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SUB-RIEMANNIAN GEOMETRY AND PERIODIC ORBITS IN
CLASSICAL BILLIARDS

Yuliy Baryshnikov and Vadim Zharnitsky

Abstract. Classical (Birkhoff) billiards with full 1-parameter families of periodic orbits
are considered. It is shown that construction of a convex billiard with a “rational”

caustic (i.e. carrying only periodic orbits ) can be reformulated as the problem of

finding a closed curve tangent to a non-integrable distribution on a manifold. The
properties of this distribution are described as well as the consequences for the billiards

with rational caustics. A particular implication of this construction is that an ellipse

can be infinitesimally perturbed so that any chosen rational elliptic caustic will persist.

1. Introduction and main results

Classical plane billiards 1 were introduced by Birkhoff in the beginning of the
century, see e.g. his book [3] or [2] as a “ special but highly typical systems of this
sort”, where “the formal side, usually so formidable in dynamics, almost completely
disappears, and only the interesting qualitative questions need to be considered” [2].
Indeed, in that very paper Birkhoff illustrated his point by applying Poincaré last
theorem to find periodic orbits in smooth convex billiards.

Subsequently, the area-preserving map became a basic model for the Hamiltonian
systems with two degrees of freedom. However, in many respects the billiard system is
a very special type of area preserving maps, which leads to highly nontrivial problems
specific to billiards only.

For example, the so-called Birkhoff conjecture, which states that the only integrable
billiards with smooth convex boundary are ellipses, has no analog for the general
area preserving monotone twist maps. Here the main difficulty is “reading off” the
properties of the billiard map from those of the billiard curve.

Similarly, the well known conjecture that periodic orbits in classical billiards con-
stitute the set of measure zero becomes false for the general monotone-twist area-
preserving map. Therefore, it is important to develop the tools pertinent to the
billiard like problems.

In this article, we introduce a new approach to study billiards with full 1-parameter
families of periodic orbits 2. The study of such billiards is interesting from the view-
point of both conjectures mentioned above 3. Indeed, in integrable billiards there are
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The second author was supported by NSF grant DMS-0505216.
1The classical billiard system consists of a piece-wise differentiable boundary and a point like ball

moving along the straight lines between interceptions of the boundary. At the boundary the ball

bounces according to the “angle of incidence is equal to the angle of reflection” rule.
2Similar formulation has been developed by A. Török [13].
3Also, these billiard tables found recently some applications in nonlinear optics[1]
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full 1-parameter families of periodic orbits of various types, as opposed to the generic
case when there are just two periodic orbits of each type. Regarding the second
conjecture, one should demonstrate that there are no clusters of periodic orbits with
positive measure, motivating the study of billiards with “many” periodic orbits.

There exist examples of billiards with continuous family of periodic orbits and
with non-elliptic boundary. The most well known examples are the curves of constant
width, which possess the full family of two-period orbits, see e.g. [6] and references
therein. In the three period case, an explicit example was obtained in [5], where the
boundary curve is found, such that each point on the boundary is a foot-point of a
3-period orbit. However, there remains an open question as to how large is the set
of such billiard boundaries. Also, it remained unclear if similar billiard tables can be
found to support caustics carrying periodic orbits of arbitrarily large period.
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Figure 1. Billiard phase space Ω with a continuous family of
Birkhoff periodic orbits, s is a natural parameter along the boundary,
θ is an angle between the outgoing ray and the tangent measured in
the counterclockwise direction.

Here, we address these questions and provide a transparent geometrical description
of such billiard domains. First we define formally a rational caustic.

Definition 1.1. Let Γ be a smooth convex billiard boundary. A rational caustic is a
curve γ possessing the following property: if a billiard orbit segment is tangent to γ
then so are all other segments of the orbit and the orbit is periodic.

Recall that the phase space of a billiard can be reduced to Ω = Γ× [0, π], where Γ is
the billiard boundary (parameterized by the arclength): the point (s, θ) corresponds
to the outgoing ray of the billiard trajectory from point s at the angle θ with the
tangent to the boundary. As a dynamical system, the billiard can be described by
the self-mapping of Ω and the caustics correspond to the invariant curves of this
self-mapping, see Figure 1.

The main tool we use is a new class of (non-holonomic) distributions naturally
arising in the billiard problem. To motivate our construction, consider an elliptic
billiard, that is the billiard whose boundary Γ is an ellipse. Ellipse is known to possess
caustics carrying periodic orbits, e.g. 3-period orbits which form triangles (this caustic
being an ellipse confocal with Γ). Sliding the triangles around the caustic one obtains
a (closed) curve in the space of all triangles. The bisectors of these triangles are
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orthogonal to the billiard boundary. Then, one can think of the one-parameter family
of the triangles as the evolution of a single triangle moving so that its vertices slide
orthogonally to the bisectors. In this approach the full family of periodic orbits is a
primary object while the boundary Γ is a derived object.

Thus, a 1-parameter family of N periodic orbits defines a curve in a 2N -dimensional
space of plane polygons (corresponding to periodic orbits). The condition that the
adjacent sides of the polygon have the same angle with the velocity vector of their
common foot translates into the tangency of this curve to an N -dimensional distri-
bution, which turns out to be non-holonomic.

From this viewpoint, the main difficulty is to “close” these orbits. However, this
problem turns out to be tractable by the methods of geometric control theory.

Our main result establishes that billiards with rational caustics form a smooth
submanifold of finite codimension in a properly chosen Hilbert space. To describe
this Hilbert space we need some additional notations.

Let V be the Euclidean plane. Denote by σ : V N → V N the linear mapping cycli-
cally permuting points: if ξ = (ξ0, ξ1, . . . , ξN−1), ξk ∈ V , then σξ = (ξ1, ξ2, . . . , ξ0).
We will use σ acting on other N -point configuration spaces by cyclically permuting
points as well.

Let I = [0, 1]. Consider the space H of H2-curves4 b : I → T
N in the standard

N -dimensional torus satisfying the following monodromy condition:

(1) σb(0) = b(1).

Gluing together N iterations of a curve satisfying the monodromy condition pro-
duces a closed curve in T

N . This curve represents a multiple of the diagonal class in
1-homology of T

N (as the cyclic shift of the components does not change the class).
Denote by HΔ the component of H for which the corresponding homology class is the
class of the diagonal.

Intuitively, the points in T
N correspond to the points of N -periodic orbit on the

billiard boundary; the curve in T
N defines N boundary segments traced by these

points. We select the component on which these traces do not overlap, but just
match at the endpoints.

Theorem 1.1. Consider a pair (Γ, z), where Γ is a smooth convex billiard boundary
possessing a caustic carrying continuous family of convex N -period orbits and z one of
these orbits (“base point”). Assume that the corresponding to Γ invariant curve in Ω
is homotopic to the boundary. Then the space of such pairs close to (Γ, z) in H×V N

forms a Hilbert manifold modeled on a codimension (N − 1)-subspace in H× R
N .

A further application of our approach gives another proof that the set of 3-periodic
trajectories in a convex smooth billiard is nowhere open, see Section 4.

4i.e. curves such that the first 2 derivatives are square-integrable. The main reason for using this

space is that the billiard boundary will be smooth since the Sobolev embedding theorem implies

f ∈ H2([0, 1]) ⇒ f ∈ C1([0, 1]).
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2. Birkhoff distribution

2.1. Setup. Now, we give a formal description of our construction. It will be conve-
nient to identify the Euclidean plane V with the complex plane. Consider N distinct
ordered points on the plane {zm}m=N−1

m=0 . We will use the convention that the indices
form a cyclic group ZN := Zmod N so that m+ j := (m+ j)modN , whenever indices
are involved. We consider the set of these N points on the plane as a point in V N

with coordinates zm = xm +
√−1ym, m ∈ ZN . Let O be the (open dense) subset of

V N where no three cyclically consecutive point zm−1, zm, zm+1 are collinear. Then
N vector fields Lm can be defined over the set O by

Lmzk =

{
vm, if k = m, and
0 otherwise,

m ∈ ZN .

where the vectors vm ∈ V are defined as

vm :=
√−1

[
zm+1 − zm

|zm+1 − zm| +
zm−1 − zm

|zm−1 − zm|
]

.

Equivalently, these vector fields in the standard basis are given by
(2)

Lm =
(

ym − ym+1

|zm − zm+1| +
ym − ym−1

|zm − zm−1|
)

∂

∂xm
+

(
xm+1 − xm

|zm − zm+1| +
xm−1 − xm

|zm − zm−1|
)

∂

∂ym
.

Definition 2.1. The distribution (subbundle of tangent bundle) B spanned by Lm,
m ∈ ZN ,

B ⊂ TV N(3)

is called the Birkhoff distribution.

Remark 2.1. If we provide V N with the natural symplectic structure ω =
∑

i dxi∧dyi

(that is sum of the lifts of the symplectic forms ωi = dxi ∧ dyi on the tangent spaces
Tzm

V ), then the Birkhoff distribution is isotropic with respect to ω (i.e. ω|B = 0). In
fact, Bz is the direct sum of (obviously isotropic) subspaces of TzmV spanned by vm,
for m ∈ ZN .

If the points zm, m ∈ ZN taken in their cyclic order form a convex polygon, all
frames defined by consecutive pairs vm, vm+1 are all oriented in the same sense (see
Figure 2). We will refer to the trajectories having this property as consistent trajecto-
ries. The trajectories {zo, . . . , zN−1} forming a convex polygon are consistent. More
generally, the trajectories for which {zo, zk, z2k . . . , zk(N−1)} form a convex polygon,
for some k relatively prime with N are consistent (such trajectories are referred to as
Birkhoff periodic trajectories).

It is convenient to introduce a basis θ = {θ0, . . . , θN−1} for the conormal bundle
N∗B (i.e. subbundle of T ∗V N spanned by the 1-forms vanishing on B) as follows:
define θk as a linear combination of dxk, dyk, k ∈ ZN such that a) |θk| = 1, b)
θk(vk) = 0 and c) θk(zk − zk−1) > 0 (the first condition is just a normalization; the
second one ensures that θk is a section of N∗B and the third condition selects the
“outward” direction out of two possible). Remark that condition c) is equivalent also
to θk−1(zk−1 − zk) > 0.
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The forms θ can be used to define dually the Birkhoff distribution as the annulator
of the bundle spanned by θ.

Define the perimeter function as

P =
N∑

m=1

|zm+1 − zm|.(4)

5

4

3

2

1

Figure 2. The dashed lines are bisectors and the arrows show the
vector fields ν1, ν2, ..., ν5 which are orthogonal to the bisectors.

It is easy to see that dP =
∑

k cos(αk)θk, where 2αk is the angle between zk−zk−1

and zk − zk+1.

2.2. Space of billiard trajectories.

Proposition 2.1. The level set

Mp =
{

z ∈ O :
zi − zi−1

zi − zi+1
∈ C

1 − R
1, ∀i ∈ ZN ; P (z) = p > 0

}
is a smooth 2N − 1-dimensional manifold without boundary. Birkhoff distribution is
tangent to foliation by Mp’s and has rank N over Mp.

Proof: It is easy to check that dP (z) �= 0 for any z ∈ MP0 , which gives the first
claim. The second claim follows from the fact that a vertex zm can only move in the
direction orthogonal to the bisector of ∠(zm−1, zm, zm+1) so that the Lie derivative
vanishes LmP = 0.

Remark 2.2. Without loss of generality, we can restrict our attention to M1 since
distributions on Mλ are all equivalent to the one on M1 by the scaling (x, y) →
(λx, λy). Below, we will omit the subscript in M1 to avoid cumbersome notation.

We summarize the informal discussion from the Introduction in the following
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Observation: Suppose Γ is a smooth convex boundary possessing full family of peri-
odic orbits. Then these orbits form a curve z(t) = (zo(t), ..., zN−1(t)) ∈ V N , t ∈ [0, 1].
This curve z(t) is horizontal with respect to the Birkhoff distribution (i.e. ż(t) ∈
Bz(t), t ∈ [0, 1] and satisfies the boundary condition zm(1) = zm+1(0), for m ∈ ZN .

If the invariant curve corresponding to a caustic is homotopic to the boundary in
Ω (the only case we are concerned with here), the trajectories forming the curve have
nice properties:

Lemma 2.1. Let Γ be a smooth convex billiard boundary possessing a smooth S1-
parameterized family of N−periodic orbits such that the corresponding invariant curve
in Ω is homotopic to the boundary. Let zi(t), i = 1, ...N , be the vertices of the periodic
orbits parameterized so that |ż1(t)|2+...+|żN (t)|2 = 1. Then all the trajectories in the
family are Birkhoff periodic and hence consistent and belong to O. Further, all points
zm, m ∈ ZN move in the same direction on Γ, either clockwise or counterclockwise.

Proof: By a theorem due to Birkhoff, see e.g. Theorem 12.2.13 in [7], the invariant
curve homotopic to the boundary is a graph in the phase space (see Figure 1). Hence
the cyclic order of the points {zo, . . . , zN−1} does not change within the family, and
all the trajectories are necessarily star-like (of the same type (k, N)).

Assume that some of the vertices have zero velocity żi(t∗) at some time t = t∗

and i = i1, i2, .... Then one of such vertices, say zj must have a neighboring one
with non-zero velocity, say zj+1, for otherwise all vertices would have zero velocity
contradicting the assumption. But then the other neighboring vertex zj−1 must also
possess nonzero velocity which must be pointed counterclockwise for otherwise the
Fermat’s law at zj will be violated. But then, at least two vertices move in the
different directions which contradicts with the second statement. �
2.3. Properties of Birkhoff distribution.

Definition 2.2. A distribution D is called bracket generating if the vector fields tan-
gent to D and all their commutators generate the tangent space TzM at any point
z ∈ M .

The important property of the Birkhoff distribution is given by

Proposition 2.2. The Birkhoff distribution is bracket generating of the type (N, 2N−
1)5, i.e. the first order commutators already span the (2N −1)-dimensional subbundle
TM1.

Proof of Proposition 2.2: We will prove this statement by explicitly computing
commutators of the vector fields [Li, Li+1]6 and verifying that the set

(5) L1, L2, ..., LN , [L1, L2], [L2, L3], ..., [LN , L1]

spans the full tangent subspace at any point on M .
In order to organize the calculations, we introduce the notation

Ci,j =
xi − xj

|zi − zj | Si,j =
yi − yj

|zi − zj | Ri,j = |zi − zj |(6)

5See [9].
6It is easy to see that [Lk, Ll] = 0 if k − l mod N �= ±1.
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The following identities are easy to check with direct calculations

Si,i+1 = −Si+1,i Ci,i+1 = −Ci+1,i S2
i,i+1 + C2

i,i+1 = 1

∂Si+1,i

∂xi
= −∂Si,i+1

∂xi
=

Si+1,i Ci+1,i

Ri+1,i

∂Ci+1,i

∂yi
= −∂Ci,i+1

∂yi
=

Ci+1,i Si+1,i

Ri+1,i

∂Si+1,i

∂yi
= −∂Si,i+1

∂yi
= −C2

i+1,i

Ri+1,i

∂Ci+1,i

∂xi
= −∂Ci,i+1

∂xi
= − S2

i+1,i

Ri+1,i

In (xi, yi)-coordinates, the vector fields take the form

Li = (Si,i+1 + Si,i−1)
∂

∂xi
− (Ci,i+1 + Ci,i−1)

∂

∂yi
.(7)

To simplify the calculations, we choose such coordinates that yi = yi+1 = 0 (so that
the segment connecting zi and zi+1 lies on the horizontal axis).

Using the above formulae and that Si,i+1 = 0, Ci,i+1 = −1, it is then straightfor-
ward to compute the commutator:

[Li, Li+1] =
1 − Ci+1,i+2

Ri,i+1

∂

∂xi
+

Ci,i−1 + 1
Ri,i+1

∂

∂xi+1
.

Therefore, the commutator [Li, Li+1] is a vector field shifting the points zi and zi+1

along the line (zi, zi+1) in such a way that the perimeter does not change.
Now, the computations above imply in fact that

θi([Li, Li+1]) > 0; θi+1([Li, Li+1]) < 0;

for all i ∈ ZN , and
θk([Li, Li+1]) = 0 for k �= i, i + 1.

It follows that the matrix A = (aki)k,i=0,...,N−2 with entries

aki = (θk([Li, Li+1]))k,i=0,...,N−2

is lower diagonal with positive entries on the diagonal, and hence (N −1) vector fields
[Li, Li+1], i = 0 . . . , N − 2 already span (N − 1)-dimensional space TzM/Bz.

�
Now, we return to billiard curves having a rational caustic, i.e. family of periodic

orbits parameterized by [0, 1] and satisfying the monodromy condition (1). Assume
henceforth that the corresponding invariant curve is homotopic to the boundary.

By lemma 2.1 the points zi(t) move in the same direction along the billiard curve
as t varies in [0, 1], whence the velocity is a linear combination of the vector fields
Li with all coefficients having the same sign. Such linear combinations satisfy the
following important property:
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Lemma 2.2. Let α, β ∈ R
N and all αi > 0 (or all αi < 0) for i ∈ ZN . Then the

linear map
Ψ : R

N → TzV
NmodBz,

taking β ∈ R
N to [Lα, Lβ ](z)modBz has rank N −1, where Lα := α1L1 +α2L2 + ...+

αNLN ; Lβ := β1L1 + β2L2 + ... + βNLN .

Proof:
We prove the lemma by verifying that

[Lα, Lβ ] ∈ B ⇒ Lα = λLβ .(8)

Indeed,
[α1L1 + ... + αNLN , β1L1 + ... + βNLN ] =

(α1β2 − α2β1)[L1, L2] + (α2β3 − α3β2)[L2, L3] + ... + (αNβ1 − α1βn)[LN , L1]
If [Lα, Lβ ](z) ∈ Bz, then θk vanishes on this vector, and hence

(αkβk+1 − αk+1βk)θk([Lk, Lk+1]) + (αk−1βk − αkβk−1)θk([Lk−1, Lk]) = 0.

As we know, the evaluations θk([Lk, Lk+1] and θk([Lk−1, Lk] have opposite signs, and
hence all brackets

(αkβk+1 − αk+1βk)
have the same sign (or vanish together).

Without loss of generality, assume all brackets are nonnegative: αkβk+1−αk+1βk ≥
0 for k ∈ ZN . Dividing by αkαk+1 > 0, we obtain

β2

α2
≥ β1

α1
≥ ... ≥ β2

α2
,

which immediately implies βi = λαi for all i. In other words, the dimension of ker(Ψ)
is equal to 1. Therefore, the mapping Ψ has rank N − 1. �

3. Proofs of Theorem 1.1

Let Γ be a smooth convex billiard boundary possessing a caustic carrying con-
tinuous family of convex N -period orbits (with corresponding invariant curve in Ω
homotopic to the boundary). It is convenient to introduce new coordinates (s, h)
in a collar vicinity U ⊃ Γ, with s parameterizing Γ and h being the distance to
Γ = {h = 0}. We can think of s(z) as the nearest to z ∈ V point of Γ: s is then
well-defined outside of cut-locus of Γ, and thus in some collar neighborhood of Γ.

Let zo = z(t), t ∈ [0, 1] be the family of N -periodic orbits tracing Γ. In (s, h)
coordinates the trajectory zo becomes a smooth curve ζo : [0, 1] → T

N ×R
N satisfying

the monodromy conditions (1).
We consider N = T

N × R
N as the space of the trivial bundle p : N → T

N . By
construction, ζo maps to the zero section of p.

Over ζo the (pull back of) Birkhoff distribution is transversal to the fibers of p:
indeed, the fibers are spanned by the vector fields shifting the points orthogonally to
Γ, and the vector fields L∗ spanning B shift the points tangentially to Γ. Hence this
transversality persists in some tubular vicinity V × IN

c , where V is a vicinity of the
image of ζo in T

N and Ic = (−c, c), c > 0 some interval.
Therefore, over V the Birkhoff distribution defines a connection in the vector bundle

p, cf [9] (or rather in some tubular vicinity of V). In particular, any curve tangent to
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Figure 3. The dashed lines are bisectors, and the arrows show the
projections of vector fields L1, L2, L3, L4 which are orthogonal to the
bisectors. The short thick arrows show vectors corresponding to com-
mutators.

B is uniquely defined by a point of the curve and its p-projection: in other words, the
curves on the base can be uniquely lifted to horizontal (with respect to B) curves, given
an initial point. We remark that as ζo is horizontal with respect to this connection,
all liftings of curves H2-close to p-projection of ζo starting at a point close to ζo(0)
will remain close to ζo and thus within V × IN

c .
As ζo satisfies the monodromy condition, so does its projection to T

N , so = p ◦ ζo.
The inverse is not true: even if the projection s satisfies σs(0) = s(1), the endpoint
ζ(1) of its horizontal lift does not necessarily match σζ(0). On the other hand, if the
endpoints match, then σṡ(0) = ṡ(1) implies σζ̇(0) = ζ̇(1), as p∗ maps planes of B
onto TsT

N isomorphically.
For a curve s in T

N close to so in H2 and satisfying the monodromy conditions,
and a point ζ(0) ∈ p−1(s(0)) close to ζo(0) we define the vector e(s, ζ(0)) ∈ R

N as
the difference between σζ(0) and the endpoint ζ(1) of the horizontal lift of s starting
at ζ(0) (both these points belong to the same p-fiber over s(1) which we identify with
R

N ). Therefore, the space of horizontal curves ζ close to ζo and corresponding to the
billiard boundaries with rational caustics can be identified with the preimage e−1(0).

Hence, in a standard way, using the implicit function theorem in the theory of
calculus in Banach spaces (see e.g. [8]), if we could prove that e is a submersion to
a manifold of dimension (N − 1) (i.e. M1), or, equivalently, that the rank of De is
(N − 1), the result would follow. This is established below:
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Proof of Theorem 1.1 Let L̃k = p∗(Lk), k = 0, . . . , N − 1 be the projections of the
vector fields spanning B to the base T

N . Fix a smooth bump function ψ : R → R+

with bounded support on the negative half axis. Consider the perturbation of the
trajectory so(·) = p(ζo(·)) in the base near its endpoint t = 1. This perturbation is
parameterized by β = (β0, . . . , βN−1) ∈ R

N and defined as

sβ,τ (t) = so(t) + τ2ψ((t − 1)/τ)
∑

k

βkL̃k(1)

for t ∈ [0, 1], τ small enough (in this formula we use the local affine structure on
T

N ). Remark that this perturbation leaves so unchanged outside of small vicinity of
so(1) (however, the lift ζ and hence the corresponding family of orbits z are in general
perturbed).

The scaling function τ2ψ((t− 1)/τ) is chosen to have support in O(s)-size vicinity
of 1, and to have C1 norm of order O(s). This ensures that the perturbed curve is
H2-close to so.

It is immediate to verify (compare [9]) that the lifts of sβ,τ and so at 1 differ, up
to O(τ4) by

et∗ := τ3[ż(1),
∑

k

βkLk] + O(τ4),

where we identified the fibers of p and Tζ(1)N/Bζ(1). Essentially, the shift of the
vertical component under the perturbation is just the value of the curvature form of
the connection integrated over the 2-chain bounded by the perturbed and unperturbed
curves. The scaling O(τ3) is just the total integral of τ2ψ((t)/τ).

Hence, using Lemma 2.2 and the fact that ż(t∗) expands in Lk with positive co-
efficients, we conclude that the rank of the mapping β 
→ et∗ is (N − 1). Moreover,
the parallel transport of the fiber over so(t∗) to the fiber over so(1) by the horizontal
lifting is an isomorphism, and the required result follows.

�
Remark 3.1. It is worth noticing that to prove this theorem we need just the existence
of a single point on the family of N orbits, where the velocities of all vertices are
nonvanishing and consistent with an orientation on Γ. Moreover, choosing this point
as the basepoint zo(0), we can derive the existence of a smooth infinite-dimensional
family of curves with rational caustics close to Γ and coinciding with Γ outside of
arbitrarily small vicinity of the vertices of zo(0).

4. Periodic orbits

In this section we apply the above approach from previous sections to prove that 3-
period orbits in classical billiards do not contain an open set. This result is originally
due to M. Rychlik [11], where a stronger statement is proved that the measure of
the set of 3-period orbits is zero. At least three other different proofs appeared
subsequently in the literature [12, 15, 14]. We would still like to present another
proof to illustrate how the problem can be naturally formulated using the language of
nonintegrable distributions. We also hope that this approach may provide new ways
of attempting to extend these results to higher period case.

The relation between open set of periodic orbits and the corresponding Birkhoff
distribution is given by
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Proposition 4.1. Assume that there exists a smooth convex billiard boundary such
that there is an open neighborhood of 3-periodic orbits in the billiard phase space.
Then there exists a 2-dimensional integral submanifold TD2 ∈ B ⊂ TM .

Proof: To an open set of three period orbits we associate a subset D2 in M , where M
is a manifold of triangles with the unit perimeter. The set D2 ∈ M is a submanifold of
M . Indeed, Γ is smooth and therefore the map (s, θ) → (z1, z2, z3) is smooth, where
(s, θ) are the natural parameter along the boundary and the angle of an outgoing ray
with the tangent. The map has the full rank (equal to 2). Indeed, let us choose a
coordinate system, so that z1 is at the origin, i.e. x1 = y1 = 0 and that y2 = 0.

Then, we have
∂x1

∂s
�= 0,

∂x1

∂θ
= 0

but it is easy to see that
∂x2

∂θ
�= 0,

and therefore the rank of the map is equal to 2.
Now, consider a curve γ(t) ∈ D2, where t ∈ [0, ε]. Then γ̇(0) ∈ B since Pzi

γ̇(0) is
tangent to the boundary and therefore orthogonal to the bisector.

�

Now, in order to rule out the existence of an open set of 3-periodic orbits, it suffices
to show that there is no 2-dimensional integral manifold in the Birkhoff distribution
B for N = 3.

Theorem 4.1. The Birkhoff distribution with n = 3 does not admit 2-dimensional
integral submanifolds.

Proof: Suppose that there exists such a submanifold D2. Then there exist two
smooth vector fields X, Y tangent to D2 and therefore

X = a1L1 + a2L2 + a3L3(9)
Y = b1L1 + b2L2 + b3L3,(10)

where ai, bi ∈ C∞(D2). Without loss of generality, we can assume that a1 �= 0, then
we can modify Y , so that b1 = 0. In this case, either b2 �= 0 or b3 �= 0. Again without
loss of generality, we can assume that b2 �= 0 and then we can modify X so that
a2 = 0. Furthermore, we can normalize X, Y , so that a1 = b2 = 1 and then we have

X = L1 + aL3(11)
Y = L2 + bL3.(12)

Since D2 is an integral submanifold, then by Frobenius theorem X, Y must be in
involution: [X, Y ] ∈ {X, Y }. We will show that this cannot happen, thus arriving at
a contradiction.

Indeed,

[X, Y ] = [L1, L2] − a[L2, L3] − b[L3, L1].(13)

Using the same argument as in the proof of Lemma (2.2), we find that [X, Y ] ∈ B
only if all coefficients in (13) have the same sign, i.e. a < 0 and b < 0. Let us assume
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that such a, b are found so that

[X, Y ] = c1L1 + c2L2 + c3L3 modB,

where the coefficients also must be positive c1, c2, c3 > 0.
Consider now representation of X, Y, [X, Y ] in the basis of L1, L2, L3∣∣∣∣∣∣

1 0 c1

0 1 c2

a b c3

∣∣∣∣∣∣ = (c3 − c2b) − c1a

= −ac1 − bc2 + c3

�= 0,

since c1, c2, c3 > 0 and a, b < 0. This contradicts our assumption that X, Y are in
involution since X, Y, [X, Y ] are linearly independent. �
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