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CONTINUOUS FAMILIES OF ISOPHASAL SCATTERING
MANIFOLDS

Carolyn Gordon and Peter Perry

To the Memory of Robert Brooks

Abstract. We construct continuous families of Riemannian metrics on Rn for n ≥ 8

with the same scattering phase and resonances. The metrics are compactly supported
perturbations, with arbitrarily small support, of the Euclidean metric and have infinitely

many scattering resonances.
1. Introduction

Inverse spectral geometry for compact Riemannian manifolds is the study of which
geometric properties of the manifold are determined by the eigenvalues of the Lapla-
cian. For non-compact Riemannian manifolds, there may be only finitely many L2-
eigenvalues of the Laplacian (or no L2-eigenvalues at all) but there are several possible
analogues of spectral data for which one can pose a similar inverse problem. In many
noncompact settings, one can define scattering resonances, which serve as discrete
data analogous to the eigenvalues in the compact setting. Two metrics are said to
be isopolar if they have the same scattering resonances, with mulitiplicities. In the
setting we will consider, one can further define a notion of scattering phase, a function
roughly analogous to the counting function for eigenvalues in the compact problem.
The condition that two metrics be isophasal, i.e. that they have the same scattering
phase, is stronger than isopolarity.

In the compact setting, there is a well-developed literature of both positive and
negative inverse spectral results. In particular, a vast array of isospectral manifolds
reveals many geometric and topological invariants that are not spectrally determined.
There are two known systematic methods for constructing isospectral manifolds; most
of the known examples were either constructed by or can be explained by one of
these two methods. (i) Representation theoretic techniques, most notably the Sunada
method, have been used very extensively to construct isospectral manifolds with a
common Riemannian cover. (There is one exception: C. Sutton used representation
theoretic techniques to construct a pair of isospectral simply-connected manifolds; in
particular they do not have a common Riemannian cover.) (ii) A technique involving
torus actions and Riemannian submersions, developed over the past decade, has given
rise to many examples of isospectral metrics with different local geometry including,
among others, the first examples of isospectral closed manifolds [8], the first examples
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of isospectral simply-connected manifolds [22], families of isospectral left-invariant
metrics on the classical compact Lie groups [23], [19], and continuous families of
isospectral metrics on spheres and balls [9], [24].

Much less is known in the scattering setting. All known examples to date have
come about by adapting the Sunada technique from the compact to the non-compact
setting. This has resulted in many interesting examples: finite-area Riemann sur-
faces (both isopolar and isophasal–see Bérard [1] and Zelditch [29], [30]), Riemann
surfaces of infinite area (isopolar and isophasal–see Guillopé-Zworski [11] and Brooks-
Davidovich [3]), three-dimensional Schottky manifolds (isopolar–see Brooks-Gornet-
Perry [4]), and surfaces with non-trivial topology that are isometric to Euclidean
space outside a compact set (isopolar and isophasal–see Brooks-Perry [5]). However,
the Sunada method has the same limitations as in the compact setting. In particular,
the manifolds in each of these examples have a common finite covering. Moreover, in
each case there are only finite sets of isopolar (or isophasal) manifolds as opposed to
continuous deformations.

In this article, we show that the method of torus actions and Riemannian sub-
mersions can also be adapted to the noncompact setting. We will focus here on a
particularly attractive setting, namely the inverse scattering problem on Euclidean
Rn with compactly supported perturbations of the Euclidean metric.

We will prove:

Theorem 1.1. For every n ≥ 8, there exist continuous families of isophasal, non-
isometric Riemannian metrics on Rn which are Euclidean outside of a compact set
of arbitrarily small volume. There also exist pairs of such metrics on R6.

Remark 1.2. Letting m = n − 4, the parameter space for the continuous families of
isophasal metrics on Rn that we will construct has dimension

d ≥ m(m − 1)
2

−
[m

2

] ([m

2

]
+ 2

)
> 1

if n = 9 or n ≥ 11. (If n = 8 or n = 10, the parameter space has dimension at least
1).

In addition to proving the existence of the continuous families, we will give an
explicit example of a triple of isophasal metrics on R12. We will see that these metrics
have very different geometry. Indeed their isometry groups have different dimension
and structure.

To our knowledge, the isophasal metrics of Theorem 1.1 differ from the other known
examples of isophasal or isopolar metrics in the following ways:

• They are the first continuous families of isophasal or isopolar metrics;
• They are the first simply-connected examples, in fact the first for which the

manifolds do not share a common Riemannian cover;
• They are the first isophasal or isopolar compact metric perturbations of the

Euclidean metric on Rn.
We feel that this initial generalization of the torus method to the noncompact

setting will open a new line of investigation. Already we are adapting the method
to address the construction both of isophasal potentials for the Schrodinger operator
and of isophasal obstacles. These constructions will be addressed in a later paper.
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The metrics that we construct are extension to the full Euclidean space of isospec-
tral families of metrics on balls and spheres constructed in Gordon [9] and Schueth
[24]. In particular, the continuous families of isosphasal metrics that we construct
exhibit the strong property that their restrictions to any ball or sphere centered at
the origin are isospectral. These examples illustrate that isophasality and isopolarity
are natural extensions of the notion of isospectrality.

We now review the notion of scattering resonances in our setting. For the class
of manifolds that we consider here, the Laplacian has purely continuous spectrum
in [0,∞) and no L2-eigenvalues. Thus, the resolvent of the Laplacian is an analytic
function R(z) = (ΔX − z)−1on C\[0,∞); the resolvent admits a meromorphic con-
tinuation to a double covering of the complex plane if n is odd, and a logarithmic
covering of the complex plane if n is even (this result follows, for example, from
the “black box scattering” formalism introduced by Sjöstrand and Zworski in [26]).
Resolvent resonances are poles of the meromorphically continued resolvent. In the
literature they are also referred to simply as resonances. Because they are defined
by a meromorphic continuation, resonances are less easily studied than eigenvalues,
but understanding their geometric content is an important problem. For the case
considered here, the resolvent resonances are identical to the poles of the meromor-
phically continued scattering operator, which are called scattering resonances. We
define and discuss the scattering operator, scattering resonances with multiplicities,
and the notion of scattering phase in §2 of what follows.

One might worry that the examples constructed have trivial scattering (e.g., have
no scattering poles). We show, however, that the isosphasal metrics can always be
chosen to have infinitely many resonances. For metric scattering on Rn, Sá Barreto
and Tang [21] (n odd) and Tang [28] (n even) proved the existence of infinitely many
resonances so long as the second relative heat invariant a2 is non-vanishing. They
also gave various geometric hypotheses which guarantee the non-vanishing of a2: one
of these is that the given metric is not flat but is a compactly supported perturbation
of the Euclidean metric that is close in the Ck topology to the Euclidean metric for
sufficiently large k (Theorem 1.3 of [21] and Theorem 1.1 of [28])1. In our examples,
it is easily verified that the metrics are not flat, and it is easy to construct examples
where the metrics are arbitrarily close in the Ck sense to the Euclidean metric for
k large and fixed2. We can actually remove the assumption that our metrics are Ck

close to the Euclidean metric by computing the a2 heat invariant directly, at the
cost of imposing a genericity assumption3 on the space of metrics; we carry out this
computation in Section 5 for the metrics on Rn with n ≥ 9.

1Both of these papers rely on a result of Kuwabara [17] which states that, given a flat metric γ
on a compact manifold X, there is a neighborhood U of γ in the C∞ topology so that if a2(g) = 0

and g ∈ U , then g is flat. In fact, a close examination of [17] shows that it is sufficient for g and γ

to be close in the Ck topology for k sufficiently large: see Theorem A’ of section 6 in [17]. For the
connection between Kuwabara’s result on compact manifolds and the result on metric perturbations

of Euclidean Rn, see the proof of Theorem 1.3 of [21] which uses finite propagation speed for solutions

of the wave equation.
2As explained in Section 4, the metrics depend on a skew-symmetric bilinear form and a C∞

0 (Rn)

function ϕ which defines the support of the perturbation. One takes the function ϕ sufficiently small
in Ck-sense.

3The genericity condition we impose is merely a genericity condition on the choice of cut-off
function ϕ which defines the metric; see Definition 4.3 in what follows.
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The plan of this paper is as follows. In §2, we discuss basics of scattering theory
for asymptotically Euclidean manifolds. In §3, we develop a technique, based on the
method of torus actions, for constructing manifolds with the same scattering phase
(see Theorem 3.7). In §4 we apply the technique of the previous section to show
that the metrics on balls and spheres constructed in [9] and [24] extend to isophasal
metrics on Rn, thus proving Theorem 1.1. We give full details for the examples in
dimension n ≥ 9, based on the examples in [9]). The lower-dimensional examples are
given by extensions of metrics constructed in [24]. Since the methods of §3 apply in
exactly the same way to these examples, we do not include the details here. Finally,
in §5, we carry out the explicit computation that the a2 heat invariant is generically
nonvanishing, again restricting our attention to the examples in dimension 9 and
above.

2. Metric scattering on Rn

In this section we review scattering theory for manifolds X = (Rn, g) where g
is a compactly supported metric perturbation of the Euclidean metric: see [14] and
[15] for an expository treatment that includes the case considered here. Letting ΔX

be the positive Laplace-Beltrami operator on X, it follows from the classical Rellich
uniqueness theorem that ΔX has no L2-eigenvalues, and it is easy to prove that ΔX

has purely absolutely continuous spectrum in [0,∞). Thus the resolvent operator
R̃(z) = (ΔX − z)−1, considered as a mapping from L2(X) to itself, is an operator-
valued analytic function of z in C\[0,∞). It can be shown that the mapping R(λ) =
R̃(λ2), initially defined on the half-plane �(λ) > 0 and viewed as a map from C∞

0 (Rn)
to C∞(Rn), admits a meromorphic continuation to the complex λ-plane if n is odd,
and to the logarithmic plane if n is even. At any pole ζ, the resolvent admits a
Laurent expansion with finite polar part of the form

Nζ∑
j=1

Aj

λ − ζ

where the Aj are finite-rank operators from C∞
0 (Rn) to C∞(Rn). The multiplicity of

the pole ζ is defined as dim (⊕j(RanAj)).
To define the scattering phase, we first recall that the absolutely continuous spec-

trum is parameterized by scattering solutions to the eigenvalue equation

(ΔX − λ2)u = 0

which are easily described. In what follows, write x ∈ Rn\ {0} as x = rω where r > 0
and ω ∈ Sn−1.

Proposition 2.1. Fix f− ∈ C∞(Sn−1) and λ > 0. There exists a unique C∞ solution
of the equation

(ΔX − λ2)u = 0

having the asymptotic form

(2.1) u(rω) = r(1−n)/2eiλr f+(ω) + r(1−n)/2e−iλrf−(ω) + O(r−(n+1)/2)

as r → ∞. In particular, the function f+ ∈ C∞(Sn−1) is uniquely determined.
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For a proof see [14].
The Proposition implies that the mapping f− �→ f+ is a well-defined mapping

from C∞(Sn−1) to itself. We denote this map, the absolute scattering matrix for X,
by S(λ). From the definition, it is clear that S(λ) is a linear mapping, and that
S(λ)−1 = S(−λ) for real λ 	= 0. In the case of X0 = (Rn, g0) (where g0 is the
Euclidean metric on Rn), we have the explicit formula

u(x) =
∫

S2
exp(−iλx · ω) f−(ω) dω

and a stationary phase calculation shows that the absolute scattering matrix S0(λ) is
given by

(2.2) (S0(λ)ϕ) (ω) = in−1ϕ(−ω).

Since X is a compactly supported metric perturbation of X0, it is not surprising that
the ‘relative scattering matrix’

(2.3) Sr(λ) = S(λ)S0(λ)−1

has especially nice properties (see, for example, §5.2 of [15]):

Proposition 2.2. For real λ 	= 0, the relative scattering matrix Sr(λ) extends to a
unitary operator from L2(Sn−1) to itself. Moreover

Sr(λ) = I + T (λ)

where T (λ) is an integral operator with integral kernel belonging to C∞(Sn−1×Sn−1).

In particular, T (λ) extends to a trace-class operator on L2(Sn−1), so that the
operator determinant

det Sr(λ) = det(I + T (λ))

is well-defined (see, for example, [25] for a discussion of operator determinants).
Since Sr(λ) is unitary, it follows that detSr(λ) has modulus one. We note for use
later that if A is a trace-class operator on a Hilbert space H and B is a boundedly
invertible linear operator on H, the equality

(2.4) det(I + A) = det(I + BAB−1)

holds.
It can be shown that the determinant det(Sr(λ)) extends to a meromorphic function

on the complex plane (n odd) or the logarithmic plane (n even) whose poles coincide,
including multiplicity, with the resolvent resonances.

The real-valued function

σ(λ) =
1

2πi
log det(Sr(λ))

on (0,∞) is called the scattering phase and behaves in many respects analogously to
the counting function for eigenvalues on a compact manifold. For example, Chris-
tiansen [7] has shown that the scattering phase for a class of scattering manifolds
including those considered here obeys the asymptotic law

σ(λ) = −cn sc- vol(X, g) λn + O(λn−1)
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as λ → ∞, where, for the case of compactly supported metric perturbations of the
Euclidean metric,

sc- vol(X, g) = lim
ε↓0

(∫
Xε

dg − 1
n

vol(Sn−1)ε−n − cn−1ε
n−1 − · · · − c0 log ε

)
(previously, Robert [20] obtained asymptotics of the scattering phase for potential
and metric perturbations of the Euclidean metric on Rn). The constant cn is the
same constant that appears in Weyl’s law for the counting function of eigenvalues.
The constants ck are chosen to make the limit finite, and Xε is the compact set in
Rn with |x| ≤ ε−1(equivalently, sc-vol(X, g) is the Hadamard finite part of volg(Xε)
as ε ↓ 0). Note that sc-vol(X, g) may be positive, negative, or zero, depending on g.

In the examples we will construct, the volume forms for g and g0 are identical,
so sc-vol(X, g) = 0. Thus our examples have “weak scattering” in the sense that
σ(λ) = O(λn−1). In a subsequent paper, we will show how to construct continuous
families of isospectral manifolds with sc-vol(X, g) 	= 0.

3. Technique for constructing isosphasal manifolds

Before presenting the method we will use for constructing isosphasal metrics, we
review basic properties of group actions, in particular, torus actions. Given an action
of a compact Lie group G on a manifold M , the principal orbits are the orbits with
minimal isotropy. The union of the principal orbits is an open dense subset M ′ of M .
(See [2], Theorem 3.1.) There exists a subgroup H of G such the isotropy group of
every element of M ′ is conjugate to H. Moreover, the isotropy group of an arbitrary
element of M contains a subgroup conjugate to H. In case G is a torus, it follows
that the isotropy group of every element contains H itself. In particular, if a torus
action is effective, then H is trivial and so the action on the principal orbits is free.
Thus M ′ is a principal G-bundle.

Notation 3.1. Suppose a torus T acts smoothly on a connected manifold M . For each
character α : T → S1 (where S1 is the unit circle in C), write

Hα = {f ∈ C∞(M) : f(z · x) = α(z)f(x) for all x ∈ M, z ∈ T}.
For K a subtorus of T of codimension at most one, let C∞(M)K denote the space of
K-invariant smooth functions on M . Then

C∞(M)K = ⊕α:K⊂ker(α) Hα.

Thus by Fourier analysis, we may decompose C∞(M) as

C∞(M) = C∞(M)T ⊕ (⊕K

(C ∞(M)K � C∞(M)T
))

where K varies over all subtori of codimension one.

Notation 3.2. If (M, g) is a complete Riemannian manifold, we denote by Ck
2 (M, g)

the set of C∞ functions u for which u,∇u, · · · , ∇ku belong to L2(M, g). We denote
by Hk(M, g) the completion of Ck

2 (M, g) in the norm

‖u‖Hk =

⎛⎝ k∑
j=0

∥∥∇ju
∥∥2

L2(M,g)

⎞⎠1/2

.
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We denote by H1
0 (M, g) the completion of C∞

0 (M) with respect to the inner product

(3.1) (ϕ, ψ)H1(M,g) =
∫

M

ϕ ψ dvg +
∫

∇ϕ · ∇ψ dvg.

Since, by a theorem of Chernoff [6], C∞
0 (M) is a domain of essential self-adjointness

for Δg, it is also dense in the form domain of Δg. We denote by Hk
0 (M, g) the

completion of C∞
0 (M) in the norm ‖u‖Hk(M,g) =

∥∥∥(Δg + 1)k/2
u
∥∥∥. The domain of Δg

is H2
0 (M, g), and similarly the domain of Δk

g is H2k
0 (M, g) [6]. If (M, g) has positive

injectivity radius and the functions ∇j Ric, j = 0, · · · , k − 2 are bounded (here Ric is
the Ricci curvature of (M, g)), the spaces Hk

0 (M, g) coincide with the spaces Hk(M, g)
(see, for example Hebey [13], Proposition 3.2). Under these hypotheses, the inclusion

Hk
0 (M, g) ⊂ C�(M)

holds provided k > n/2 + � (see, for example, [13], Theorem 3.4).

The following proposition adapts ideas of Gordon [9] and Schueth [24] to the non-
compact setting.

Proposition 3.3. Let (M1, g1) and (M2, g2) be connected, complete Riemannian
manifolds with positive injectivity radius and ∇k Rici bounded for i = 1, 2 and all
nonnegative integers k. Let T be a torus. Suppose T acts effectively by isometries
on (M1, g1) and (M2, g2) and that the action of T on the principal orbits is free. Let
M ′

i be the union of all principal orbits in Mi, so M ′
i is an open, dense submanifold

of Mi and a principal T -bundle, i = 1, 2. For each subtorus K of T of codimension
at most one, suppose that there exists a T -equivariant volume-preserving diffeomor-
phism FK : M1 → M2 that induces an isometry F̄K between the induced metrics on
the quotient manifolds K\M ′

1 and K\M ′
2. With respect to the Fourier decompositions

of C∞(M1) and C∞(M2) given in Notation 3.1, let

Q = F ∗
T ⊕ (⊕KF ∗

K),

initially defined as a map from C∞
0 (M ′

2) to C∞
0 (M ′

1). Then Q extends to a map from
C∞(M2) to C∞(M1) with the property that

(3.2) Δ1 ◦ Q = Q ◦ Δ2,

where Δi is the Laplace operator on C∞(Mi).

Remark 3.4. Proposition 3.3 as stated here differs somewhat from the original state-
ments in [9] and [24]. There the manifolds Mi were assumed to be compact and the
conclusion was that they were isospectral. However, the construction of the inter-
twining operator Q did not use the assumption that the manifolds were compact.
A second difference between the statement here and that in [9] is that a hypothesis
involving preservation by the diffeomorphisms FK of the mean curvature of the fibers
has been replaced by the condition that these diffeomorphisms be volume-preserving.
Dorothee Schueth made this simplifying change in her version [24] of the proposition,
observing that the former and latter conditions are equivalent.

Remark 3.5. In [24], Scheuth actually shows that the map Q is an isometry between
the spaces H1(M1, g1) and H1 (M2, g2), assuming that M1 and M2 are compact man-
ifolds, possibly with boundary. Her proof goes through with no essential change to
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show that the map Q is also an isometry between H1(M1, g1) and H1(M2, g2) when
(Mi, gi) are non-compact and complete in the metrics gi. To conclude that Q ac-
tually maps C∞(M2) to C∞ (M1) we make use of the hypotheses on the injectivity
radii and the Ricci tensor to apply standard Sobolev embedding theorems together
with the following observations. 1. The isometry of Q as a map from H1(M2, g2)
to H1(M1, g1) implies, by the fact that these spaces are the respective form domains
of the operators Δ2 and Δ1, that Q maps the domain of Δ2 to that of Δ1 and the
intertwining relation (3.2) holds in the sense of operators. 2. The intertwining rela-
tion together with elliptic regularity theory for the Laplacians can be used to prove
inductively that, if u ∈ H2k

0 (M2, g2), then Qu ∈ H2k
0 (M1, g1). The first observation

already shows that this mapping property holds for k = 1, and we can prove the
general result by induction as follows. Suppose now that Q maps H2k−2

0 (M2, g2) to
H2k−2

0 (M1, g1). If u ∈ H2k
0 (M2, g2) for k ≥ 2, we have Q ◦ Δ2u ∈ H2k−2

0 (M1, g1) by
hypothesis, so that Δ1(Qu) = f ∈ H2k−2

0 (M1, g1). It follows from elliptic regularity
that Qu ∈ H2k

0 (M1, g1). Thus Q maps C∞(M2)∩L2 (M2, g2) to C∞(M1)∩L2 (M1, g1).
3. The map Q is local in the sense that Q : C∞

0 (M2) → C∞
0 (M1) and if χ is a T -

invariant cutoff function, Q (χu) = χQ(u). Thus regularity is a local result and we
can conclude that Q extends to a map from C∞ (M2) to C∞ (M1).

Remark 3.6. In the application, M1 = M2 = Rn, and the metrics g1 and g2 differ from
the Euclidean metric on a compact set. In this case the assumptions in Proposition
3.3 on the injectivity radii and Ricci curvatures are trivially satisfied.

Theorem 3.7. Suppose a torus T acts effectively on Rn by orthogonal transforma-
tions. Let g1 and g2 be compact perturbations of the Euclidean metric on Rn invariant
under the action of T . Assume that the Riemannian measure defined by both met-
rics coincides with Lebesgue measure. Let (Rn)′ be the union of all principal orbits
of the torus action. For each subtorus K of T of codimension at most one, suppose
that there exists an orthogonal transformation FK ∈ O(Rn) commuting with T which
induces an isometry FK between the metrics induced by g1 and g2 on the quotient
manifold K\(Rn)′. Then g1 and g2 have the same scattering phase.

Remark 3.8. We have stated the theorem only in the form needed for the examples
given here. However, the theorem may be generalized to other settings.

Proof. The manifolds (Rn, g1) and (Rn, g2) satisfy the hypotheses of Proposition 3.3.
Define Q : C∞(Rn) → C∞(Rn) as in the conclusion of the proposition so that
Δ1 = Q ◦ Δ2 ◦ Q−1. Since the FK are orthogonal maps of Rn, the map Q induces
an invertible isometry of L2(Sn−1). Since all orthogonal maps commute with the
antipodal map of Sn−1, the map Q∂ commutes with S0(λ) as defined in equation 2.2.

¿From its construction, it is clear that the intertwining map Q preserves the form
of asymptotic expansions (2.1). Moreover, if u is a solution (Δg1 − λ2)u = 0 having
an asymptotic expansion of the form (2.1), then Qu is a solution of (Δg2 − λ2)v = 0
having an asymptotic expansion of the form

v(rω) = r(1−n)/2eiλr h+(ω) + r(1−n)/2e−iλrh−(ω) + O(r−(n+1)/2)

as r → ∞, where
h+(ω) = (Q∂f+)(ω)
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and
h−(ω) = (Q∂f−) (ω) .

Let Sg1(λ) and Sg2(λ) be the scattering matrices associated, respectively, to (Rn, g1)
and (Rn, g2). Since

f+ = Sg1(λ)f−
and

h+ = Sg2(λ)h−,

it follows from the uniqueness statement in Proposition 2.1 that

Q∂Sg1(λ)f− = Sg2(λ)Q∂f−.

Since this holds for any f− ∈ C∞(Sn−1), and Q∂ is an invertible linear map, we have

Sg2(λ) = Q∂Sg1(λ)Q−1
∂ .

Since Q∂ and Q−1
∂ commute with the operator S0(λ), we conclude that

Q∂Sg1(λ)S0(λ)−1Q−1
∂ = Sg2(λ)S0(λ)−1,

so that, on taking logarithms of determinants and using (2.4),

σg2(λ) = σg1(λ).

�

4. Examples

In [9], the first author constructed continuous families of Riemannian metrics on
Rn, n ≥ 9, which pairwise satisfy the hypotheses of Theorem 3.7 modulo the condi-
tion that the metrics be Euclidean outside of a compact set. Dorothee Schueth [24]
pointed out that the metrics could be modified to satisfy this additional condition; in
fact they could be flat outside of a compact set of arbitrarily small volume. Moreover,
Schueth constructed new continuous families of metrics on Rn, n ≥ 8, pairwise satis-
fying the condition of Theorem 3.7. (Note that she lowered the minimum dimension
by one.) Additionally, Schueth constructed pairs, though not continuous families, of
such metrics on R6. In both these papers, the focus was on compact manifolds. The
metrics, once constructed, were restricted to the unit ball and sphere. Using Proposi-
tion 3.3, these restricted metrics were seen to be isospectral. In the present context,
we will conclude from Theorem 3.7 that the families of metrics on Rn constructed in
these two papers are isosphasal.

We now review the construction of the metrics in [9] modified as in [24].

Definition 4.1. (i) We will say that two skew-symmetric bilinear maps [ · , · ] and
[ · , · ]′ taking Rm×Rm to Rk are isospectral if for each Z ∈ Rk there is an orthogonal
transformation AZ with the property that for every pair of vectors (x, y) ∈ Rm×Rm,〈

[x, y]′ , Z
〉
Rk = 〈[AZx, AZy] , Z〉Rk ,

where, here and in what follows, 〈 · , · 〉Rk denotes the Euclidean inner product on Rk.
(ii) We will say that the skew-symmetric bilinear maps [ · , · ] and [ · , · ]′ are equivalent
if there exists an orthogonal transformation A of Rm and an orthogonal transfor-
mation C of Rk, which preserves the lattice (2πZ)k, such that

〈
[Ax,Ay]′ , Z

〉
=
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〈[x, y] , CZ〉 for all x, y ∈ Rm and Z ∈ Rk. We will also say that the pair of maps
(A,C) is an equivalence of [ · , · ] and [ · , · ]′ in this case.

Remark 4.2. (i) Our notation differs from that of [9]. The bilinear maps [ · , · ] :
Rm × Rm → Rk correspond to linear maps j : Rk → so(m) via

〈[x, y], Z〉 = 〈j(Z)x, y〉
for all x, y ∈ Rm and Z ∈ Rk. We say that j and j′ are isospectral if j′(Z) and
j(Z) are isospectral linear operators for each z ∈ Rk. We will say that j and j′

are equivalent if there exist orthogonal maps A of Rm and C of Rm such that C
preserves the lattice (2πZ)k and such that Aj′(Z)A−1 = j(CZ) for all z ∈ Rk. These
conditions correspond to the isospectrality and equivalence conditions in Definition
4.1. The j maps were used in [9] rather than the bracket maps [ , ].
(ii) Our notion of equivalence differs slightly from that in [9] and [10] in that we
require C to preserve the lattice (2πZ)k. This condition is added so that C induces
a transformation of the torus (2πZ)k\Rk.

Definition 4.3. (i) Let T be the k-torus (2πZ)k\Rk embedded in SO(2k) as SO(2)×
· · · × SO(2). Then T acts on R2k = R2 × · · · × R2 by the standard SO(2)-action in
each factor. This action is not free but is inner-product preserving. The Lie algebra
of T is z = so(2)⊕ · · · ⊕ so(2) � Rk. Given Z ∈ z, define a vector field Z∗ on R2k by

(4.1) Z∗
u =

d

dt

∣∣∣∣
t=0

(exp(tZ) · u) .

for u ∈ R2k. Observe that, for x, y ∈ Rm, [x, y] ∈ Rk = z so that we may use (4.1)
to define a vector field [x, y]∗ on R2k.
(ii) Given a bilinear map [ · , · ] : Rm×Rm → Rk and a smooth, compactly supported
function ϕ : [0,∞) × [0,∞) → [0,∞), we now construct a Riemannian metric g =
g[ · , · ],ϕ on Rm+2k. Denote elements of Rm+2k by (x, u) with x ∈ Rm and u ∈ R2k.
First define ψ : Rm+2k → [0,∞) by ψ(x, u) = ϕ(‖x‖2

, ‖u‖2). For (x, u) ∈ Rm+2k,
denote by (Y, W ) a typical element of the tangent space T(x,u)Rm+2k, where, by
standard identifications, Y ∈ Rm and W ∈ R2k. We set

g((0,W ), (0, V )) = 〈W,V 〉R2k

and define the g-orthogonal complement to {0}⊕R2k in T(x,u)Rm+2k as follows. For
(x, u) ∈ Rm × R2k and Y ∈ TxRm, let

Ỹx,u = (Y, Z)

with
Z = ψ(x, u) [x, Y ]∗u .

The g-orthogonal complement to {0} ⊕ R2k is taken to be{
Ỹx,u : Y ∈ TxRm

}
.

We put an inner product on this space so that the map Y �→ Ỹx,u is an isometry
where Rm has the Euclidean inner product.
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Note that, for (x, u) outside of the support of ψ, we have Ỹx,u = Y . Thus the
metric so constructed is identical to the Euclidean metric away from the support of
ψ.

Proposition 4.4. Suppose that [ · , · ] and [ · , · ]′ are isospectral in the sense of Def-
inition 4.1 and that g and g′ are metrics constructed as in Definition 4.3 from the
data (ϕ, [ · , · ]) and (ϕ, [ · , · ]′) for the same nonnegative function ϕ ∈ C∞

0 (R+ ×R+).
Then g and g′ are isophasal.

Proof. We apply Theorem 3.7. Let W denote the union of the principal orbits for the
action of T on R2k. By identifying R2k with Ck, we may write

W =
{
(z1, . . . , zk) ∈ Ck : z1 	= 0, . . . , zk 	= 0

}
.

The union of the principal orbits for the action of T on Rm+2k is given by Rm ×W .
If K ⊂ T is a subtorus of codimension one, then in the Lie algebra z of T , there

is a vector Z orthogonal to the Lie subalgebra k of K. By hypothesis, there is an
orthogonal transformation AZ ∈ O(m) so that〈

[x, y]′ , Z
〉
Rk = 〈[AZx, AZy] , Z〉Rk

for any x and y belonging to Rm. Letting gK and g′K be the metrics on K\((Rm)′×W )
induced by g and g′, it follows from Definition 4.3(ii) that the orthogonal map

τK(x, u) = (AZx, u)

of Rm+2k induces an isometry from (K\((Rm)′ × W ), gK) to (K\((Rm)′ × W ), g′K).
Thus the hypotheses of Theorem 3.7 are satisfied, and we conclude that the metrics
are isophasal. �

Remark 4.5. In [9], the function ψ did not appear; i.e., ϕ (and thus ψ) was identically
one. As mentioned above, it was Dorothee Schueth that realized the function ψ could
be inserted so that the metrics are Euclidean outside of a compact set.

By referring to the proofs of Proposition 4.4 and of Theorem 3.7, we can give
an explicit description of the intertwining operators between the Laplacians of the
metrics in Proposition 4.4 and between their scattering phases as follows:

Proposition 4.6. Define g and g′ as in Proposition 4.4. Writing R2k = R2×· · ·×R2

and letting (ri, θi) denote polar coordinates on the ith factor, we obtain coordinates
(x, r, θ) on Rm+2k, where x = (x1, . . . , xm), r = (r1, . . . , rk) and θ = (θ1, . . . , θk). For
Z ∈ Rk, choose AZ as in Definition 4.1. Define Q : C∞(Rm+2k) → C∞(Rm+2k) by

Q(f)(x, r, θ) =
∑

Z∈( 1
2π Z)k

(2π)−k/2

(∫
[0,2π]k

f(AZ(x), r, σ)e−iZ·σdσ

)
eiZ·θ.

Then Q intertwines the Laplacians of the metrics g and g′ on Rm+2k, and the as-
sociated map Q∂ , defined as in Theorem 3.7, intertwines the associated scattering
operators.

We now consider whether these metrics are isometric.

Proposition 4.7. Fix ϕ. Let g and g′ be the metrics defined as in Definition 4.3 by
nontrivial maps [ · , · ] and [ · , · ]′ : Rm × Rm → Rk together with ϕ.
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(i) Suppose that τ is an isometry from (Rm+2k, g) to (Rm+2k, g′) that carries T -orbits
to T -orbits. Then τ is of the form

(τ(x, u) = (A(x), C̃(u))

where A ∈O(m), C̃ ∈O(2k), and C̃ normalizes T . Letting C be the automorphism of
the Lie algebra Rk = so(2)⊕· · ·⊕ so(2) of T given by conjugation by C̃, then the pair
(A,C) is an equivalence of [ · , · ] and [ · , · ]′, as in Definition 4.1.
(ii) Conversely, every map τ of this form is an isometry between the two metrics.

Proof. (ii) is straightforward and is left to the reader.
(i) Since the isometry τ carries T -orbits to T -orbits, it must preserve the open dense

subset Rm × W , where W is given in the proof of Proposition 4.4. The submanifold
Rm ×W has the structure of a principal T bundle over Rm × (T\W ) � Rm × (R+)k.
The metrics g and g′ both induce the standard Euclidean metric on the quotient
Rm×(R+)k. The isometry τ induces an isometry τ̄ of Rm×(R+)k. Such an isometry
is the composition of a translation in Rm with an orthogonal transformation of the
form A × P , where A ∈ O(m) and P permutes the coordinates in (R+)k. We claim
that the translation factor is trivial. To see this, note that the metrics g and g′ on
Rm+2k are Euclidean on the complement of {(x, u) ∈ Rm+2k : (‖x‖, ‖u‖) ∈ supp(ϕ)}.
Letting R be minimal such that supp(ϕ) ⊂ {(s, t) : s2 + t2 ≤ R}, then g and g′ are
Euclidean on the region {(x, u) : ‖x‖2 + ‖u‖2 ≥ R} and not on any translate of this
region. Hence τ̄ must preserve the image of this region in Rm × (R+)k, and the claim
follows.

For each x ∈ Rm, τ restricts to an isometry from the Euclidean space {x} × R2k

to the Euclidean space {A(x)}×R2k. Canonically identifying both spaces with R2k,
this isometry preserves the origin, since the origin is the unique T -orbit which is a
single point. Thus τ is of the form τ(x, u) = (A(x), Bx(u)) with Bx ∈ O(2k) for each
x ∈ Rm. We may identify T with the maximal torus T = SO(2) × · · · × SO(2) of
O(2k). Since τ carries T -orbits to T -orbits, each Bx must normalize T . Noting that
T has finite index in its normalizer in O(2k) and that Bx depends smoothly on x,
there must exist C̃ ∈ O(2k), independent of x, and z(x) ∈ T such that Bx = z(x)◦ C̃.
The permutation P in the expression for τ̄ is the map of T\W induced by C̃.

We next show that (A,C) defines an equivalence of [ · , · ] and [ · , · ]′, where C is
defined from C̃ as in the statement of the proposition. Observe that τ ◦ ψ = τ , since
τ(x, u) preserves the norms of the two coordinates. Since τ∗ maps g-horizontal vectors
at each point (x, u) (i.e., vectors g-orthogonal to the orbit of T through (x, u)) to g′-
horizontal vectors through τ(x, u), we have for y ∈ Rm, viewed as a tangent vector
to Rm at x,

τ∗(x,u)(y + ψ(x, u)[x, y]∗(x,u)) = A(y) + ψ(x, u)[A(x), A(y)]
′∗
(τ(x,u).

Noting that τ∗(Z∗) = C(Z∗) for Z in the Lie algebra z = Rk of T , it follows that
[A(x), A(y)]

′∗ = (C([x, y])∗. Since the map Z → Z∗ is injective on z, we see that
(A,C) is an equivalence of [ · , · ] and [ · , · ]′.

It remains to show that the map x → z(x) is constant. Fix a point x0 and let
z = z(x0). Define μ(x, u) = (A(x), z · C̃(u)). By (ii), μ is an isometry from g to g′.
Hence α := τ−1 ◦ μ is an isometry of g of the form (x, u) → (x, w(x) · u) for some
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map w : Rm → T satisfying w(x0) = 1, where 1 denotes the identity element in T .
At points of the form (x0, u)), u ∈ R2k, the differential α∗ acts as the identity both
on the tangent space to the fiber and on the horizontal space. Thus α∗(x0,u) = Id.
Since an isometry is uniquely determined by its value and its differential at a single
point, it follows that α = Id, i.e., that z(x) ≡ z. Replacing C̃ by z · C̃, the proposition
follows. �

Corollary 4.8. Let g be the Riemannian metric on Rm+2k defined from the data
([ · , · ] , ϕ) as in Definition 4.3. Then the centralizer of T in the group of all isometries
of g consists of all maps τ of Rm+2k of the form τ(x, u) = (A(x), z · u) such that
A ∈ O(m) preserves [ · , · ] (i.e., the pair (A, Id) is a self-equivalence of [ · , · ]) and
such that z ∈ T .

Proof. An isometry that commutes with T must carry T -orbits to T -orbits. Thus the
corollary follows from Proposition 4.7 and the fact that T is its own centralizer in
O(2k). �

Proposition 4.9. Suppose that g and g′ are metrics constructed from the data
([ · , · ] , ϕ) and

(
[ · , · ]′ , ϕ)

as in Definition 4.3, where [ · , · ] and [ · , · ]′ are inequivalent
in the sense of Definition 4.1. Assume that [ · , · ] satisfies the genericity condition
that [ · , · ] is invariant under only finitely many orthogonal transformations of Rm.
Then g is not isometric to g′.

Proof. By Corollary 4.8 and the genericity condition on [ · , · ], T is a maximal torus
in the full isometry group of g. Now suppose that ρ : (Rn, g) → (Rn, g′) is an
isometry. Since the metrics are isometric, T must also be a maximal torus in the full
isometry group of g′. By the conjugacy of the maximal tori in any Lie group, we may
assume after composing with an isometry of g′ that ρ carries T -orbits to T -orbits.
By Proposition 4.7, it follows that [ · , · ] and [ · , · ]′ are equivalent, contradicting the
hypothesis. �

By Proposition 4.4 and Proposition 4.9, if [ · , · ] and [ · , · ]′ are isospectral, inequiv-
alent maps Rm × Rm → Rk in the sense of Definition 4.1 and if [ · , · ] satisfies the
genericity condition of Proposition 4.9, then the metrics on Rm+2k constructed from
the data ([ · , · ] , ϕ) and ([ · , · ]′ , ϕ) as in Definition 4.3, for any fixed choice of ϕ,
are isospectral but not isometric. The following lemma shows that such isospectral,
inequivalent maps are plentiful.

Proposition 4.10. [10] Let k = 2, and let m be any positive integer other than
1, 2, 3, 4, or 6. Let Wm be the real vector space consisting of all anti-symmetric bilinear
maps from Rm × Rm to Rk. Then there is a Zariski open subset Om of Wm (i.e.,
Om is the complement of the zero locus of some non-zero polynomial function on W )
such that each [ · , · ] ∈ Om belongs to a d-parameter family of isospectral, inequivalent
elements of Wm. Here d ≥ m(m−1)

2 − [m
2 ]([m

2 ] + 2) > 1. In particular, d is of order
at least O(m2). Moreover, the elements of Om satisfy the genericity condition of
Proposition 4.9.

The statement of the proposition in [10] is in the language of Remark 4.2. The
final statement of the proposition was not explicitly stated in [10]; however, a glance
at the proof given there shows that the genericity condition is one of the defining
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properties of the Zariski open set Om constructed there. While the proposition omits
m = 6, an explicit example of a continuous family of isospectral, inequivalent maps
Rm × Rm → R2 was also constructed in [10].

We have now proven Theorem 1.1 when n ≥ 9. (For n = 10, we refer to the
comment immediately above.)

To prove Theorem 1.1 in the case n = 8 for continuous families and n = 6 for pairs,
we refer to the article [24] by Dorothee Schueth. There Schueth constructed metrics
on Rn from data (L,ψ) consisting of a particular type of linear map L and a cut-off
function ψ on Rn of the same type used above. (The maps L, which play the role
of the [ · , · ] maps in the construction above, are denoted j or c in the two different
constructions given in [24].) She defined notions of isospectrality and equivalence of
the linear maps. An argument analogous to the proof of Proposition 4.4 shows that,
for fixed ψ, the metrics on Rn constructed from isospectral linear maps L and L′ are
isosphasal. To discuss the condition for non-isometry, we will for simplicity require
that the cut-off function ψ be radial. The metrics constructed in [24] are Euclidean
outside of the support of ψ but not on any open set on which ψ is positive. Since
ψ is supported on a ball B about the origin, any isometry between the metrics must
therefore carry this ball to itself. Under a genericity condition analogous to that
in Proposition 4.9, Schueth proved that the metrics on the ball are not isometric
provided that the associated linear maps are inequivalent. This completes the proof.

Example 4.11. We give an explicit triple of isophasal metrics on R12 and compare
their geometries. We let k = 3 and m = 6. Define three maps [ · , · ]i : R6 ×R6 → R3

as follows.
To define [ · , · ]1 and [ · , · ]2, view R6 as R3 × R3 and denote elements of R6 as

ordered pairs (x, y), with x, y ∈ R3. Let × denote the cross product on R3. Define

[(x, y), (x′, y′)]1 = x × x′ + y × y′

and
[(x, y), (x′, y′)]2 = x × x′ − y × y′.

To define [ · , · ]3, view R6 as H × R2, where H denotes the quaternions. Denote
elements of R6 as pairs (q, y), with q ∈ H, y ∈ R2. View the target space R3 as the
purely imaginary quaternions. Define

[(q, y), (q′, y′)]3 = Im(qq′),

where qq′ is the quaternionic product.
To see that the three bracket maps are isospectral, it is easier to consider the

associated maps ji : R3 → so(6) defined as in Remark 4.2. We have

j1(z)(x, y) = (z × x, z × y),

j2(z)(x, y) = (z × x,−z × y),
and

j3(z)(q, y) = (zq, 0),
where in the final equation, zq denotes quaternionic multiplication of the purely imag-
inary quaternion z with the quaternion q. In each case, the eigenvalues of ji(z) are
‖z‖√−1, −‖z‖√−1, and 0, each occurring with multiplicity 2. Thus j1(z), j2(z) and
j3(z) are similar transformations for each z, and hence the ji are mutually isospectral.
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Equivalently, the [ · , · ]i are mutually isospectral. Thus fixing a choice of ϕ, we obtain
a triple of isosphasal metrics gi on R12.

The isometry groups Iso(gi) of the three metrics vary both in their dimension and
structure. By Corollary 4.8 and Remark 4.2, every isometry of gi that commutes with
T is the composition of an element of T with an isometry of the form A × Id acting
on R12 = R6 ×R6, where A ∈ O(6) commutes with all the ji(z), z ∈ Rk. The image
of j1 in so(6) is the set of all matrices of the form(

B 0
0 B

)
with B ∈ so(3). The connected component of the centralizer of this image in O(6) is
the one-parameter subgroup (circle) generated by the skew-symmetric matrix(

0 Id
-Id 0

)
.

Thus the identity component of the centralizer of T in Iso(g1) is isomorphic to T ×
S1, a four-dimensional torus. In particular, the maximal tori in Iso(g1) are four-
dimensional.

The image of j2 in so(6) is the set of all matrices of the form(
B 0
0 −B

)
with B ∈ so(3). The connected component of the centralizer of this image in O(6) is
trivial. Thus the three-dimensional torus T is a maximal torus in Iso(g2) and is the
identity component of its own centralizer.

The connected component of the centralizer of the image of j3 in so(6) is isomorphic
to SU(2) × SO(2), where the 3-sphere SU(2) is identified with the unit quaternions
acting on H by right multiplication and where SO(2) acts on the R2 factor. Since a
maximal torus in SU(2) × SO(2) is two-dimensional, the maximal tori in Iso(g3) are
five-dimensional. Moreover, the semisimple group SU(2) × SO(2) acts by isometries
preserving the bundle structure.

5. Existence of resonances

We will show that, generically, the metrics we have constructed on Rn have in-
finitely many scattering resonances, in contrast to the Euclidean Laplacian on Rn

which has none. By results of Sá Barreto-Tang [21] for n odd and of Tang [28] for n
is even, it suffices to verify that the second heat invariant a2 is nonzero. Indeed, for
n even, Tang showed that, if a metric has only finitely many resonances, then all the
heat invariants ak for k ≥ 2 must vanish. For n odd, Barreto-Tang showed that if the
Laplacians of two metrics on Rn, which differ from the Euclidean metric by a super-
exponentially decaying perturbation, have the same resonances, then they also have
the same heat invariants ak for k ≥ 2. This implies that a metric with non-vanishing
heat invariant a2 must have at least finitely many resonances, and a closer analysis
of the renormalized wave trace shows that, in fact, the number of resonances must be
infinite in this case.

Here, we carry out the proof that the heat invariant a2 is non-zero for the specific
metrics constructed in Section 4. For convenience, we will restrict to the cases that
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k = 2 or k = 3 in the notation of Section 4. These two cases include all the examples
constructed by Proposition 4.10 as well as Example 4.11.

Recall that for any Riemannian metric g on an n-dimensional manifold M , the
second heat invariant is given by

a2(g) =
(4π)−

n
2

360

∫
M

(5τ2 − 2‖Ric ‖2 + 2‖R‖2) dvolg,

where τ denotes the scalar curvature.

Notation 5.1. Fix a non-trivial bilinear map [ · , · ] : Rm × Rm → Rk. Given ϕ :
[0,∞) × [0,∞) → [0,∞), consider the family of functions ϕs, s ∈ R+, given by
ϕs(t1, t2) = ϕ(t1, s2t2). Set

gs = g[ · , · ],ϕs

as in Definition 4.3 and denote by R(s) and Ric(s) the curvature tensor and Ricci
tensor of the metric gs.

Theorem 5.2. Let k = 2 or 3, let [ · , · ] : Rm×Rm → Rk be a non-zero bilinear map,
and let ϕ : [0,∞)× [0,∞) → [0,∞) be a non-trivial compactly supported C∞ function.
We use Notation 5.1. Except for possibly finitely many values of s, a2(gs) 	= 0.

Definition 5.3. Let {fs}, s ∈ R+, be a one-parameter family of functions on Rm+2k.
We will say that {fs} is a homogeneous (r, s)-deformation of degree d if fs(x, r, θ) =
sdf1(x, r̃, θ) for all s, where r̃ = (r̃1, . . . , r̃k) = (sr1, . . . , srk). We will say {fs} is an
(r, s)-deformation of degree d if fs = fs

1 + . . . fs
l where each {fs

i } is a homogeneous
(r, s)-deformation, say of degree di, and where d = max{di}. Assuming the di’s are
distinct, we will refer to fs

i as the homogeneous term of degree di in fs.

The following two lemmas are elementary.

Lemma 5.4. If {fs} is a homogeneous (r, s)-deformation of degree d, then:
(i) { ∂

∂xj
fs}, 1 ≤ j ≤ m, is also a homogeneous (r, s)-deformation of degree d while

{ ∂
∂rp

fs}, 1 ≤ p ≤ k, is a homogeneous (r, s)-deformation of degree d + 1;
(ii) {rpf

s}, 1 ≤ p ≤ k, is a homogeneous (r, s)-deformation of degree d − 1.
(iii) If {hs} is a homogeneous (r, s)-derivation of degree d′, then {fshs} is a homo-
geneous (r, s)-deformation of degree d + d′.

Lemma 5.5. If {fs} is a homogeneous (r, s)-deformation of degree d and if each fs

is continuous with compact support, then∫
Rm+2k

fs = sd−2k

∫
Rm+2k

f1

where the integrals are with respect to Lebesgue measure.

To prove that the function a2(gs) is non-zero except for possibly finitely many
choices of s, we will show that the integrand is an (r, s)-deformation of degree 2, and
that the homogeneous term of degree two is strictly positive. Consequently, after
multiplying by an appropriate power of s, the heat invariant a2(gs) is a non-trivial
polynomial in s, from which Theorem 5.2 follows.



ISOPHASAL SCATTERING MANIFOLDS 647

Notation 5.6. (i) Write R2k as R2×R2 · · ·×R2 and let (ri, θi), i = 1, 2, . . . , k, denote
the polar coordinates on the k factors R2. We thus coordinatize a dense open subset
of Rm+2k by (x, r, θ) = (x1, . . . , xm, r1, r2, . . . rk, θ1, θ2, . . . , θk).

(ii) For {Z1, . . . , Zk} the standard basis of z = Rk, the vector field Z∗
p , p = 1, . . . , k,

defined in equation (4.1), is given by ∂
∂θp

.
(iii) Let indices i, j, k run from 1 to m, indices p, q range over 1, 2, . . . , k, and Greek

indices range over 1, . . . ,m + 2k. Define an orthonormal frame field as follows: For
p = 1, 2, . . . , k, let r̂p = ∂

∂rp
and let θ̂p be a unit vector in the direction of ∂

∂θp
, i.e.,

θ̂p = 1
rp

θp. For {e1, . . . , em} the standard basis of Rm, define

as
ip(x, r) = ϕs(‖x‖2, ‖r‖2)〈[x, ei], Zp〉.

Set

x̂s
i = ei + as

i1(x, r)
∂

∂θ1
+ · · · + as

ik(x, r)
∂

∂θk
= ei + as

i1(x, r)r1θ̂1 + · · · + as
ik(x, r)rkθ̂k.

Then
{Es

1 , . . . , Es
m+2k} = {x̂s

1, . . . , x̂
s
m, r̂1, . . . , r̂k, θ̂1, . . . , θ̂k}

is an orthonormal frame field on (Rm+2k, gs). (Note that Es
α depends trivially on s

when α > m.) Set
I1 = {1, . . . ,m},

I2 = {m + 1, . . . ,m + k},
and

I3 = {m + k + 1 . . . , m + 2k}.
Lemma 5.7. We use the notation of Notation 5.6 and Definition 5.3. Let c

(s)γ
αβ

denote the structure constants given by [Es
α, Es

β ] =
∑

γ c
(s)γ
αβ Es

γ . Then:

(i) If γ ∈ I3 and α, β ∈ I1, then {c(s)γ
αβ } is a homogeneous (r, s)-deformation of degree

−1 .
(ii) If γ ∈ I3, one of α, β is in I1 and the other is in I2, then {c(s)γ

αβ } is a homogeneous
(r, s)-deformation of degree 0.
(iii) In all other cases c

(s)γ
αβ = 0.

Proof. By Notation 5.6, we have for 1 ≤ i, j ≤ m and 1 ≤ p ≤ k,

[x̂i, x̂j ] =
k∑

q=1

(
∂

∂xi
as

jq −
∂

∂xj
as

iq

)
∂

∂θq

=
k∑

q=1

(
∂

∂xi
as

jq −
∂

∂xj
as

iq

)
rq θ̂q

[r̂p, x̂i] =
k∑

q=1

∂

∂rp
as

iq

∂

∂θq

=
k∑

q=1

∂

∂rp
as

iqrq θ̂q.
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All other brackets of vectors in our orthonormal frame are zero. The lemma now
follows from Lemma 5.4 and the fact that for each i, p, {as

ip} is a homogeneous (r, s)-
deformation of degree 0. �

Lemma 5.8. Let Γ(s)γ
αβ , α, β, γ = 1, . . . ,m+2k denote the Christoffel symbols for the

metric gs with respect to the frame field {Es
1 , . . . , Es

m+2k}, i.e., ∇s
Es

β
Es

α =
∑

γ Γ(s)γ
αβEs

γ ,
where ∇s is the Levi-Civita connection for gs. Then:
(i) If two of the indices α, β, γ lie in I1 and the other lies in I3, then {Γ(s)γ

αβ} is a
homogeneous (r, s)-deformation of degree −1.
(ii) If one of the indices α, β, γ lies in I1, one lies in I2 and one lies in I3, then
{Γ(s)γ

αβ} is a homogeneous (r, s)-deformation of degree 0.
(iii) If the indices α, β, γ do not satisfy the conditions of either (i) or (ii), then
Γ(s)γ

αβ = 0.

Thus in every case, {Γ(s)γ
αβ} is a homogeneous (r, s) -deformation. Moreover:

(iv) If {Γ(s)γ
αβ} is a homogeneous (r, s)-deformation of degree d, then {Γ(s)γ

αβ,δ} given

by Γ(s)γ
αβ,δ := Eδ(Γ

(s)γ
αβ ) is a (possibly zero) homogeneous (r, s)-deformation. It is of

degree d + 1 if δ ∈ I2 and of degree d otherwise.

Proof. We have

Γ(s)γ
αβ =

1
2
{gs([Eβ , Eα], Eγ) + gs([Eγ , Eα], Eβ) + gs([Eγ , Eβ ], Eα)}

=
1
2
(c(s)γ

βα + c(s)β
γα + c

(s)α
γβ ).

Thus this lemma follows from Lemma 5.7. �

Proposition 5.9. Let R
(s)
αβγδ = gs(R(s)(Es

γ , Es
δ )Es

β , Es
α). Then {R(s)

αβγδ} is an (r, s)-

deformation of degree at most one. Moreover, if {R(s)
αβγδ} has degree one, then one of

the indices α, β, γ, δ lies in I1, two (including at least one of γ, δ) lie in I2 and one
lies in I3.

Proof. We have

R
(s)
αβγδ = Γ(s)α

μγ Γ(s)μ
βδ − Γ(s)α

μδ Γ(s)μ
βγ − c

(s)μ
γδ Γ(s)α

βμ + Γ(s)α
βδ,γ − Γ(s)α

βγ,δ.

By Lemmas 5.7 and 5.8, each of the first three terms belong to (r, s)-deformations of
non-positive degree. Also by Lemma 5.8, {Γ(s)α

βδ,γ} is a homogeneous (r, s)-

deformation. Its degree is one if γ ∈ I2 and if Γ(s)α
βδ has degree zero; otherwise

its degree is non-positive. Again applying Lemma 5.8, if Γ(s)α
βδ has degree zero and

is non-trivial, then each of I1, I2 and I3 contains exactly one of α, β, and δ. The
proposition now follows. �

Proof of Theorem 5.2: It follows from Proposition 5.9, that the integrand {5τ2 −
‖Ric(s) ‖2 +‖R(s)‖2} in {a2(gs)} is an (r, s)-deformation of degree at most 2. We now
show that it in fact has degree 2. We have

Ric(s)
αβ =

∑
γ

R
(s)
αγβγ
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and
‖Ric(s) ‖2 =

∑
α,β

|Ric(s)
αβ |2.

By Proposition 5.9, {Ric(s)
αβ} is an (r, s)-deformation of degree at most one. Moreover,

{Ric(s)
αβ} has degree one only when one of α, β lies in I1 and the other in I3. In this

case, the homogeneous term of degree one in Ric(s)
αβ is equal to the homogeneous term

of degree one in R
(s)
α (m+1) β (m+1) + · · ·+ R

(s)
α (m+k) β (m+k). Consequently, {‖Ric(s) ‖2}

is an (r, s)-deformation of degree at most two, and the homogeneous term of degree
two equals

2
∑
α∈I1

∑
β∈I3

|h1(R
(s)
α (m+1) β (m+1)) + · · · + h1(R

(s)
α (m+k) β (m+k))|2,

where we are using the notation h1(·) to denote the homogeneous term of degree one.
(The coefficient 2 is due to the symmetry when we interchange the roles of α and β.)
From the identity (a1 + . . . ak)2 ≤ k(a2

1 + · · ·+a2
k), we thus see that the homogeneous

term of degree 2 in ‖Ric(s) ‖2 is no bigger than {2kT s} where

T s :=
∑
α∈I1

∑
β∈I3

(|h1(R
(s)
α (m+1) β (m+1))|2 + · · · + |h1(R

(s)
α (m+k) β (m+k))|2).

Next consider ‖R(s)‖2 =
∑

α,β,γ,δ

∣∣∣R(s)
αβγδ

∣∣∣2. Note that {‖R(s)‖2} is also an (r, s)-
deformation of degree at most two. The homogeneous term of degree two equals the

homogeneous term of degree two in the sum of those
∣∣∣R(s)

αβγδ

∣∣∣2 for which two of the
indices lie in I2, one lies in I1 and one in I3. Due to the symmetries of the curvature
tensor, we conclude that the homogeneous term of degree two in ‖R(s)‖2 is greater
than or equal to 8T (s).

We conclude that the homogeneous term fs of degree two in {−‖Ric(s) ‖2+‖R(s)‖2}
satisfies fs ≥ (8− 2k)T s ≥ 0. (The latter inequality uses the hypothesis that k ≤ 3.)
By Lemma 5.5 , the heat invariant a2(gs) is a finite real linear combination of powers
of s with the coefficient of s2−2k being greater than or equal to

∫
Rm+2k f1. (Here we

are using the fact that the homogeneous term of degree two in (τ s)2 is the square
of the homogeneous term of degree one in τ s and is thus nonnegative.) Thus the
theorem will follow if we show that

∫
Rm+2k f1 > 0. Since f1 ≥ 0, it thus suffices to

show that f1 is not identically zero.
Choose α, β, γ, δ as follows: Choose i ∈ {1, . . . ,m} and p ∈ {1, . . . , k} so that

the linear transformation Rm → z given by x → 〈[x, ei], Zp〉 is not identically zero.
Without loss of generality, we assume p = 1. Let β = δ = m + 2, let α = m + k + 1
and let γ = i. Then by Notation 5.6 and the proofs of Lemma 5.7, Lemma 5.8, and
Proposition 5.9, the homogeneous term of degree one in R1

αβγδ is given by

∂2

∂r2
2

a1
i1 r1 = 4r2

2φ22(‖x‖2, ‖r‖2)〈[x, ei], Z1〉r1

(viewed as a function on Rm+2k depending trivially on θ). This function cannot be
identically zero since the smooth cut-off function ϕ cannot be linear in either variable.
It follows that f1 is not identically zero. This completes the proof of Theorem 5.2. �
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