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THE NOETHER INEQUALITY FOR SMOOTH MINIMAL 3-FOLDS

Fabrizio Catanese, Meng Chen and De-Qi Zhang

Abstract. Let X be a smooth projective minimal 3-fold of general type. We prove the
sharp inequality

K3
X ≥ 2

3
(2pg(X) − 5),

an analogue of the classical Noether inequality for algebraic surfaces of general type.

1. Introduction

In the 1980’s M. Reid, observing the importance of the Noether inequality: K2 ≥
2pg − 4 for surfaces of general type, asked the following question

Question 1.1. (M. Reid) What is the 3-dimensional version of Noether’s inequality?

Question 1.1 is obviously a very important aspect of threefold geography, just
like the well known Miyaoka-Yau inequality. There have been already several works
dedicated to the above question:

• M. Kobayashi (1992, [7]) studied Gorenstein minimal 3-folds of gen-
eral type and found an infinite number of examples (Proposition 3.2
in [7]) satisfying the equality:
(1.1) K3 = 4

3pg − 10
3 .

• M. Chen (2004, [3]) gave effective Noether type inequalities for
arbitrary minimal 3-folds of general type.
• M. Chen (2004, [2]) answered Question 1.1 under the assumption
that the 3-fold X is smooth with an ample canonical line bundle,
proving the sharp inequality: K3 ≥ 4

3pg − 10
3 .

[In the above three items, K3 := K3
X is the canonical volume and pg := pg(X) is the

geometric genus of X.]

In this paper, we will generalize the main theorem of [2]. The aim is to answer
Question 1.1 under a weaker condition:
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Theorem 1.2. Let X be a smooth projective minimal 3-fold of general type. Then
the sharp Noether inequality:

K3
X ≥ 2

3
(2pg(X) − 5)

holds.

Remark 1.3. The inequality in Theorem 1.2 is sharp because of M. Kobayashi’s
interesting examples (cf. Equation (1.1)).

As an application of our results, we present the following corollary which gives a
classification of 3-folds of general type with small “slope” K3/pg:

Corollary 1.4. Let X be a projective minimal (i.e., KX is nef) Gorenstein 3-fold
of general type with canonical singularities. Assume K3

X < 7
5pg(X) − 2. Then X is

canonically fibred by curves of genus 2.

The assumption in Corollary 1.4 is not empty again because of M. Kobayashi’s
examples.

1.5. The set up. Let X be a projective minimal Gorenstein 3-fold of general type
with canonical singularities. According to the work of M. Reid [9] and Y. Kawamata
(Lemma 5.1 of) [6], there is a minimal model Y with a birational morphism ν :
Y −→ X such that KY = ν∗(KX) and such that Y is factorial with at worst terminal
singularities. Thus we may always assume that X is factorial with only (necessarily
finitely many) terminal singularities. Observing that K3

X ≥ 2 (see 2.1 below), the
inequality in Theorem 1.2 is automatically true whenever pg(X) ≤ 4. So the essential
argumentation takes place when pg(X) is bigger and we are led to study the canonical
map Φ := Φ|KX | as in the two dimensional case.

Take a birational modification π : X ′ −→ X, which exists by Hironaka’s big
theorem, such that:

(1) X ′ is smooth;
(2) the movable part of |KX′ | is base point free;
(3) π∗(KX) is supported by a normal crossing divisor (so that we are in a position

to apply the Kawamata-Viehweg vanishing theorem [5, 11]).
We will fix some notation below. Denote by g the composition Φ◦π. So g : X ′ −→

W ′ ⊆ PN is a morphism. Let g : X ′ f−→ B
s−→ W ′ be the Stein factorization of g

(thus B is normal and f has connected fibers). We can write:

KX′ = π∗(KX) + Eπ = M + Z ′,

where M is the movable part of |KX′ |, Z ′ the fixed part and Eπ an effective divisor
which is a linear combination of distinct exceptional divisors. We may also write:

π∗(KX) = M + E′,

where E′ = Z ′ −Eπ is an effective divisor. On X, one may write KX ∼ N +Z where
N is the movable part and Z the fixed part. So

π∗(N) = M +
s∑

i=1

diEi
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with di > 0 for all i. The above sum runs over all those exceptional divisors of π that
lie over the base locus of M . On the other hand, one may write Eπ =

∑t
j=1 ejEj

where the sum runs over all exceptional divisors of π. One has ej > 0 for all 1 ≤ j ≤ t
because X is terminal. Apparently, one has t ≥ s.

Set d := dim(B). We say that X is canonically fibred by surfaces if d = 1. Under
this situation, we have an induced fibration f : X ′ −→ B onto a smooth curve B.
Denote by b := g(B) the geometric genus of B.

Notations
K3 the canonical volume of a 3-fold in question
pg = h0(O(K)) the geometric genus
q(V ) = h1(OV ) the irregularity of V
h2(OV ) the second irregularity of a 3-fold V
χ(OV ) the Euler Poincare characteristic of V
(K2, pg) invariants of a minimal surface of general type
g(B) the genus of a curve B
≡ numerical equivalence
∼ linear equivalence
�·� the round up of · (�x� := min{n ∈ Z|n ≥ x})
D|S the restriction of the divisor D to S
D · C the intersection number of a divisor D with a curve C

2. Reduction to the surface case and the lower bound of K3

2.1. K3 is even. Suppose that D is any divisor on a smooth 3-fold V . The Riemann-
Roch theorem (cf. appendix in Hartshorne’s book [4]) gives:

χ(OV (D)) =
D3

6
− KV · D2

4
+

D · (K2
V + c2(V ))
12

+ χ(OV ).

A direct calculation shows that

χ(OV (D)) + χ(OV (−D)) =
−KV · D2

2
+ 2χ(OV ) ∈ Z.

Therefore, KV · D2 is an even number.
Now let X be a projective minimal Gorenstein 3-fold of general type. Denote by

ν : V −→ X a smooth birational modification. Let D be any divisor on X. Then
KX · D2 = KV · (ν∗D)2 is even. Especially, K3

X is even and positive.

2.2. Known results. Let X be a projective minimal factorial 3-fold of general type
with terminal singularities. The following Noether type inequalities have already been
established, where d = dim Φ|KX |(X).

• if d = 3, then K3
X ≥ 2pg(X)−6 (cf. M. Kobayashi’s Main Theorem

in [7]);
• if d = 2, then K3

X ≥ � 2
3 (g − 1)�(pg(X) − 2) (cf. Chen’s Theorem

4.1(ii) in [3]), where g is the genus of a general fiber of the induced
fibration f : X ′ −→ B; if furthermore X is smooth, then K3

X ≥
2
3 (2pg(X) − 5) (cf. Chen’s Theorem 4.3 in [3]);
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• if d = 1 and the general fiber S of the induced fibration f : X ′ −→ B
is not a surface of type (K2, pg) = (1, 2), then K3

X ≥ 2pg(X) − 4 (cf.
Chen’s Theorem 4.1(iii) in [3]).

In order to prove Theorem 1.2, we have to treat the remaining case (in the above
third item) where X is canonically fibred by surfaces of type (1, 2). Note that The-
orem 1.2 was proved in [2] only under the stronger assumption of KX being ample.
Assuming only the nefness of KX , we can see that the method in [2] is no longer
effective and the situation could be more complicated. It is the aim of this paper to
overcome this obstacle and prove our Theorem 1.2.

The rest of this section is devoted to deducing several key inequalities through the
Q-divisor method.

2.3. Key inequalities. Keep the same notation as in 1.5 and assume that KX is nef
and big. Suppose, from now on, d = 1 and pg(X) ≥ 3. We have an induced fibration
f : X ′ −→ B. Denote by S a general fiber of f . Let σ : S −→ S0 be the contraction
onto the minimal model. Suppose (K2

S0
, pg(S0)) = (1, 2).

By Lemma 4.5 of [3], we have two cases exactly:

q(X) = b = 1 and h2(OX) = 0,

q(X) = b = 0 and h2(OX) ≤ 1.

One may write M =
∑a

i=1 Si as a disjoint union of distinct smooth fibers of f ,
where a = pg(X) − 1 if b = 0, or a = pg(X) otherwise. Noting that π∗(KX)|S ≤ KS

is a nef and big Cartier divisor and that σ∗(KS0) is the positive part of the Zariski
decomposition of KS , so π∗(KX)2|S = σ∗(KS0)

2 = 1, and π∗(KX)|S ∼ σ∗(KS0) by
the uniqueness of the Zariski decomposition. According to the construction of π, we
know that E′

|S ∼ π∗(KX)|S is a normal crossing divisor for a general fiber S.
Now let us assume α3 ∈ (0, 1) be a real number such that

h0(S, KS + �αE′
|S�) ≥ 3

for all α > α3. We may now write a as a = m2+m3+1, where m2,m3 are non-negative
integers and

a − m3

a
> α3.

Such integers exist: for instance, one may take m3 = 0 and m2 = a−1. What we will
show in next sections is that we can find a nontrivial decomposition of a, i.e., with
m3 > 0.

Once we have the above setting, we may deduce an interesting inequality as follows.
Write

M ∼ S0 +
m2∑

i=1

S2,i +
m3∑

j=1

S3,j .

Since

π∗(KX) −
m3∑

j=1

S3,j − m3

a
E′ ≡ (1 − m3

a
)π∗(KX)
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is nef and big and has normal crossings, the Kawamata-Viehweg vanishing theorem
([5, 11]) yields

H1(X ′,KX′ + �π∗(KX) −
m3∑

j=1

S3,j − m3

a
E′�) = 0

and hence the exact sequence:

0 −→ H0(X ′,KX′ + �π∗(KX) −
m3∑

j=1

S3,j − m3

a
E′�)

−→ H0(X ′,KX′ + �π∗(KX) − m3

a
E′�)

−→ ⊕m3
j=1H

0(S3,j ,KS3,j
+ �(1 − m3

a
)E′�|S3,j

) −→ 0.

In the above sequence, we obviously have

�(1 − m3

a
)E′�|S3,j

≥ �(1 − m3

a
)E′

|S3,j
�

and

(1 − m3

a
)E′

|S3,j
≡ a − m3

a
π∗(KX)|S3,j

.

So one has
h0(S3,j ,KS3,j + �(1 − m3

a
)E′

|S3,j
�) ≥ 3

for sufficiently general S3,j as a fiber of f by our definition of α3. The above sequence
then gives the inequality

h0(X ′,KX′ + �π∗(KX) − m3

a
E′�)(2.1)

≥ h0(KX′ + �π∗(KX) −
m3∑

j=1

S3,j − m3

a
E′�) + 3m3.

It is obvious that one has

h0(KX′ + �π∗(KX) −
m3∑

j=1

S3,j − m3

a
E′�)

≥ h0(KX′ + �π∗(KX) −
m3∑

j=1

S3,j − m2 + m3

a
E′�).

Similarly, because

π∗(KX) −
m2∑

i=1

S2,i −
m3∑

j=1

S3,j − m2 + m3

a
E′ ≡ 1

a
π∗(KX)

is nef and big and with normal crossings, the vanishing theorem gives

H1(KX′ + �π∗(KX) −
m2∑

i=1

S2,i −
m3∑

j=1

S3,j − m2 + m3

a
E′�) = 0.



658 FABRIZIO CATANESE, MENG CHEN AND DE-QI ZHANG

So we have the following exact sequence:

0 −→ H0(X ′,KX′ + �π∗(KX) −
m2∑

i=1

S2,i −
m3∑

j=1

S3,j − m2 + m3

a
E′�)

−→ H0(X ′,KX′ + �π∗(KX) −
m3∑

j=1

S3,j − m2 + m3

a
E′�) −→

⊕m2
i=1 H0(S2,i,KS2,i

+ �a − m2 − m3

a
E′�|S2,i

) −→ 0.

The above exact sequence gives

h0(S2,i,KS2,i + �a − m2 − m3

a
E′�|S2,i) ≥ pg(S2,i) = 2

and

h0(X ′,KX′ + �π∗(KX) −
m3∑

j=1

S3,j − m2 + m3

a
E′�)(2.2)

≥ h0(KX′ + �π∗(KX) −
m2∑

i=1

S2,i −
m3∑

j=1

S3,j − m2 + m3

a
E′�) + 2m2.

We shall go on studying the group

H0(X ′,KX′ + �π∗(KX) −
m2∑

i=1

S2,i −
m3∑

j=1

S3,j − m2 + m3

a
E′�).

Apparently, it is slightly bigger than H0(X ′,KX′ + S0).
We set δ := 2 − h2(OX). By looking at the exact sequence:

0 −→ OX′(KX′) −→ OX′(KX′ + S0) −→ OS0(KS0) −→ 0,

one has

h0(KX′ + S0) ≥ pg(X) + δ.(2.3)

Combining the above inequalities (2.1)∼(2.3), we have

P2(X) = h0(KX′ + π∗(KX)) ≥ 3m3 + 2m2 + pg(X) + δ.(2.4)

Applying Reid’s plurigenus formula (see the last section of [10] and Lemma 8.3 of [8]):

P2(X) =
1
2
K3

X − 3χ(OX) =
1
2
K3

X − 3(1 − b + h2(OX) − pg(X)),

we get the Noether type inequality:

K3
X ≥ 6m3 + 4m2 − 4pg(X) + 4h2(OX) − 6b + 10.(2.5)

2.4. A problem on surfaces. As we have seen, the general fiber S has the invariants
(K2

S0
, pg(S0)) = (1, 2). We have a divisor E′

|S ∼ σ∗(KS0) which has normal crossings.
So there is a divisor D0 ∈ |KS0 | with E′

|S = σ∗(D0). We expect to find a real number
α3 ∈ (0, 1) such that h0(S, KS + �αE′

|S�) ≥ 3 for all α > α3. Furthermore we hope
α3 to be as small as possible.
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3. The rounding up problem for (1,2) surfaces

Assume that Y is the canonical model of a surface of general type with pg(Y ) =
2,K2

Y = 1, that τ : S0 → Y is its minimal model, and finally that f : S → S0 is a
sequence of point blow ups.

We set up the following notation and assumptions:
• Γ ⊂ Y is a canonical divisor
• D is the full transform τ∗(Γ)
• we assume that f∗(D) is a normal crossing divisor
• for t ∈ (0, 1) we consider the round up divisor Δt := �tf∗(D)�

Remark 3.1. Observing that since H1(OY ) = H1(OS) = H1(KS) = 0 (cf. [1]), one
has h0(KS + Δt) = pg(S) + h0(ωΔt) where ωΔt := OΔt(KS + Δt).

Theorem 3.2. Assume that pg(Y ) = 2,K2
Y = 1, that f∗(D) is a normal crossings

divisor, and that 3/10 < t. Then h0(KS + Δt) = 2 + h0(ωΔt
) ≥ 3.

Proof. 1) Since K2
Y = 1, and KY is ample, Γ is irreducible. (Note that |KY | has one

smooth and simple base point and the general member of |KY | is a smooth curve of
genus 2 (cf. page 225 in [1]). It is well known and easy to show that Y is a hypersurface
of degree 10 in the weighted projective space P(1, 1, 2, 5), so Y is a finite double cover
of P(1, 1, 2) and the involution σ on Y induced by the hyperelliptic involution of those
genus 2 curves has exactly one isolated fixed point – the base point of |KY |. We shall
also denote by the same symbol σ its lift to a biregular involution on S0, observing
that again there is exactly one isolated fixed point – the base point of |KS0 |.

The quotient Q2 = Y/〈σ〉 = P(1, 1, 2) is isomorphic to a quadric cone in P3 and
Γ is isomorphic to a double cover of P1 branched in a point P∞ and in a disjoint
sub-scheme of length 5 (cf. [1], page 231, a construction due to Horikawa).

2) Observe that if D ≥ D′, and Δ′
t := �tf∗(D′)�, then h0(KS +Δt) ≥ h0(KS +Δ′

t).
3) Set K := KS0 . Write D = Γ̃ + Z̃, where Γ̃ is the strict transform of Γ. Thus

Γ̃ ·K = 1, Z̃ ·K = 0. Since Γ is a Cartier divisor, it follows that the support of Z̃ is a
union of the support of certain fundamental cycles Zi corresponding to the rational
double points Pi ∈ X such that Pi ∈ Γ, and moreover Z̃ =

∑
i Z̃i, where Z̃i ≥ Zi.

4) If we take an effective decomposition D = D′ + W , where D′ · K = 1, then
(D′)2 = D′ · (K −W ) = 1−D′ ·W ≤ −1, since a canonical curve is 2-connected ([1],
VII (6.2)).

5) If Z ′ ·K = 0, and Z ′ is (effective and) reduced, then (Z ′)2 = −2k, where k is the
number of connected components of Z ′. In fact, it suffices to prove the formula for
Z ′ connected, but Z ′ is contained in a fundamental cycle, and corresponds therefore
to a rational subtree of the Dynkin diagram. Thus, if n is the number of edges of the
subtree, then (Z ′)2 = −2(n + 1) + 2n = −2.

We pass now to the strategy of proof:
[S1] if the arithmetic genus p(Γ̃) ≥ 1 then we pick D′ = Γ̃ (see point 2)).
Observe now that p(Γ̃) ≥ 1 is equivalent, since Γ̃ ·K = 1, to Γ̃2 ≥ −1, or to D = Γ̃,

in view of 4). If the first strategy is not allowed, this means that Γ̃2 = −3, and
Γ̃ ∼= P1.

If Γ̃ ∼= P1 we consider the reduced divisor Γ̃ + Z ′
i, where Z ′

i = (Zi)red is the
reduced curve corresponding to one of the divisors Z̃i appearing in 3). By 5) and 4) it
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follows that the odd number (Γ̃ + Z ′
i)

2 = −5 + 2(Γ̃ ·Z ′
i) equals −3 or −1, accordingly

(Γ̃ · Z ′
i) = 1 or 2.

[S2] If (Γ̃ · Z ′
i) = 2, there are four cases:

[S2.1] Γ̃ + Z ′
i is a normal crossing divisor (of arithmetic genus 1), and we pick

D′ = Γ̃ + Z ′
i.

[S2.2] Γ̃ is tangent to a smooth (-2)-curve A ⊂ Z ′
i, and then we take D′ = Γ̃ + A.

[S2.3] A fundamental cycle Z1 < Z̃ is of type A4 and Γ̃ passes through the central
point transversally. Take D′ = D (see the claim below).

[S2.4] A fundamental cycle Z1 < Z̃ is of type A2 and Γ̃ passes through the central
point transversally. Take D′ = Γ̃ + Z2 (see the claim below).

Claim 3.3. (1) Cases [S2.1] – [S2.4] are the only possible cases if [S2] holds.
(2) In Case [S2.3], one has KS0 ∼ D = Γ̃ + Z̃ with Z̃ = A1 + 2A + 2A′ + A4, so

that Z1 = A1 + A + A′ + A4 is a fundamental cycle of type A4.
(3) In Case [S2.4], there is another fundamental cycle Z2 < Z̃ of type Am which

together with Γ̃ forms a rational loop (of arithmetic genus 1).

Proof. (of the claim) If Γ̃+Z ′
i is not a normal crossings divisor, then, the intersection

number being 2, either [S2.2] holds or Γ̃ meets Z ′
i at a singular point P where two

components A,A′ meet, and all intersections are transversal. We observed that on S0

we have a canonical biregular involution σ, induced from the hyperelliptic involution
on the (genus two) canonical curves.

P is then a fixed point for the involution σ, which has only the point lying over
P∞ as isolated fixed point. Since P lies in a fundamental cycle, P is a different point
than the above isolated fixed point. So there is a σ-fixed curve C (on S0) through
P . If both A,A′ are σ-stable, then the action σ∗ on the tangent space at P will have
three eigenvectors (along A,A′, Γ̃) and hence it equals (−1)id, contradicting the fact
that P is not an isolated σ-fixed point.

Thus σ must interchange A and A′.
Let Z̃1 contain A,A′. Then σ acts on the graph of Z̃1 fixing P = A ∩ A′. So Z̃1

is of Dynkin type A2n (n ≥ 1) and P is the central point of Z̃1. Therefore, A,A′ are
the inverse images in the double cover S0 → Q2 of the last exceptional curve of the
blow up of a singular point P ′ of the branch curve B on Q2. Indeed, P ′ ∈ B is a cusp
of type (2, 2n + 1) with fibre F the only tangent at P ′ ∈ B. By point 1) follows that
5 ≥ (F.B)P ′ = 2n + 1. Thus n = 1, 2. This proves the first assertion.

The second assertion follows from point 1).
Concerning assertion (3), by point 1) and observing that Γ̃ ∼= P1, our F has one

further intersection point P2 with B, with (F.B)P2 = 2, and with P2 a singular point
for B of type An. Then assertion (3) follows. �

6) If strategies [S1] and [S2] are both not allowed, this means that Γ̃ ∼= P1, and
that (Γ̃ · Z ′

i) = 1 for each i.
7) Consider the intersection number Γ̃·Z̃i which equals K ·Z̃i−(Z̃i)2 = −(Z̃i)2 as is

therefore a strictly positive even number. By 4), since (Γ̃ + Z̃i)2 = (Γ̃)2 − (Z̃i)2 ≤ −1
this number equals 2, or Z̃i = Z̃, in which case we get 4 (indeed, note that 1 =
Γ̃ · (Γ̃ + Z̃)).
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8) Assume still that strategies [S1] and [S2] are both not allowed, thus 1 = K2 =
Γ̃2 +

∑
i(2(Γ̃ · Z̃i) + Z̃i

2
), which, by 7), equals −3 +

∑
i 2 if there is more than one

fundamental cycle. Therefore we conclude that Γ̃ intersects precisely one or two
fundamental cycles, and in the former case Γ̃ · Z̃i = 4.

9) Let us consider first the case where there are two fundamental cycles intersecting
Γ̃, and observe the following inequalities: 2 = Γ̃ · Z̃i ≥ Γ̃ · Zi ≥ Γ̃ · Z ′

i = 1, and write
Z̃i = Zi + Wi. We have (Γ̃ + Z̃i) · Zi = 0 = Γ̃ · Zi + Wi · Zi + Z2

i . By the well known
properties of a fundamental cycle, we have Z2

i = −2, and Wi · Zi ≤ 0, therefore
Γ̃ · Zi ≥ 2, and we conclude by the previous inequality that Γ̃ · Zi = 2.

10) By 6), 8) and 9) it follows that if we have two fundamental cycles which are
intersected by Γ̃, both are not reduced. By the standard classification of fundamental
cycles, this means that the corresponding rational double points are not of type An,
or, equivalently, that on the fibre F ∼= P1 of which Γ is the inverse image, we have
two triple points. This however contradicts 1), and shows that one of the cases [S1]
or [S2] occurs.

11) Let us consider then the former case in 8), where Γ̃ · Z̃1 = 4, and there is only
one fundamental cycle which is intersected by Γ̃, so we have Z̃1 = Z̃ and we may write
accordingly Z for the fundamental cycle, and Z ′ = Zred. Since Z̃2 = −4, Z2 = −2, we
can write as in 9) Z̃ = Z +W , and −4 = Z̃2 = Z2 +W 2 +2W ·Z, and we get a sum of
non positive terms, where the first two are even and strictly negative. Hence follows
that −2 = W 2, W ·Z = 0, Γ̃ ·Z = Γ̃ ·W = 2 (note that 0 = Z ·KS0 = Z ·(Γ̃+Z +W )).

Thus again the fundamental cycle corresponds to a triple point of the branch curve,
and Γ̃ intersects Z ′ in a smooth point, belonging to a (-2)-curve A which appears with
multiplicity 2 in both Z and W . Write W =

∑
riAi with ri > 0, then Ai · Z = 0 for

all i. So the equation Ai · (Γ̃+Z +W ) = 0 implies Ai ·W = −Ai · Γ̃ ≤ 0. Also we have
seen that W is a sum of only those Ai’s which are orthogonal to Z. Moreover, since
the point P = A ∩ Γ̃ is invariant under the involution σ, we see that A is pointwise
σ-fixed. Indeed, both A and Γ̃ are σ-stable and their tangents are eigenvectors of the
action σ∗ on the tangent space at P , but Γ̃ is not pointwise fixed and if also A were
not we would have an isolated fixed point, a contradiction.

Thus after we divide by the involution we obtain a (-4)-curve E, image of A, such
that Γ̃ is the inverse image of a transversal curve F̃ meeting E precisely in the point
p image of P .

12) Let us analyse this last case in terms of the double covering Γ → F , where
F ∼= P1. Since, on S0, Γ̃ is smooth of genus 0, it follows that this covering is branched
on the point P∞ and on another point P ∈ F ∩ B, where the branch locus B of the
double covering meets F with intersection multiplicity (B ·F )P = 5 (observe also that
B does not contain F as a component, else KS0 ≥ 2Γ̃, absurd.)

Because Y has only Rational Double Points as singularities,the branch curve B
of the double covering has only simple singularities (see [1]). Since the fundamental
cycle is not reduced, then B has a triple point at P . After blowing up P we get
a (-1)-curve E1 and the full transform of F is then F ′ + E1, and the new branch
locus is B′ + E1, where B′ is the proper transform of B. We know that the curve E
occurring in the normal crossing resolution of the branch locus has multiplicity 2 in
the full transform of F (since A has multiplicity 4 in D = Γ̃+ Z̃), so E cannot be the
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proper transform of E1, and the new branch locus has a point of multiplicity 3 at the
point P ′ = F ′ ∩E1, and we must blow up P ′, obtaining a (-1)-curve E2 which is part
of the new branch locus, together with the strict transform B′′ of B′ and the strict
transform E′

1 of E1.
Since we had B′ · F ′ = 2, and B′ has multiplicity 2 at P ′, it follows that now

F ′′ ∩ B′′ = ∅. Moreover also F ′′ ∩ E′
1 = ∅, therefore E is the strict transform of E2.

Since E has self intersection equal to −4 we need three further blow ups of points
(possibly infinitely near) on E2.

13) Since the proper transform B′ is singular we can exclude that we have a rational
double point of type E6 or of type E7. The other two cases are separated accordingly
as follows (see [1], II (8.1) and III (7.1) for the one-to-one correspondence between
the type of curve singularity of the branch locus B ⊂ Q2 of the double cover Y → Q2

and the type of surface singularity at the corresponding point on the canonical model
Y ).

[S3.1] (B′ · E1)P ′ = 2 implies that we have the Dn case, since B has then two
distinct tangents at P .

[S3.2] (B′ ·E1)P ′ = 3 implies that we have the E8 case, since B has then only one
tangent at P .

14) In both cases, we observe that Z̃ is the pull-back of E′
1 +2E2, i.e., the pull back

of the maximal ideal of P plus the pull back of the maximal ideal of P ′. Moreover,
in case [S3.2], there is only one (-2)-curve A which occurs in Z with multiplicity two
such that A ·Z = 0. In case [S3.1] we see instead that A is the curve corresponding to
the vertex at distance three from the asymmetrical end (observe that our assumptions
imply n ≥ 6).

15) We proceed by observing that it suffices to verify the statement for one blow
up of S0 where we have normal crossings for C := f∗(D).

Lemma 3.4. Let C ⊂ S be a normal crossing divisor, and let g : S′ → S the blow
up of a point P . Then, if we set C ′ = g∗(C), and Θt := �tC�, Θ′

t := �tC ′�, then
h0(KS + Θt) = h0(KS′ + Θ′

t), for all t ∈ (0, 1). More generally, let C =
∑

i niCi

be the decomposition of C as a sum of irreducible analytic branches at P , and let
mi := multP (Ci), then the above equality holds if there are two smooth local branches,
or just one branch ( i.e., n1 = 1, nj = 0 ∀j ≥ 2) of multiplicity m = 2, provided
t ∈ (0, 1).

Proof. Let E be the exceptional divisor of g, let C =
∑

i niCi be the decomposition
of C as a sum of irreducible divisors: then

C ′ = g∗(C) =
∑

i

niC
′
i +

∑

i

nimiE,

where C ′
i is the proper transform of Ci, and mi := multP (Ci).

Taking the round up, we obtain

Θ′
t = �tC ′� =

∑

i

�tni�C ′
i + �t

∑

i

mini�E

= g∗(Θt) + (�t
∑

i

mini� −
∑

i

�tni�mi)E.
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Since KS′ = g∗(KS)+E, KS′ +Θ′
t = g∗(KS+Θt)+[1+�t

∑
i mini�−

∑
i�tni�mi]E

and it suffices that the integer in the square brackets is non negative in order to
conclude the desired equality. Notice that the calculation is entirely local, so that we
can replace the global decomposition by the local decomposition in analytic branches.

The normal crossings case is a special case of the one where all the multiplicities
satisfy mi = 1 : in this case we want the inequality

1 + �
∑

i

tni� ≥
∑

i

�tni�(**)

to hold. This is obvious if there are exactly two terms, since for any two real numbers
a, b holds 1 + �a + b� ≥ �a� + �b�.

For only one branch, we want 1 + �tm� ≥ �t�m, and this is true for m = 2, since
t < 1.

�

Case [S1]: we take C = Γ̃: it is irreducible of arithmetic genus equal to p ∈ {1, 2},
therefore, for each t ∈ (0, 1) C is equal to the round up of tC, and h0(ωC) = p. If C
has normal crossings, we are done by the previous lemma (choose D′ = C in 2)).

Assume the contrary and assume first p = 1: then C has an ordinary cusp, thus the
hypothesis of the lemma above applies. After a blow up we get two smooth tangent
branches ( n1 = 1, n2 = 2), and the lemma still applies. We then get three smooth
transversal branches where n1 = 1, n2 = 2, n3 = 3: the inequality (**) holds, provided
1/6 < t ≤ 1/3 (since it is equivalent then to �6t� ≥ 2) and we are done, since after
this blow up we get global normal crossings for the full transform.

Assume now that C does not have normal crossings, and that p = 2: we have just
verified that an ordinary cusp gives no problem ( as well as a node). We use now
the fact that C has only double points as singularities, so we have to verify that a
tacnode y2 = x4 and a higher cusp y2 = x5 give no problem (higher singularities are
excluded by point 1)).

For a tacnode we get two smooth branches, so the lemma applies, and after the
first blow up we get three smooth transversal branches , with n1 = 1, n2 = 1, n3 = 2,
thus (**) applies again if 1/4 < t ≤ 1/3 (since (**) is equivalent then to �4t� ≥ 2)
and after this blow up we get normal crossings.

In the case of the higher cusp, we get one branch of multiplicity 2, so the lemma
applies; after the first blow up we get a reduced ordinary cusp transversal to a smooth
branch, occurring with multiplicity 2. In this case we have to verify that 1 + �4t� ≥
�2t� + 2 �t� , but this clearly holds for 1/4 < t ≤ 1/3.

After a further blow up, we get two smooth branches, tangent, and with n1 =
1, n2 = 4, so the lemma applies. A further blow up, the last before we get normal
crossings, yields a point where three smooth branches meet transversally, and n1 =
1, n2 = 4, n3 = 5: we have to verify whether (**) holds, i.e., 1 + �10t� ≥ �t� + �4t� +
�5t�. But this holds clearly for 3/10 < t ≤ 1/3 (else , for 1/5 < t ≤ 3/10 there is a
loss by 1, which however would not trouble us since we started with p = 2, and we
only want the arithmetic genus above to be at least 1). We now treat the remaining
cases one by one, using 2).

Case [S2.1]: D′ already has normal crossings, and is reduced, thus there is nothing
to prove.
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Case [S2.2]: here D′ consists of two smooth tangent divisors ∼= P1, so its arith-
metic genus is p = 1. This is exactly the case of the tacnode, which we already
treated, thus this case is also settled.

Case [S2.3]: D (∼ KS0) now has arithmetic genus 2, and does not have normal
crossings exactly at the point where A,A′, Γ̃ ∼= P1 meet transversally. The local
multiplicities are 2, 2, 1, thus for 1/5 < t ≤ 1/3 we obtain 1+�5t� ≥ �t�+�2t�+�2t�.
Thus we are done as in the above lemma.

Case [S2.4]: D′ already has normal crossings and has arithmetic genus 1. So
there is nothing to prove.

Case [S3.1]: an explicit calculation, probably well known, (cf. [1], page 65, lines
2-3) shows that the full transform of the maximal ideal of P is the fundamental cycle
Z of Dn, while the full transform of the maximal ideal of P ′, which is then W , is
the fundamental cycle of the Dn−2 configuration obtained by deleting the asymmetric
end and its neighbour.

In this case let us choose as D′ = Γ̃+2W < D = Γ̃+ Z̃: since all the multiplicities
of the components of D′ are then either 1, 2 or 4, it follows that for 1/4 < t ≤ 1/3 the
round up Δ′

t := �tD′� equals Γ̃ + W . Since W 2 = −2, Γ̃ ·W = 2, the self intersection
(Δ′

t)
2 = −1, thus Δ′

t has arithmetic genus 1 (topologically it is of elliptic type D∗
n−2

or I∗n−6 in Kodaira’s notation) and this case is settled by virtue of 2).
Case [S3.2]: Also in this case an explicit calculation, probably well known, (cf.

[1], page 65, lines 2-3) shows that the full transform of the maximal ideal of P is the
fundamental cycle Z of E8, while the full transform of the maximal ideal of P ′, which
is then W , is the fundamental cycle of the E7 configuration obtained by deleting the
furthest end.

In this case we write the multiplicities for the components of Z̃ starting from left
to right (i.e., from middle length end (i.e., A) to longest end), and then we give the
multiplicity for the shortest end: we get the sequence 4, 7, 10, 8, 6, 4, 2 and then 5.
We may choose for convenience D′ as Γ̃ + Z̃ minus twice the longest end and minus
its neighbor, i.e., we change the sequence to 4, 7, 10, 8, 6, 3, 0, 5. If we now choose
3/10 < t ≤ 1/3, one can easily calculate that the round up Δ′

t := �tD′� equals Γ̃+W
(topologically, it is of elliptic type E∗

7 or III∗ in Kodaira’s notation), and we are done
as in the previous case. �

4. The Noether inequality

Theorem 4.1. Let X be a minimal Gorenstein 3-fold of general type with canonical
singularities. Assume either pg(X) ≤ 2 or that |KX | is composed with a pencil of
surfaces of type (1,2). Then

K3
X ≥ 7

5
pg(X) − 2.

Proof. As we have seen in 1.5, we may take X to be factorial with only terminal
singularities. Because K3

X ≥ 2, the inequality is automatically true for pg(X) ≤ 2.
We may suppose, from now on, that pg(X) ≥ 3. Denote by f : X ′ −→ B the

fibration induced from Φ|KX |. Let S be a general fiber of f . Lemma 4.5 of [3] says
0 ≤ b = g(B) ≤ 1. Theorem 3.2 says that we may take α3 = 3

10 for a general fiber S
of f ; see the first part of 2.3.
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Case 1. b = 1. We may write a = pg(X) = 10m + c where m ≥ 0 and 0 ≤ c ≤ 9
(obviously, for m = 0 we have 3 ≤ c ≤ 9).

When m > 0, we take m3 := 7m + �c, where �c := −1, 0, 1, 2, 2, 3, 4, 4, 5, 6
respectively when 0 ≤ c ≤ 9. Then one sees that

1 − m3

a
> α3 =

3
10

.

Take m2 = a− 1−m3 = 3m + �c, where �c := c− 1−�c. Then the inequality (2.5)
gives

K3
X ≥ 6(7m + �c) + 4(3m + �c) − 4pg(X) + 4

= 54m − 4pg(X) + 6�c + 4�c + 4

=
7
5
pg(X) − 7

5
c + 2�c

≥ 7
5
pg(X) − 2.

When m = 0, we have 3 ≤ a = c ≤ 9. Take m3 =2, 2, 3, 4, 4, 5, 6 respectively when
3 ≤ c ≤ 9. We may easily check that 1 − m3

a > 3
10 . Take m2 := a − 1 − m3 =0, 1,

1, 1, 2, 2, 2 respectively when 3 ≤ c ≤ 9. By inequality (2.5), we may verify case by
case that K3

X > 7
5pg(X) − 2.

Case 2. b = 0. We may write a = pg(X)−1 = 10m+c where m ≥ 0 and 0 ≤ c ≤ 9
(for m = 0 we have 2 ≤ c ≤ 9).

Again when m > 0, we take m3 := 7m + �c where �c = −1, 0, 1, 2, 2, 3, 4, 4,
5, 6 respectively when 0 ≤ c ≤ 9. Then the calculation is similar to Case 1. Take
m2 = a − 1 − m3 = 3m + �c where �c = c − 1 − �c. Then the inequality (2.5) gives

K3
X ≥ 6(7m + �c) + 4(3m + �c) − 4pg(X) + 4h2(OX) + 10

≥ 54m − 4pg(X) + 6�c + 4�c + 10

=
7
5
pg(X) − 7

5
c + 2�c +

3
5

≥ 7
5
pg(X) − 7

5
.

When m = 0 and 2 ≤ a = c ≤ 9, one can in a similar way verify that K3
X >

7
5pg(X) − 7

5 . �

4.2. Proof of the main results.

Proof. Now both Theorem 1.2 and Corollary 1.4 follow directly from 2.2 and Theorem
4.1. �

Remark 4.3. A quite natural problem left to us is the possibility of generalizing
Theorem 1.2 to the case where X is Gorenstein minimal. Unfortunately the method
of Theorem 4.3 of [3] only works when X is smooth. One needs a new method to
treat the difficult case where X is canonically fibred by curves of genus 2. However
we would like to put forward the following:

Conjecture 4.4. The Noether inequality

K3 ≥ 2
3
(2pg − 5)
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holds for any projective minimal Gorenstein 3-fold of general type.
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