that τ−a+m remains smooth
under that many differentiations. Then the bounds for Sρ classes follow easily. �

Remark 2.4. Corollary 2.3 can be seen just as easily by looking at the symbol of Q,
which equals

ce−ixξe−
τ2x2+ξ2

2τ

when τ > 0 and 0 on τ ≤ 0.

3. Operators that vanish at 0

The purpose of this section is to establish the following result:

Theorem 3.1. Let a(x, t) ∈ C∞
0 (R2) then, there exists an operator Ta ∈ Op(S−2

ρ )
such that ATa = a(x, t)x2k + r(−1)(x, t,D), where r(−1) ∈ S−1

ρ .

To see this, consider:

A = LL̄ + L̄x2kL

= LL̄ + 2kx2k−1L + x2kL̄L

= (1 + x2k)
(
LL̄ +

x2k

1 + x2k
2i∂t

)
+ 2kx2k−1L

= (1 + x2k)Lβ(x) + 2kx2k−1L

where β(x) = 1−x2k

1+x2k . So, we see to prove Theorem 3.1, it suffices to prove it for Lβ(x),
since if we have Ta satisfying the result for Lβ(x), Ta ◦ 1

1+x2k satisfies the result for A.
Hence, Theorem 3.1 follows from the following lemma:

Lemma 3.2. Let a(x, t) ∈ C∞
0 (R2). Then there exists an operator Ta ∈ Op(S−2

ρ )
such that Lβ(x)Ta = a(x, t)x2k + r(−1)(x, t,D), where r(−1) ∈ S−1

ρ .

Proof. Recall pα ∈ S−2
ρ such that Lαpα(x,D) = I for α �= ±1,±3,±5, . . .. pα de-

pends holomorphicly on α with a simple pole at 1. Indeed, (1 − α)pα(x, ξ, τ) is a
C∞ map C\{−1,±3,±5, . . .} → S−2

ρ . This can be seen either directly, or by us-
ing Cauchy’s theorem and the fact that pα is uniformly in S−2

ρ on compact sets of
C\{±1,±3,±5, . . .} (all of which can be easily checked from the results in [8]). In
summary, (1 − α)pα(x, ξ, τ) is jointly C∞ in (α, x, ξ, τ) on the appropriate set and
moreover ∂n

α(1 − α)pα ∈ S−2
ρ for all n.

Given a(x, t) ∈ C∞
0 , we define s(x, ξ, τ) = (1 − β(x))a(x, t)pβ(x)(x, ξ, τ) ∈ S−2

ρ .
Now consider

Lβ(x)s(x,D) =
(
LL̄ + (1 − β(x))i∂t

)
(1 − β(x))a(x, t)pβ(x)(x, ξ, τ)

If any of the vector fields land on the β(x) of (1−β(x))pβ(x) we’ve seen that we are left
with a term in S−1

ρ and therefore part of our error term (this is since α 	→ (1−α)pα is
a C∞ map to S−2

ρ ). Similarly, if any vector field lands on a(x, t) we also get an error
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term. Therefore, modulo such error terms, we can imagine β(x) is fixed, in which
case we know Lα(1 − α)pα(x, D) = (1 − α) and so we have:

Lβ(x)s(x,D) = (1 − β(x))a(x, t) + r(−1)(x, t,D)

where r(−1) ∈ S−1
ρ . Since 1 − β(x) = x2kf(x) where f(x) is a never vanishing C∞

function, we may take Ta = s(x, D) ◦ b(x,t)
f(x) , where b(x, t) ∈ C∞

0 is 1 on a large ball
containing the support of a. Then, Ta satisfies the conclusion of the lemma. �

Remark 3.3. The reader familiar with [11] will note the relationship between their
work and the operator in Lemma 3.2. Indeed, if one were to “lift” the vector fields L
and L̄ to the Heisenberg group (as in [11]), then one could approximate (1−α)pα(x,D)
(α ∈ [0, 1]) by using a convolution operator on the Heisenberg group (see [12]). Then,
to achieve Lemma 3.2, one would merely need to make α depend on x which is done
in general in [11]. Therefore, the operator constructed in Lemma 3.2 is an operator
of type 2 in the sense of [11].

4. Computation of some operators

In this section, we need to preform some explicit computations of some operators.
To do so, we shall conjugate our operators with the partial Fourier transform t → τ .
Since all of our operators are translation invariant in t, their symbols depend only on
x, ξ, and τ . Thus, fixing τ , we may (formally) consider each of our operators as a
pseudodifferential operator in just the x variable (ie as a function of x and ξ). If T
were the original operator, denote this new family of operators (one for each fixed τ)
by T (τ). For example, the symbol for Q(τ) would be q(x, ξ, τ) but just considered as
a function of x and ξ.

Remark 4.1. In this section, we will preform computations of such operators as
QAxBQ, where A and B are Sρ pseudodifferential operators. The multiplication
by x may worry the reader, since it is not in Op(S0

ρ). As it turns out (Proposition
4.5) xQ is really an Sρ pseudodifferential operator. Thus, we may view QAxBQ as
QA[x, B]Q + QABxQ where everything involved is an Sρ pseudodifferential opera-
tor. We are therefore justified in computing our operators on Schwartz space and
extending by continuity.

We know L̄(τ) = ∂x + xτ , and so has kernel spanned by e−
τ
2 x2

. This is in L2(R)
only for τ > 0, and therefore Q(τ) is zero for τ ≤ 0 and is projection onto this one
dimensional space for τ > 0. In this section, we will only be concerned with operators
of the form QTQ, where T is translation invariant in t. Thus we may restrict ourselves
to computing for a fixed τ > 0.

Remark 4.2. At this point, we are in a position to explain one of the main differences
between the proof of Theorem 1.1 and Theorem 1.2. Indeed, the corresponding oper-
ator Q(τ) in the proof of Theorem 1.1 is projection onto an infinite dimensional space,
instead of a one dimensional space.

Let Uτ be the unitary change of variables given by:

Uτf(x) = τ− 1
4 f(τ− 1

2 x)
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Then, UτA
(τ)
2 U−1

τ = τ1−kA
(1)
2 . By the considerations in the preceding paragraph, it

is a simple change of variables to see that UτQ(τ)U−1
τ = Q(1).

Proposition 4.3. There is a nonzero constant c such that cDk−1
t QA2Q = Q.

Proof. If we conjugate Q(τ)A
(τ)
2 Q(τ) by Uτ , we get τ1−kQ(1)A

(1)
2 Q(1). Since Q(1) is

projection onto a one dimensional space, we know Q(1)A
(1)
2 Q(1) = c0Q

(1). To complete
the proof, it remains to see that c0 �= 0, as the result would then follow by conjugating
by U−1

τ and then taking the inverse Fourier transform τ → t.
But note, (

Q(1)A
(1)
2 Q(1)f, f

)
L2(R)

= −(
xL(1)Q(1)f, xL(1)Q(1)f

)
L2(R)

= −‖xL(1)Q(1)f‖2
L2(R)

Hence, to show c0 �= 0, we need only find an f in the kernel of L̄(1) but not in the
kernel of L(1). Such an f clearly exists. �

Lemma 4.4. QxQ ∈ Op(S−1
ρ )

Proof. As in Proposition 4.3, when we conjugate by Uτ , we are left with

cτ− 1
2 Q(1)

Upon conjugating by U−1
τ we are then left with cτ− 1

2 Q(τ). Corollary 2.3 now applies
and yields the lemma. �

Proposition 4.5. xnQ ∈ Op(S−n
ρ ).

Proof. Consider, letting S(b) denote an arbitrary operator in Op(Sb
ρ),

xnQ = xn−1QxQ + xn−1[x,Q]Q

= xn−1QxQ + xn−1S(−1)Q

= xn−1QxQ +
n−1∑
j=0

S(−1−j)xn−1−jQ

= (xn−1Q)(QxQ) +
n−1∑
j=0

S(−1−j)xn−1−jQ

and induction and Lemma 4.4 complete the proof. �

Remark 4.6. Proposition 4.5 can be easily seen by looking directly at the symbol
for q, but we find this approach less messy, and more analogous to the techniques
involved in the proof of Theorem 1.1.

Corollary 4.7. Dk−1
t A2Q ∈ Op(S0

ρ)
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Proof. Consider, letting S(b) denote an arbitrary operator in Op(Sb
ρ),

Dk−1
t A2Q = Dk−1

t L̄x2kLQ

= −2kDk−1
t L̄x2k−1Q + Dk−1

t L̄Lx2kQ

= Dk−1
t L̄S(−2k+1) + Dk−1

t L̄LS(−2k)

and the result follows. �

5. The parametrix

When considering Au = f , we may (without loss of generality) imagine u has
support in a fixed compact set. Thus, by pseudolocality, we may imagine that there
is no cut off function in Theorem 3.1. Ie, we may work as if we have T ∈ Op(S−2

ρ )
such that AT = x2k modulo Op(S−1

ρ ).
In this section, we will be constructing a right parametrix. There is really no

difference in constructing this and a left parametrix.

Proposition 5.1. There exists an operator B ∈ Op(S−2
ρ ) such that AB = 1 − Q +

S(−1), where S(−1) ∈ Op(S−1
ρ ).

Proof. Consider, AP = (A1 + A2)P = 1 − Q + A2P . But,

A2P = L̄x2kLP = 2kx2k−1LP + x2kL̄LP

Now, 2kx2k−1LP ∈ Op(S−1
ρ ) and so may become part of our error term. To complete

the proof, merely take B = P −T L̄LP , where T is the operator discussed above from
Theorem 3.1. �

Let B be the operator from Proposition 5.1, and let c be the constant from Propo-
sition 4.3. If we denote by ≡ equality modulo operators in Op(S−1

ρ ), we have:

(A1 + A2)(B + cDk−1
t Q) ≡ (1 − Q) + cDk−1

t A2Q

= (1 − Q) + cDk−1
t QA2Q + c(1 − Q)Dk−1

t A2Q

= 1 + c(1 − Q)Dk−1
t A2Q

(1)

But, by Corollary 4.7, Dk−1
t A2Q = S(0) ∈ Op(S0

ρ), and therefore,

(A1 + A2)(B + cDk−1
t Q − cBS(0)) ≡ 1

Hence, there exists an operator U (−2) ∈ Op(S−2
ρ ) such that

A(cDk−1
t Q + U (−2)) ≡ 1

Since operators in S0
ρ are continuous Lp

s → Lp
s,loc for all s, and are pseudolocal,

Theorem 1.2 follows immediately (at least it would from a left parametrix; merely
take the adjoint of this right parametrix to get a left parametrix).

Remark 5.2. In fact, the loss in Theorems 1.1 and 1.2 cannot be improved. This
follows from the same proof as in [2], which applies just as well to Lp estimates. To
modify their method to prove the optimality for Theorem 1.2, merely use the function

vλ(x, t) = e−λ(x2−2it−(x2−2it)2)
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6. Theorem 1.1

In this section, we wish to make a few remarks concerning the differences between
the proofs of Theorem 1.1 and Theorem 1.2. Theorem 1.1 is more complicated in a
few ways. Most notably, as pointed out in Remark 4.2, Q(1) becomes projection onto
an infinite dimensional space, as opposed to a one dimensional space. Also the analog
of Proposition 4.5 does not hold (see Remark 6.3), and so some effort is required to
avoid its use. For the remainder of this section, we will discuss the proof of Theorem
1.1 in the special case f(x) = xk. The full theorem follows from the same ideas, after
expanding f into its Taylor series centered at 0.

The crux of the argument remains in Theorem 3.1. Which takes the following form:

Theorem 6.1. Let a(z, t) ∈ C∞
0 (C×R) and N > 0 be an integer. Then, there exists

an NIS operator Ta,N , smoothing of order 2, such that

ATa,N = a(z, t)|z|2kN + R(N)

where R(N) is an NIS operator, smoothing of order N .

Using Theorem 6.1, one needs only invert A modulo operators of the form

|z|2kNT (−N)

where T (−N) is an NIS operator smoothing of order −N , and then a full parametrix
would follow from Theorem 6.1.

Remark 6.2. Here “an NIS operator smoothing of order m” is the analog of an oper-
ator in Op(S−m

ρ ).

Letting Q be the orthogonal projection onto the L2 kernel of LL̄, we next compute

QA2Q = QM
as before. In the proof of Theorem 1.2, M−1 is (up to a constant) equal to Dk−1

t .
However, in the case of Theorem 1.1, M−1 = M(Dθ)Dk−1

t , where M(Dθ) is an
operator that is computed in the proof of Theorem 1.1 (here we have written z = reiθ).
It turns out that QM(Dθ) is pseudolocal and bounded on all Lp Sobolev spaces. In
the end, the loss of derivatives comes in the same place as in Theorem 1.2, namely in
the inversion of the Toeplitz operator QA2Q.

The proof does not end there, though. In Theorem 1.2, we had Proposition 4.5
(see Remark 6.3), and no such proposition holds for Theorem 1.1. Thus, in the
computation (1), we cannot take care of the term (1 − Q)A2QM−1 as before. We
must therefore continue the series to get:

(2) (A1 + A2)(B + QM−1 − PA2QM−1) ≡ 1 − A2PA2QM−1

We separate the error term of (2) into two parts. The first part

QA2PA2QM−1

turns out to be essentially an NIS operator, smoothing of order 0, that vanishes at
z = 0 like |z|2k and can therefore be taken into our error term using Theorem 6.1.
The other term is of the form:

(1 − Q)A2PA2QM−1
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and we repeat the process, by subtracting off

PA2PA2QM−1

from our partial parametrix. Each time we do this process, we add a power of A2P
to our error term. A2P is an operator of order 0 that vanishes at 0, though, so if we
have enough powers of it, we may use Theorem 6.1 to complete the construction of
the parametrix.

Remark 6.3. After this paper was written, the author realized that while Proposition
4.5 does not hold in the case of Theorem 1.1, one can prove an analog of Corollary 4.7
which makes the last paragraph above superfluous. However, the method outlined in
that paragraph is still useful for the more general case when f(x) is a more complicated
function than just xk.
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