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CYCLOTOMIC POLYTOPES AND GROWTH SERIES OF
CYCLOTOMIC LATTICES

Matthias Beck and Serkan Hoşten

Abstract. The coordination sequence of a lattice L encodes the word-length function

with respect to M , a set that generates L as a monoid. We investigate the coordination

sequence of the cyclotomic lattice L = Z[ζm], where ζm is a primitive mth root of unity
and where M is the set of all mth roots of unity. We prove several conjectures by Parker

regarding the structure of the rational generating function of the coordination sequence;

this structure depends on the prime factorization of m. Our methods are based on
unimodular triangulations of the mth cyclotomic polytope, the convex hull of the m

roots of unity in R
φ(m), with respect to a canonically chosen basis of L.

1. Introduction

Let L ⊂ R
d be a lattice of rank r, and let M be a subset that generates L as a

monoid. The coordination sequence (S(n))n≥0 of (L,M) is given by S(n), the number
of elements in L with word length n with respect to M , that is, the number of lattice
elements that are expressed as a sum from M with a minimal number of n terms [7].
The growth series G of (L,M) is the generating function of S(n):

G(x) :=
∑
n≥0

S(n) xn.

Benson [3] proved that G(x) = h(x)
(1−x)r where h(x), the coordinator polynomial of L, is

a polynomial of degree ≤ r. Consequently, S(n) is a polynomial of degree r − 1. The
rationality of G(x) when L ∼= Z

r is an easy by-product of our approach we present
below (see also [25]).

Now let ζm := e2πi/m. We denote by Φm(x) the mth cyclotomic polynomial; its
degree is φ(m), the Euler totient function. The ring of integers in the cyclotomic field
of order m, Z[ζm], is a lattice of full rank in Z[ζm]⊗Z R ∼= R

φ(m) and hence isomorphic
to Z

φ(m). For the remainder of the paper, we let M be the set of all mth roots of
unity, and we let hm(x) be the corresponding coordinator polynomial. The study of
the coordination sequence of Z[ζm] with respect to M was initiated by Parker, who
was motivated by applications to error-correcting codes and random walks. His article
[16] includes Kløve’s proof of the following result, previously conjectured by Parker.
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608 MATTHIAS BECK AND SERKAN HOŞTEN

Theorem 1 (Kløve–Parker). The coordinator polynomial hp(x) of Z[ζp], where p is
prime, equals

Φp(x) = xp−1 + xp−2 + · · · + 1 .

Kløve’s proof uses a counting argument that relates elements of Z[ζp] to ordered
partitions.

Parker [16] offered several conjectures. We call a degree-d polynomial cdx
d +

cd−1x
d−1 + · · · + c0 palindromic if ck = cd−k.

Conjecture 1 (Parker). The coordinator polynomial hm(x) of Z[ζm] equals(
h√

m(x)
)m/

√
m, where

√
m is the squarefree part of m. Furthermore, h√

m(x) is
a palindromic polynomial of degree φ(

√
m).

Conjecture 2 (Parker). The coordinator polynomial of Z[ζ2p], where p is an odd
prime, equals

h2p(x) =

p−3
2∑

k=0

(
xk + xp−1−k

) k∑
j=0

(
p

j

)
+ x

p−1
2

p−1
2∑

j=0

(
p

j

)

=

p−3
2∑

k=0

(
xk + xp−1−k

) k∑
j=0

(
p

j

)
+ 2p−1x

p−1
2 .

Conjecture 3 (Parker). The coordinator polynomial of Z [ζ15] equals

h15(x) =
(
1 + x8

)
+ 7
(
x + x7

)
+ 28

(
x2 + x6

)
+ 79

(
x3 + x5

)
+ 130x4.

Patras and Solé studied Theorem 1 and Parker’s conjectures from the viewpoint of
Ehrhart polynomials of the cyclotomic polytope of Z[ζm] (which we will define below).
Their article [17] includes an alternate proof of Theorem 1 and a computation of
h2p(x) that gave further credence to Conjecture 2.

In this paper we prove Conjectures 2 and 3, and we partly confirm Conjecture 1,
in form of the following two theorems.

Theorem 2. For any positive integer m, the coordinator polynomial of Z[ζm] equals(
h√

m(x)
)m/

√
m.

Theorem 3. Suppose the positive integer m is one of the following:
(i) m = pα where p is prime,
(ii) m = pαqβ where p and q are distinct primes, or
(iii) m = 2αpβqγ where p and q are distinct odd primes.
Then the coordinator polynomial hm(x) of Z[ζm] is of the form h(x)m/

√
m, where h(x)

is the h-polynomial of a simplicial polytope, and hence it is palindromic, unimodal,
and has nonnegative integer coefficients.

Our methods are based on unimodular triangulations of the cyclotomic polytope
Cm, which we introduce in Section 2. We show how one can compute Cm from
Cp1 , . . . , Cpk

where m = pα1
1 · · · pαk

k . In Section 3 we study the Hilbert series of Cm

and its connection to the growth series G(x), and prove Theorem 2. We further
show that when m is as in one of the cases of Theorem 3, the cyclotomic polytope
Cm is totally unimodular. In Section 4 we review toric initial ideals of Cm and the



CYCLOTOMIC POLYTOPES 609

Dehn–Sommerville relations, and prove Theorem 3. In Section 5 we compute the face
numbers of Cp, C2p, and C15, and prove Conjectures 2 and 3. When p, q, r are distinct
odd primes then the cyclotomic polytope for m = pqr is not totally unimodular. This
might be seen as an evidence that Conjecture 1 may not be true in general. In fact,
in Section 5 we present and support the conjecture that h105(x) is not palindromic.

We would like to point out the recent paper [14] which studies the matroid defined
by vertices of the cyclotomic polytope Cm and its dual matroid, in order to give
an upper bound for the number of bases of this matroid. In the cases described in
Theorem 3, this upper bound gives the exact count. Theorem 18 below establishes a
polytope duality between Cm and certain multidimensional transportation polytopes
and implies that Cpq is simplicial.

2. Cyclotomic polytopes

We will now define the mth cyclotomic polytope Cm associated to Z[ζm]. To this
end, we will choose a specific lattice basis of Z[ζm] consisting of certain powers of
ζm. These powers will correspond to the standard unit vectors of R

φ(m). The other
powers are integer linear combinations of this basis; hence they are lattice vectors in
R

φ(m). The mth cyclotomic polytope Cm is the convex hull of all of these m lattice
points in R

φ(m) which correspond to the mth roots of unity. We give this construction
first when m is prime, then for a prime power m, and finally when m is the product of
two relatively prime integers. These three cases will define Cm for any positive integer
m.

When m = p is a prime number we fix the Z-basis 1, ζp, ζ
2
p , . . . , ζp−2

p of the lattice
Z[ζp]. Since ζp−1

p = −∑p−2
i=0 ζi

p, these p elements form a monoid basis for Z[ζp]. We
identify them with e0, e1, . . . , ep−2,−

∑p−2
i=0 ei in Z

p−1. Hence we obtain:

Proposition 4. The cyclotomic polytope Cp ⊂ R
p−1, for p prime, is the simplex

Cp = conv

(
e0, e1, . . . , ep−2, −

p−2∑
i=0

ei

)
.

The only interior lattice point of Cp is the origin.

In order to describe Cm for general m we need two operations on polytopes. The
first one is the direct sum (sometimes called free sum; see [12, 15, 18]). Let P ⊂ R

d1

and Q ⊂ R
d2 be two polytopes each of which contains the origin in its interior. Then

we define
P ◦ Q := conv (P × 0d2 ,0d1 × Q) ⊂ R

d1+d2 .

Here 0d denotes the origin in R
d. The polytope P ◦ Q contains 0d1+d2 in its interior

and its dimension is the sum of the dimensions of P and Q. We denote the k-fold
direct sum P ◦ · · · ◦ P by P ◦k.

For a prime p and an integer α ≥ 2, let ζ := ζpα be a primitive (pα)th root of
unity. The powers ζk+jpα−1

, where 0 ≤ k ≤ pα−1 − 1 and 0 ≤ j ≤ p − 2, form a
lattice basis of Z[ζpα ], and we will identify them with the standard unit vectors in
Z

φ(pα) = Z
pα−1(p−1). When we do the identification as ζk+jpα−1 ←→ ek(p−1)+j , the
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cyclotomic polytope Cpα is

Cpα= conv

(
ek(p−1)+0, ek(p−1)+1, . . . , ek(p−1)+p−2,−

p−2∑
n=0

ek(p−1)+n : k = 0, . . . , pα−1−1

)
.

Proposition 5. The cyclotomic polytope Cpα , where p is prime, is equal to C◦pα−1

p .
This polytope is a simplicial polytope of dimension φ(pα) = pα−1(p−1) and the origin
is the only interior lattice point.

Proof. As above, let ζ := ζpα be a primitive (pα)th root of unity. Since Φp

(
ζpα−1

)
= 0

we have
−1 − ζpα−1 − ζ2pα−1 − · · · − ζ(p−2)pα−1

= ζ(p−1)pα−1
.

By multiplying this expression with ζk for k = 0, . . . , pα−1 − 1 we get

−ζk − ζk+pα−1 − ζk+2pα−1 − · · · − ζk+(p−2)pα−1
= ζk+(p−1)pα−1

.

The roots of unity that appear on the left-hand side are all distinct and they are ζj

for j = 0, . . . , (p − 1)pα−1 − 1. This is our chosen lattice basis of Z[ζ].
By Proposition 4, Cpα is precisely C◦pα−1

p . It follows that Cpα is simplicial since
P ◦ Q is simplicial if P and Q are: the facets of P ◦ Q are the sets of the form
conv (F1 × 0d2 ,0d1 × F2), where F1 is a facet of P and F2 is a facet of Q. Furthermore,
if F1 and F2 are simplices, so is conv (F1 × 0d2 ,0d1 × F2). �

Example (The cyclotomic polytope C9). To clarify the proof of Proposition 5 we
treat the case m = 9 = 32. Since Φ3(x) = 1 + x + x2 we get

−1 − ζ3 = ζ6, −ζ − ζ4 = ζ7, −ζ2 − ζ5 = ζ8,

where ζ = ζ9 is a primitive 9th root of unity. So

C9 = conv (e0, e1, −e0 − e1, e2, e3, −e2 − e3, e4, e5, −e4 − e5) ,

and this is exactly C3 ◦ C3 ◦ C3.

We now recursively construct a lattice basis for Z[ζm] and the cyclotomic polytope
Cm, by factoring m = m1m2, where m1 and m2 are relatively prime, and assuming
that bases for Z[ζm1 ] and Z[ζm2 ] and the cyclotomic polytopes Cm1 and Cm2 in these
bases are already constructed.

So assume that ω1, . . . , ωφ(m1) form a Z-basis of Z[ζm1 ], and together with
ωφ(m1)+1, . . . , ωm1 they form a monoid basis. Then

Cm1 = conv
(
e1, . . . , eφ(m1), vφ(m1)+1, . . . , vm1

) ⊂ R
φ(m1).

Similarly, we assume that ρ1, . . . , ρφ(m2) form a Z-basis of Z[ζm2 ], and together with
ρφ(m2)+1, . . . , ρm2 they form a monoid basis. Now

Cm2 = conv
(
f1, . . . , fφ(m2), wφ(m2)+1, . . . , wm2

) ⊂ R
φ(m2).

For the cyclotomic lattice Z[ζm] the set of mth roots {ωiρj : 1 ≤ i ≤ φ(m1), 1 ≤
j ≤ φ(m2)} is a basis, and the pairwise product of the lattice points in R

φ(m) corre-
sponding to all of the mth

1 and mth
2 roots is a monoid basis of Z[ζm]. We define the

cyclotomic polytope Cm to be the convex hull of the vectors in this monoid basis.
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This construction motivates the second polytope operation we need, namely the
tensor product of two polytopes. Let P ⊂ R

d1 and Q ⊂ R
d2 be two polytopes with

vertices v1, . . . , vs and w1, . . . , wt, respectively. Then P ⊗ Q ⊂ R
d1d2 is the polytope

P ⊗ Q := conv (vi ⊗ wj : 1 ≤ i ≤ s, 1 ≤ j ≤ t) .

Our construction of Cm immediately implies:

Proposition 6. Let m = m1m2 where m1,m2 > 1 are relatively prime. Then the
cyclotomic polytope Cm is equal to Cm1 ⊗ Cm2 .

Propostions 4, 5, and 6 allow us to describe the cyclotomic polytope Cm for any
positive integer m. Moreover, Cm is determined by C√m.

Theorem 7. The cyclotomic polytope Cm is equal to C◦(m/
√

m)√
m

where
√

m is the
squarefree part of m.

Proof. Let m = pα1
1 · · · pαn

n . Propositions 5 and 6 imply that Cm =
⊗n

i=1 C◦pαi−1

pi
.

If we let Vi be the matrix whose columns are the vertices of Cpi
, then the polytope

C◦pαi−1

pi
is equal to conv

(
Vi ⊗ Ipαi−1

)
, where Ik denotes a k × k identity matrix.

Therefore

Cm = conv

(
n⊗

i=1

(Vi ⊗ Ipαi−1)

)
= conv

(
n⊗

i=1

Vi ⊗
n⊗

i=1

Ipαi−1

)
.

The last expression is precisely C◦(m/
√

m)√
m

. �

Lemma 8. Let m = p1p2 · · · pk, where p1, p2, . . . , pk are distinct primes. Then the
vertices of Cm have coordinates in {0, +1,−1}, and they are precisely the tensor prod-
ucts of the vertices of Cp1 , . . . , Cpk

. The only other lattice point in Cm is the origin,
which is in the interior of Cm.

Proof. The vertices of Cm have coordinates in {0, +1,−1} by construction. It is clear
that none of the tensor products of the vertices of Cp1 , . . . , Cpk

is a convex combination
of the others, so they are all vertices. It remains to prove that the origin is the only
other lattice point in Cm. If m is prime, Proposition 4 says that there is no other
lattice point aside from the origin and the vertices. Now let m = np where n is
squarefree, not divisible by p, and p is prime. By induction, Cn does not contain
any lattice point other than the origin and its vertices. Let Am be the matrix whose
columns are the vertices of Cm, then

Am =

⎡⎢⎢⎢⎣
An −An

An −An

. . .
...

An −An

⎤⎥⎥⎥⎦ .

(This matrix has p column blocks and p − 1 row blocks.) Now suppose there is a
nonzero lattice point u ∈ Cm that is a nontrivial convex combination of the vertices.
The point u is a 0,±1 vector, and we may assume that it has first coordinate 1. Then
u has to be a convex combination of vertices of Cm that have 1 as the first coordinate.
This means that u is a convex combination of such vectors coming from the first
An-block of Am and the top (−An)-block. By looking at the coordinates of the first
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row of the second block of An’s in Am, we see that the corresponding coordinate of
u is strictly between 0 and 1 if in the convex combination vectors from both the first
An and the top (−An)-block were used. Hence u must be a convex combination of
the first n columns of Am, which contradicts our induction hypothesis. �

Corollary 9. The cyclotomic polytope Cm is a {0, +1,−1}-polytope with only one
lattice point other than its vertices. This lattice point is the origin and it is in the
interior of Cm.

Proof. This follows from Theorem 7 and Lemma 8. �

We will return to the combinatorial structure of Cm in Section 4.

3. Hilbert series and unimodular triangulations

Let L ⊂ Z
d be a lattice, let M be a minimal set of monoid generators, and let K be

an arbitrary field. The monoid (semigroup) algebra K[M ′], where M ′ = {(u, 1) : u ∈
M ∪ {0}}, is a finitely generated graded K-algebra where each monomial in K[M ′]
corresponds to (v, k) where v =

∑
ui∈M∪{0} niui with nonnegative integer coefficients

ni such that
∑

ni = k. Such an element has degree k in K[M ′]. In this setting the
Hilbert series of K[M ′] is

H(K[M ′];x) :=
∑
k≥0

dimK (K[M ′]k) xk,

where K[M ′]k denotes the vector space of elements of degree k in this graded algebra.
It is a standard result of commutative algebra that

H(K[M ′];x) =
h(x)

(1 − x)d+1

where h(x) is a polynomial of degree at most d [1, Chapter 11]. When L ∼= Z
d, it

is clear that the number of elements in L of length exactly k (with respect to M) is
equal to dimK(K[M ′]k) − dimK(K[M ′]k−1), and therefore the growth series is

G(x) = (1 − x)H(K[M ′];x) =
h(x)

(1 − x)d
,

and this reproves the rationality of G(x) in this case.

Lemma 10. Let K[M ′] be the monoid algebra corresponding to the cyclotomic poly-
tope Cm. Let N be the lattice points in Cm◦Cm and K[N ′] be the corresponding monoid
algebra. Then

H(K[N ′];x) = H(K[M ′];x) · H(K[M ′];x) .

Proof. This follows from

dimK (K[N ′]k) =
∑

s+t=k

dimK (K[M ′]s) dimK (K[M ′]t) .

�

The statement of Theorem 2, namely that hm(x) =
(
h√

m(x)
)m/

√
m, follows now

immediately from Theorem 7 and Lemma 10:
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Proof of Theorem 2. Let N = Cm ∩ Z
φ(m) and M = C√m ∩ Z

φ(
√

m), and let K[N ′]

and K[M ′] be the corresponding monoid algebras. Theorem 7 implies Cm = C◦(m/
√

m)√
m

and Lemma 10 implies that

H(K[N ′];x) = (H(K[M ′];x))m/
√

m
.

This means that hm(x) =
(
h√

m(x)
)m/

√
m. �

Now let PM ⊂ R
d be the convex hull of M . Suppose that the set of lattice points

PM ∩ Z
d is equal to M ∪ {0}. Corollary 9 implies that Cm has this property. In

general, the monoid generated by M ′ and the monoid of the lattice points in the cone
generated by M ′ are not equal. In the case of the equality we call M ′, PM , and K[M ′]
normal. We give a necessary condition for the normality of these objects below. Note
that when PM is normal then the set of lattice points in cone(M ′) ∩ {x : xd+1 = k}
is in bijection with the set of lattice points in kPM , the kth dilate of PM .

A simplex with vertices v0, v1, . . . , vd ⊂ Z
d is unimodular if Z

d is generated by
{v1 − v0, v2 − v0, . . . , vd − v0}. This is equivalent to |det(v1 − v0, v2 − v0, . . . , vd −
v0)| = 1. A unimodular triangulation of a polytope P is a triangulation into unimod-
ular simplices with vertices in P ∩ Z

d.

Lemma 11. If PM has a unimodular triangulation then PM is normal.

Proof. For each unimodular simplex σ = {v0, v1, . . . , vr} in this triangulation we
consider

cone(σ) = cone
((

1
v0

)
,

(
1
v1

)
, . . . ,

(
1
vr

))
These cones cover cone(M ′) and the absolute value of the determinant of their gen-
erators is one. If z ∈ cone(M ′) then z is in one of the cone(σ), and if it has integer
coordinates, Cramer’s Rule implies that z is a nonnegative integer linear combination
of the generators of this cone. This shows that M ′ is normal. �

Definition. A matrix with 0, +1, −1 entries is called totally unimodular if every
square submatrix has determinant 0, +1, or −1. We say that a polytope P is to-
tally unimodular if the matrix whose columns are the lattice points in P is totally
unimodular.

If P contains the origin in its interior and is totally unimodular, then any triangu-
lation of P that is a cone with apex the origin is unimodular. We will show that the
polytope Cm, where m is an integer described in Theorem 3, is totally unimodular.
We will use the following characterization of totally unimodular matrices.

Theorem 12. [19, Theorem 19.3] A matrix A with 0, +1, −1 entries is totally uni-
modular if and only if each collection of columns of A can be split into two parts so
that the sum of the columns in one part minus the sum of the columns in the other
part is a vector with entries only 0, +1, and −1.

Theorem 13. The polytope Cm is totally unimodular for all m described in Theo-
rem 3.
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Proof. Given Cm, we let Am be the matrix of its vertices. By Corollary 9 this matrix

has 0, +1, −1 entries. The matrix
[

B 0
0 C

]
is totally unimodular if and only if B

and C are. By Theorem 7, we may assume that m is squarefree, that is, m is prime,
the product of two primes, or m = 2pq, where p and q are odd primes.

In the first case Ap = [Ip−1 −1] where 1 is a column of all ones. This matrix is
clearly totally unimodular.

The matrix for the case m = pq is

Apq =

⎡⎢⎢⎢⎣
Ap −Ap

Ap −Ap

. . .
...

Ap −Ap

⎤⎥⎥⎥⎦ .

Now we use Theorem 12 and split the columns of Apq into two parts. Given a subset
of the columns of Apq we put all the columns in the last block into the first part. The
sum of these columns is a vector with entries either 0 and −1 only, or 0 and +1 only,
depending on whether the last column of this block (a +1) is included or not. We
treat the second case, and the first case can be dealt with similarly. We put all the
columns that involve −1 also in the first part. Now the sum of all these columns is a
vector with 0, +1, and −1 only. The remaining columns are columns of I(p−1)(q−1),
and we can arrange them to be put in the two parts so that the resulting vector has
only 0, +1, and −1 entries.

Finally, the matrix A2pq equals [Apq −Apq], and we immediately conclude that
A2pq is also totally unimodular. �

Remark. Total unimodularity breaks down already in the case of C3pq, where p and
q are distinct primes > 3. Here

A3pq =
[

Apq −Apq

Apq −Apq

]
,

and the columns

(
0(p−1)(q−1)

1(p−1)(q−1)

)
,

⎛⎜⎜⎜⎜⎜⎝
1

0p−2

...
1

0p−2

⎞⎟⎟⎟⎟⎟⎠ , and

⎛⎜⎜⎝
1p−1

0(p−1)(q−2)

1p−1

0(p−1)(q−2)

⎞⎟⎟⎠
violate the condition of Theorem 12. When m = pqr for primes p, q, r > 3, the
polytope Cm is also not totally unimodular. This follows from the non-normality of
the monoid algebra of the three-dimensional (p− 1)× (q− 1)× (r− 1) transportation
polytope [24, p. 77]. Hence Cm is not totally unimodular when m is divisible by three
or more odd primes.

4. Palindromy

The monoid algebra K[M ′] is a finitely generated graded K-algebra, and hence
K[M ′] is isomorphic to K [x1, . . . , xn] /IM where n = |M ′| and IM is a homogeneous
toric ideal [22]. For the results in this section we need the notion of initial ideals.
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In the polynomial ring R = K [x1, . . . , xn], we abbreviate the monomial xu1
1 · · ·xun

n

by xu. A term order ≺ is a well ordering of all the monomials in R (with the minimum
element x0 = 1) that is compatible with multiplication; that is, xu ≺ xv implies that
xwxu ≺ xwxv for any monomial xw. Given a nonzero polynomial f and a term order
≺, we let in≺(f), the initial term of f , be the largest monomial of f with respect to ≺.
If I is an ideal, the initial ideal of I with respect to the term order ≺ is the monomial
ideal generated by all the initial terms of polynomials in I:

in≺(I) = 〈in≺(f) : f ∈ I〉.
Proposition 14. [9, Chapter 15] Let I be a homogeneous ideal in R and ≺ any term
order. Then for all k, (R/I)k and (R/in≺(I))k are isomorphic K-vector spaces, and
therefore H(R/I; x) = H(R/in≺(I);x).

The following result follows from Corollary 8.4 and Corollary 8.9 in [22]. The
regular triangulation Δ≺ of M is obtained by lifting each point in M by ωi where
ω = (ω1, . . . , ωn) is a weight vector so that in≺(IM ) = inω(IM ), and then by taking
the convex hull of these lifted points. The facets of the lower hull of this convex hull
form Δ≺; see [22, Chapter 8] for more details.

Theorem 15. Let K[M ′] be a monoid algebra and IM be the corresponding toric
ideal. The initial ideal in≺(IM ) is squarefree if and only if the regular triangulation
Δ≺ of M induced by ≺ is unimodular. In this case in≺(IM ) is the Stanley-Reisner
ideal of Δ≺ viewed as a simplicial complex.

The f-vector (f−1, f0, . . . , fd−1) of the d-polytope P consists of its face numbers,
so f−1 = 1 (corresponding to the empty face), f0 is the number of vertices of P, f1

the number of edges, and so on, up to fd−1, the number of facets. Closely related is
the h-vector (h0, h1, . . . , hd) of P, defined through

d∑
j=0

hj xj =
d∑

k=0

fk−1 (x − 1)d−k .

The left-hand side is the h-polynomial of P. Explicitly, hj is given by

hj =
j∑

k=0

(−1)j−k

(
d − k

j − k

)
fk−1 .

The famous Dehn–Sommerville Relations assert that, for a simplicial polytope, hj =
hd−j .

We are now ready to prove Theorem 3, namely that the coordinator polynomial
of Z[ζm], when m is divisible by at most two odd primes, is of the form h(x)m/

√
m,

where h(x) is the h-polynomial of a simplicial polytope. This implies that h(x) is
palindromic, unimodal, and has nonnegative integer coefficients.

Proof of Theorem 3. Theorem 2 reduces the discussion to the case when m is square-
free. By Theorem 13 the polytope Cm is totally unimodular. Corollary 9 implies that
any triangulation of Cm induced by a triangulation of its boundary (by coning over the
boundary triangulation using the origin as the apex) is unimodular. Now we can use
a pulling (reverse lexicographic [22, Chapter 8]) triangulation of the boundary of Cm
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to obtain such a unimodular regular triangulation Δ≺. We note that this boundary
triangulation is the boundary of a simplicial polytope Q≺ of the same dimension as
Cm (see [20] for the construction of such a triangulation). By Theorem 15 the initial
ideal in≺(IM ) is squarefree and it is the Stanley-Reisner ideal of Δ≺. Proposition
14 implies that H(K[M ′];x) = H(R/in≺(IM ));x) and this rational function’s numer-
ator is the h-polynomial of Q≺ [21, Theorem II.1.4]. Now the Dehn–Sommerville
relations imply palindromy of the numerator of the growth series. Unimodality and
nonnegativity follow from [21, Theorem III.1.1]. �

Corollary 16. If Cm is a simplicial polytope then the coordinator polynomial of Z[ζm]
equals the h-polynomial of Cm.

Proof. As in the above proof, we use the unimodular regular triangulation Δ≺ ob-
tained by coning over the boundary of Cm using the origin as the apex. �

Example. (The coordinator polynomial of Z [ζ180]). Since m = 180 = 22 · 32 · 5 the
coordinator polynomial is of the form p(x)6 where p(x) is the coordinator polynomial
of Z[ζ30]. Using the software 4ti2 [11] we computed a reverse lexicographic initial
ideal of the toric ideal IM where M = C30 ∩ Z

8. This initial ideal has 615 squarefree
minimal generators. Then we used the computer algebra system CoCoA [6] to compute
the Hilbert series from this monomial ideal to obtain

p(x) = x8 + 22x7 + 208x6 + 874x5 + 1480x4 + 874x3 + 208x2 + 22x + 1.

Remark. The polytope Cm is not simplicial in general. For example, when m = 30
the polytope C30 is a non-simplicial polytope of dimension 8 with 810 facets. This
polytope has two types of facets: 450 of them are simplicial, and the rest of them
are facets with 10 vertices. Proposition 4, Proposition 5, and Theorem 7 together
with Proposition 17 below imply that the other candidates for non-simplicial Cm for
m < 30 are m = 15 and m = 21. However, in these cases the two polytopes are
simplical; C15 has 360 facets and C21 has 4410 facets. Hence C30 is the smallest non-
simplicial cyclotomic polytope. We have also checked that C33 and C35 are simplicial
with 554400 and 1134000 facets, respectively. This led us to the following result whose
proof was suggested by Robin Chapman [5].

Proposition 17. The cyclotomic polytope Cpq, where p and q are prime, is simplicial.

The result follows from a polytope duality between Cm and certain multidimen-
sional transportation polytopes. We first introduce these polytopes. Let p1, . . . , pk be
positive integers. A multidimensional table is a p1×· · ·×pk array of real numbers. We
will denote the entries of such a table x by xi1 ... ik

. Now suppose for each i = 1, . . . , k
there is a (k− 1)-dimensional table bi of size p1 × · · ·× p̂i × · · ·× pk with nonnegative
real entries. Then

P
(
b1, . . . ,bk

)
:=⎧⎪⎪⎪⎨⎪⎪⎪⎩x ∈ R

Q
pi

≥0 :

∑p1
j=1 xj i2...ik

= b1
i2...ik

∀ (i2, . . . , ik) ∈ [p2] × · · · × [pk]∑p2
j=1 xi1 j i3...ik

= b2
i1i3...ik

∀ (i1, i3, . . . , ik) ∈ [p1] × [p3] · · · × [pk]
...∑pk

j=1 xi1...ik−1j= bk
i1...ik−1 ∀ (i1, . . . , ik−1) ∈ [p1] × · · · × [pk−1]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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is a multidimensional transportation polytope defined by the tables b1, . . . ,bk. We will
be concerned with a very particular type of transportation polytopes, namely, given
integers p1, . . . , pk we let bi be the table all whose entries are equal to pi. Such a
transportation polytope will be denoted by P (p1, . . . , pk). For instance, when k = 2,
P (p1, p2) is the “usual” transportation polytope consisting of nonnegative p1 × p2

matrices with all row sums equal to p2 and all column sums equal to p1. Now we can
state the duality theorem.

Theorem 18. Let m = p1p2 · · · pk, where p1, p2, . . . , pk are distinct primes. Then
the cyclotomic polytope Cm and the transportation polytope P (p1, . . . , pk) are dual to
each other.

Proof. We will show that the face lattice of Cm and P (p1, . . . , pk) are dual to each
other. First we show that there is a bijection between the facets of Cm and the vertices
of P (p1, . . . , pk). Each facet of Cm is defined by a linear form f(x) = 1. Now let y
be the p1 × · · · × pk table where yi1...ik

= f(v1
i1
⊗ v2

i2
⊗ · · · ⊗ vk

ik
) where vj

ij
is a vertex

of Cpj
. The entries of y are at most 1, and those entries that are equal to 1 are in

bijection with the vertices on the facet defined by f(x) = 1. Since the sum of the
vertices of each Cpj is the origin, we conclude that

p1∑
j=1

yj i2...ik
= 0 ∀ (i2, . . . , ik) ∈ [p2] × · · · × [pk]

p2∑
j=1

yi1 j i3...ik
= 0 ∀ (i1, i3, . . . , ik) ∈ [p1] × [p3] · · · × [pk]

...
pk∑

j=1

yi1...ik−1j = 0 ∀ (i1, . . . , ik−1) ∈ [p1] × · · · × [pk−1].

Now we define a new table x where xi1···ik
= 1 − yi1···ik

. This table is a point of
the transportation polytope P (p1, . . . , pk). A facet F of Cm corresponds to a table in
this transportation polytope whose zero entries are in bijection with the vertices of
Cm that are on F . On the other hand, a vertex of P (p1, . . . , pk) is defined by setting
some of the entries to zero. This implies that x has to be a vertex of P (p1, . . . , pk),
since otherwise there would be a vertex with more zero entries which in turn give
more vertices of Cm incident to F . This contradiction shows the bijection between
the facets of Cm and the vertices of P (p1, . . . , pk).

To extend this bijection to all faces we make the following observation: If F is a
face of Cm that is the intersection of the facets F1, . . . , Ft defined by the linear forms
f1, . . . , ft, then f =

∑t
i=1 λifi such that λi > 0 and

∑t
i=1 λi = 1 can be taken to be

a supporting hyperplane of F which is not a supporting hyperplane of faces strictly
containing F . Such an f gives rise to x =

∑t
i=1 λixi where the xi’s are the vertices

of P (p1, . . . , pk) corresponding to the facets F1, . . . , Ft. All such x form the relative
interior of a face G of P (p1, . . . , pk) defined by setting those entries of x corresponding
to the vertices on F equal to zero. The vertices of G are precisely x1, . . . ,xt, since
any extra vertex will translate into one more vertex on F . �
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Proof of Proposition 17. The points in P (p, q) are in bijection with nonnegative edge
assignments of the complete bipartite graph Kp,q with the node partition V1 and V2.
The edge assignments sum to q at each node in V1 and to p at each node in V2 (see,
e.g., [4]). If p and q are distinct primes, the vertices of P (p, q) correspond to spanning
trees of Kp,q that satisfy the same conditions on the edge assignments. The edges of
such a spanning tree are in bijection with the positive entries of the vertex x. Hence
there are exactly p+ q−1 such positive entries and exactly (p−1)(q−1) zero entries.
Using the bijection established in the above proof we conclude that each facet of Cpq

has exactly (p−1)(q−1) vertices. Since the dimension of Cpq is equal to (p−1)(q−1),
each facet must be a simplex. �

5. Explicit computations and a conjectural counterexample

We start with the case of m = p, a prime. The vertices of the cyclotomic polytope
Cp ⊂ R

p−1 are the unit vectors e1, e2, . . . , ep−1, and −1 = −∑j ej . (We apologize for
the change of notation from Section 2.) This simplex has the apparent unimodular
triangulation

{conv (0, e1, e2, . . . , ep−1) , conv (0, e1, . . . , ep−2,−1) , . . . , conv (0, e2, . . . , ep−1,−1)} ,

the only triangulation that uses the origin. Hence Kløve–Parker’s Theorem 1 is an
immediate consequence of Corollary 16 and the fact that the h-vector of a simplex is
(1, 1, . . . , 1):

G(x) =
hCp

(x)
(1 − x)p

=
xp−1 + xp−2 + · · · + 1

(1 − x)p
.

The second case is m = 2p for an odd prime p. C2p is totally unimodular, and so
the facets are supported by hyperplanes of the form

(1) a1x1 + · · · + ap−1xp−1 = 1 .

Furthermore, since A2p = [Ip−1 −1 −Ip−1 1] the aj ’s are all 0 or ±1. Let us call
two vertices v1, v2 of C2p opposite if v2 = −v1. A facet cannot contain two opposite
vertices because otherwise the right-hand side of (1) would be 0.

Proposition 19. Suppose p is an odd prime and k ≤ p−1
2 . Then every k-subset of

A2p = [Ip−1 −1 −Ip−1 1] that does not contain opposite vertices forms a (k−1)-face
of C2p.

Corollary 20. Suppose p is an odd prime and k ≤ p−1
2 . Then C2p has

fk−1 = 2k

(
p

k

)
(k − 1)-faces.

Proof of Proposition 19. Given a k-subset S ⊆ A2p without opposite vectors, we con-
sider two cases, depending whether or not ±1 ∈ S.

1. case: ±1 /∈ S.
First suppose k ≤ p−1

2 − 1. We choose n vectors from Ip−1 and m = k − n
vectors from −Ip−1. Now, without loss of generality, suppose that these vectors are
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e1, . . . , en,−en+1, . . . ,−ek. Set b = m−n
p−1−k ; note that |b| < 1 because k ≤ p−1

2 − 1.
Consider the hyperplane

x1 + · · · + xn − xn+1 − · · · − xk + b (xk+1 + · · · + xp−1) = 1 .

Our k chosen vectors are on this hyperplane, and we claim that the remaining vectors
in A2p satisfy

(2) x1 + · · · + xn − xn+1 − · · · − xk + b (xk+1 + · · · + xp−1) < 1 .

For the remaining unit vectors this follows from |b| < 1, and for x = ±1 (2) becomes
the inequality 0 < 1.

Now suppose k = p−1
2 . Again we choose n vectors from Ip−1 and m = k−n vectors

from −Ip−1. If n �= 0 or k, the above proof goes through verbatim. If n = k, set
b = −1 + 1

2k and continue the proof above. If n = 0, set b = 1 − 1
2k and continue the

proof above.

2. case: 1 ∈ S. (The case −1 ∈ S is analogous, so that we will omit it here.)
Again we choose n vectors from Ip−1 and m = k − 1 − n vectors from −Ip−1. We

may assume these vectors are e1, . . . , en,−en+1, . . . ,−ek−1. Set b = m−n+1
p−k ; note that

|b| ≤ k
p−k < 1. Consider the hyperplane

x1 + · · · + xn − xn+1 − · · · − xk−1 + b (xk + · · · + xp−1) = 1 .

Our k chosen vectors are on this hyperplane, and again one can easily check that the
remaining vectors in A2p satisfy

x1 + · · · + xn − xn+1 − · · · − xk−1 + b (xk + · · · + xp−1) < 1 .

�
Remark. One can use the correspondence of the facets of C2p to the vertices of
P (2, p) described in the proof of Proposition 17 to show that C2p has p

(p−1
p−1
2

)
facets.

We do not know the number of facets for the more general cyclotomic polytopes Cpq for
distinct primes p and q; it would be interesting if the correspondence to transportation
polytopes could lead to this number.

Proposition 17 and Corollary 20 allow us to prove Parker’s Conjecture 2:

Theorem 21. The coordinator polynomial of Z[ζ2p], where p is an odd prime, equals

h2p(x) =

p−3
2∑

k=0

(
xk + xp−1−k

) k∑
j=0

(
p

j

)
+ x

p−1
2

p−1
2∑

j=0

(
p

j

)
.

Proof. The cyclotomic polytope C2p is simplicial by Proposition 17, so Corollary 16
applies. For j ≤ p−1

2 , Corollary 20 gives

hj =
j∑

k=0

(−1)j−k

(
p − 1 − k

j − k

)
fk−1 =

j∑
k=0

(−1)j−k

(
p − 1 − k

j − k

)
2k

(
p

k

)
=

j∑
k=0

(
p

k

)
,

as one easily checks that
j∑

k=0

(−1)j−k

(
p − 1 − k

j − k

)
2k

(
p

k

)
−

j−1∑
k=0

(−1)j−1−k

(
p − 1 − k

j − 1 − k

)
2k

(
p

k

)
=
(

p

j

)
.
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Palindromy of the h-vector gives hj for j > p−1
2 . �

Going beyond m = p or 2p, next we prove Parker’s Conjecture 3.

Corollary 22. The coordinator polynomial of Z [ζ15] equals

cZ[ζ15](x) =
(
1 + x8

)
+ 7
(
x + x7

)
+ 28

(
x2 + x6

)
+ 79

(
x3 + x5

)
+ 130x4.

Proof. By Proposition 6, the polytope C15 has vertices

A15 =
[

I4 −1 −I4 1
I4 −1 −I4 1

]
,

and it is simplicial by Proposition 17. With this data, one can easily use the software
polymake [10] to check that C15 has the h-polynomial x8+7x7+28x6+79x5+130x4+
79x3 + 28x2 + 7x + 1. The result now follows with Corollary 16. �

m hZ[ζm]

6 x2 + 4x + 1
10 x4 + 6x3 + 16x2 + 6x + 1
12

(
x2 + 4x + 1

)2
14 x6 + 8x5 + 29x4 + 64x3 + 29x2 + 8x + 1
15 x8 + 7x7 + 28x6 + 79x5 + 130x4 + 79x3 + 28x2 + 7x + 1
18

(
x2 + 4x + 1

)3
20

(
x4 + 6x3 + 16x2 + 6x + 1

)2
21 x12 + 9x11 + 45x10 + 158x9 + 432x8 + 909x7 + 1302x6 + · · · + 1
22 x10 + 12x9 + 67x8 + 232x7 + 562x6 + 1024x5 + 562x4 + 232x3

+67x2 + 12x + 1
24

(
x2 + 4x + 1

)4
26 x12 + 14x11 + 92x10 + 378x9 + 1093x8 + 2380x7 + 4096x6 + · · · + 1
28

(
x6 + 8x5 + 29x4 + 64x3 + 29x2 + 8x + 1

)2
30 x8 + 22x7 + 208x6 + 874x5 + 1480x4 + 874x3 + 208x2 + 22x + 1
33 x20 + 13x19 + 91x18 + 444x17 + 1677x16 + 5187x15 + 13614x14

+31083x13 + 61422x12 + 100561x11 + 126214x10 + · · · + 1
34 x16 + 18x15 + 154x14 + 834x13 + 3214x12 + 9402x11 + 21778x10

+41226x9 + 65536x8 + · · · + 1
35 x24 + 11x23 + 66x22 + 286x21 + 1001x20 + 2996x19 + 7896x18

+18631x17 + 39671x16 + 76046x15 + 128726x14 + 185206x13

+212926x12 + · · · + 1
36

(
x2 + 4x + 1

)6
38 x18 + 20x17 + 191x16 + 1160x15 + 5036x14 + 16664x13 + 43796x12

+94184x11 + 169766x10 + 262144x9 + · · · + 1
39 x24 + 15x23 + 120x22 + 667x21 + 2865x20 + 10068x19 + 29998x18

+77670x17 + 177966x16 + 363919x15 + 655692x14 + 1001649x13

+1214590x12 + · · · + 1
40

(
x4 + 6x3 + 16x2 + 6x + 1

)4
Figure 1. The coordinator polynomials of Z [ζm] for m ≤ 41.
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For reference, we give in Figure 1 the first 41 coordinator polynomials. (In the
table, we omitted hm(x) for prime powers m.) The results of this article could be
used to compute the coordinator polynomials for m ≤ 104, where m = 105 is the first
non-trivial case that our results do not cover. Although in principal these coordinator
polynomials could be computed, the feasible range seems to end with m = 41 with
the current computational tools like 4ti2 [11] which we used for toric initial ideal
computations, and CoCoA [6] which we used for Hilbert series computations. We offer
the following conjecture for the first non-trivial case.

Conjecture 4. The coordinator polynomial h105(x) is not palindromic.

We conclude by giving some supporting evidence for this conjecture. We call a
polytope P ⊂ R

d integral is all its vertices are in Z
d. An integral polytope P :={

x ∈ R
d : Ax ≤ 1

}
that contains the origin in its interior is called reflexive if A is

an integral matrix [2]. The Ehrhart series of an integral d-polytope P is the rational
generating function

∑
k≥0 #

(
kP ∩ Z

d
)
xk, which is of the form f(x)

(1−x)d+1 for some
polynomial f of degree at most d [8]. Hibi [13] proved that an integral polytope that
contains the origin in its interior is reflexive if and only if the numerator of its Ehrhart
series is palindromic. Since we proved that Cm is normal if m is divisible by at most
two odd primes, Hibi’s theorem implies that Cm is reflexive for these m.

On the other hand, Seth Sullivant [23] computed some of the facets of C105 and
found that the defining matrix A is not integral, that is, C105 is not reflexive. If one
could show that C105 is normal, then this would provide a counterexample to Parker’s
Conjecture 1.
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