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TRANSVERSE KNOTS AND KHOVANOV HOMOLOGY

Olga Plamenevskaya

Abstract. We define an invariant of transverse links in (S3, ξstd) as a distinguished

element of the Khovanov homology of the link. The quantum grading of this invariant
is the self-linking number of the link. For knots, this gives a bound on the self-linking

number in terms of Rasmussen’s invariant s(K). We prove that our invariant vanishes

for transverse knot stabilizations, and that it is non-zero for quasipositive braids. We
also discuss a connection to Heegaard Floer invariants.

1. Introduction

1.1. Legendrian and transverse knots. There are two important classes of knots
in a contact 3-sphere (S3, ξstd): Legendrian knots and transverse knots. Legendrian
knots are everywhere tangent to the contact planes; transverse knots are everywhere
transverse to them. There are simple “classical” invariants for both classes: the
Thurston–Bennequin and the rotation number for Legendrian knots, and the self-
linking number for transverse knots. While certain knot types, e.g. all torus knots
[EH1], are completely classified by these invariants (in this case the knot type is said
to be Legendrian resp. transversely simple), for most knot types the classification is
not known. There exist smoothly isotopic Legendrian resp. transverse knots with the
same classical invariants which are not isotopic through Legendrian resp. transverse
knots. Legendrian knots are somewhat better understood and enjoy a rich theory
in the context of contact homology and symplectic field theory [Ch], [Ng], [EGH]: a
differential graded algebra associated to a knot yields new Legendrian knot invariants.
Transverse non-simplicity of certain knot types was demonstrated by Birman and
Menasco in [BM] and by Etnyre and Honda in [EH3]. However, the existing examples
are sparse (those of [EH3] are not even explicit), and the proofs in [BM] and [EH3]
require a subtle analysis of specific braids and contact manifolds. Unlike Legendrian
knots, transverse knots do not have any known efficient non-classical invariants.

1.2. The invariant ψ(L). In this paper we introduce a transverse link invariant
ψ(L) as a distinguished element of the Khovanov homology of L. Given a closed braid
diagram representing the transverse link, ψ(L) is defined via a certain resolution of
L. This invariant encodes the self-linking number: the quantum degree of ψ(L) is
given by sl(L). It also discerns transverse stabilizations: if L arises as a transverse
stabilization of another transverse link, ψ(L) vanishes. On the other hand, ψ(L) �=
0 for quasipositive braids. While we don’t have any examples of transverse knots
distinguished by ψ(L) but not sl(L) (indeed, we show that the invariant is the same
for the pairs of transversely non-isotopic knots from [BM]), we hope that a connection
to Khovanov homology might be helpful. In particular, we establish a bound on the
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self-linking number of a transverse knot in terms of the Khovanov homology knot
invariant of Rasmussen [Ra].

1.3. Khovanov homology and low-dimensional topology. Khovanov homology
is an invariant of knots and links introduced in [Kh]. Given a link L in S3, Kh(L)
is a graded homology module whose graded Euler characteristic is the unnormalized
Jones polynomial of L. As was recently discovered, the Khovanov homology has an
interesting relation to low-dimensional topology. Ozsváth and Szabó [OS2] construct
a spectral sequence converging to the Heegaard Floer homology ĤF (−Y ) of the dou-
ble cover Y of S3 branched over a link L; the E2 term of this spectral sequence is the
(reduced) Khovanov homology of the link L. Rasmussen [Ra] uses Khovanov homol-
ogy to give a combinatorial proof of the Milnor conjecture (i.e., to determine the slice
genus of a torus knot). Our transverse link invariant suggests a further connection to
contact topology. In fact, we can define a similar invariant in the reduced Khovanov
theory; it is plausible that this invariant “corresponds” to the Ozsváth-Szabó contact
invariant of the double cover of (S3, ξstd) branched over the transverse link under the
spectral sequence of [OS2].

2. Preliminaries on transverse knots

We collect a few necessary facts about transverse knots and their relation to braids
here, referring the reader to [Et] for a detailed survey.

It will be convenient to work with closed braid representations of transverse knots.
Consider S3 equipped with the (rotationally symmetric) standard contact structure
ξstd = ker(dz− ydx+xdy). It easy to see that any closed braid around the z-axis can
be made transverse to the contact planes. Moreover, by a theorem of Bennequin [Be]
any transverse link in (S3, ξstd) is transversely isotopic to a closed braid.

We adopt the usual notation for braid words. The braid group on b strings is
generated by σ1, . . . , σb−1, so that σi permutes the i-th and the (i + 1)-th strings.
We will sometimes write a braid as a braid word, a certain product of the generators
σ1, . . . , σb−1 and their inverses. The positive resp. negative stabilization of a braid
on b strings is formed by adding the (b+ 1)-th string and multiplying the braid word
by σb resp. σ−1

b .
Of course, the same link can be represented by different braids. The Markov

theorem [Bi] asserts that two braid words describing the same link are related by a
sequence of stabilizations, destabilizations and conjugations in the braid group (and,
of course, the braid group identities). The Transverse Markov Theorem describes the
relation between two braid representations of the same transverse links.

Theorem 1. [Wr, OSh] Let L1, L2 be two closed braids which represent transversely
isotopic links. Then L2 can be obtained from L1 by a sequence of positive braid
stabilizations and braid isotopies.

The self-linking number sl(L) is defined as follows. Trivialize the plane field ξ,
and let the link L′ be the push-off of L in the direction of the first coordinate vector
for ξ. Then, sl(L) is the linking number between L and L′. Given a closed braid
representing L, it can be computed as

(1) sl(L) = −b+ n+ − n−,
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where b is the braid index, and n+ and n− denote the number of positive resp.
negative crossings.

The stabilization of a transverse link can be thought of as negative braid stabiliza-
tion. Unlike positive braid stabilization, this operation changes the transverse type
of the link: if L′ is the result of stabilization of L, then

(2) sl(L′) = sl(L) − 2.

3. Khovanov homology

In this section we give a brief review of Khovanov homology (more or less following
the review in [Ra]). Unless otherwise specified, we work with coefficients in Z.

3.1. Khovanov complex. Given a link diagram L, we can resolve its crossings so
that the result is just the union of planar circles. Each crossing can be resolved in
two ways, called the 0-resolution and the 1-resolution and shown in Fig.1. Let n
be the number of crossings of L; we will write n = n− + n+, where n+ (n−) is the
number of positive (negative) crossings. (See Fig. 1 for the usual sign conventions.)
Then, complete resolutions of L can be conveniently labelled by vertices of the “cube
of resolutions” [0, 1]n. The underlying graded module for the Khovanov complex

0 resolution 1 resolution

_

+

Figure 1. Resolutions and signs of crossings.

CKh(L) is the direct sum of Z-modules associated to the vertices of [0, 1]n,

CKh(L) = ⊕v∈{0,1}nCKh(Lv).

Each CKh(Lv) is defined as follows. Let U be the free graded Z-module generated
by two elements, u− and u+; the grading p is given by p(u±) = ±1. Suppose that
the resolution Lv consists of k circles. We then set

CKh(Lv) = U⊗k.

In other words, CKh(Lv) is freely generated by k-tuples obtained by labelling each
circle in Lv by either u− or u+.

The module CKh(L) is bi-graded. The homological grading, which is constant on
each CKh(Lv), is given by gr(v) = |v| − n−, where |v| is the number of 1’s in the
coordinates of v. Besides, there is the quantum grading q(u) = p(u)+gr(u)+n+−n−.

Our next job is to describe the differential d on CKh(L). Loosely, d is the sum of
maps de associated to the edges of [0, 1]n.

Let e be an edge of [0, 1]n, and denote by ve(0) resp. ve(1) its initial resp. terminal
end. The resolutions Lve(0) and Lve(1) differ in one crossing only (which is 0-resolved
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for ve(0) and 1-resolved for ve(1)), and Lve(1) is obtained from Lve(0) in one of two
ways: either two circles of Lve(0) merge into one, or one circle splits into two. In
the first case, the map de : CKh(Lve(0)) → CKh(Lve(1)) is given by multiplication
m : U ⊗U → U , where the two factors of U ⊗U correspond to two circles that merge,
and the copy of U in the image corresponds to the resulting circle in CKh(Lve(1)).
In the second case, de comes from the comultiplication Δ : U → U ⊗ U , where the U
in the domain corresponds to the circle that splits. It remains to define the maps m
and Δ:

(3)
m(u+ ⊗ u+) = u+ Δ(u+) = u+ ⊗ u− + u− ⊗ u+

m(u+ ⊗ u−) = m(u− ⊗ u+) = u− Δ(u−) = u− ⊗ u−.
m(u− ⊗ u−) = 0

Now, on the component CKh(Lv) the differential d is defined by

d =
∑

e:ve(0)=v

(−1)s(e)de,

where the sum is taken over all edges which have v as their initial end. The signs
(−1)s(e) are chosen so that d2 = 0 (the choice is not unique, but all the resulting
chain complexes are isomorphic).

Khovanov [Kh] shows that different diagrams for the same knot yield quasi-
isomorphic chain complexes, so that the isomorphism classes of the (bigraded)
homology groups give an invariant of the link. In fact, more is true: as conjec-
tured in [Kh] and proved in [Ja], Khovanov’s theory is functorial, and it follows that
there are honest homology groups, not just isomorphism classes, associated to a link.
We now turn attention to these the functorial properties.

3.2. Cobordisms and invariance. Given two links and an oriented cobordism
between them, there is an induced map between homology groups of the links. We
briefly describe this construction.

An oriented cobordism between two links L0 and L1 is given by an embedded
smooth oriented compact surface S in R3 × [0, 1], such that ∂S = S ∩ ∂(R3 × [0, 1]),
and S ∩ (R3 × i) = Li for i = 0, 1. We may assume that Lt = S ∩ (R3 × t) is a link for
all but finitely many values of t. When t passes through the critical value, the isotopy
type of the link changes by a Morse move, and the surface St = (S ∩ R3 × [0, t])
changes by an attachment of a handle (of index 0, 1, or 2). Further, we can fix a
projection R3 → R2, and assume that it gives a regular projection for Lt for all but
finitely many special values of t (and that the set of these special values is disjoint
from the set of the Morse critical values). Thus, we obtain link diagrams (still denoted
Lt). When t passes through a special value where the projection of the link is not
regular, the link remains the same, but its diagram changes by a Reidemeister move.
The isomorphism class of the surface St remains unchanged.

Therefore, the cobordism S can be represented as a sequence of elementary cobor-
disms,

S = S1 ∪ S2 ∪ · · · ∪ Sk,

where each cobordism Si between two diagrams Lti and Lti+1 corresponds to ei-
ther a Reidemester move or a handle attachment. Now, each Si induces a map
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fSi : Kh(Lti) → Kh(Lti+1). For Reidemeister moves, fSi comes from the quasi-
isomorphisms between chain complexes CKh(Lti) and CKh(Lti+1) mentioned in the
previous section (we describe these quasi-isomorphisms in a little more detail in sec-
tion 4). For Morse moves, fSi

is defined as follows [Kh]. We need two additional
maps, ι : Z → U and ε : U → Z, defined by

(4)
ε(u−) = 1 ι(1) = u+

ε(u+) = 0

Now, the attachment of a 0-handle corresponds to a “birth” of a circle in the diagram,
and the map on the chain complex is given by ι (for all possible resolutions). Similarly,
the attachment of a 2-handle (the “death” of a circle) gives the map given by ε. The
attachment of 1-handle is given by m or Δ on each component of the chain complex,
depending on whether the 1-handle merges two circles of a particular resolution or
splits one circle into two. (Note that the differential in Khovanov’s theory is defined
in a similar way: two resolutions given by adjacent vertices of [0, 1]n differ precisely
by the attachment of a 1-handle.) Finally, the map fS is defined as the composition
of the maps induced by the elementary cobordisms,

fS = fSk
◦ · · · ◦ fS2 ◦ fS1 .

Jacobsson [Ja] proves that up to a sign, the map fS depends on the isotopy class
of S rel ∂S only, that is, if

S = S1 ∪ S2 ∪ · · · ∪ Sk and S = S′
1 ∪ S′

2 ∪ · · · ∪ S′
k′

are two decompositions of S into elementary cobordisms, then

fSk
◦ · · · ◦ fS2 ◦ fS1 = ±fS′

k′ ◦ · · · ◦ fS′
2
◦ fS′

1
.

In particular, if two diagrams of a link are related by a sequence of Reidemeister
moves, then the induced isomorphism between the homology groups is canonical up
to a sign.

4. Definition of the invariant

In this section we define the transverse link invariant ψ(L) ∈ Kh(L).
First, we fix a braid diagram L for our link, and pick a distinguished element ψ̃(L)

in the chain complex CKh(L). We will check that ψ̃(L) is a cycle, so that it defines
an element ψ(L) of the homology group Kh(L). Finally, we show that ψ(L) does not
depend on the choice of the braid diagram and remains the same under transverse
link isotopies. This means that ψ(L) is indeed an invariant of the transverse link.

Given a braid diagram L for our link, we choose a resolution which is given by b
parallel strings: that is, we take the 0-resolution for each positive crossing and the
1-resolution for each negative crossing of L. Note that this is the oriented resolution
of the diagram; we denote it by Lo.

We set

(5) ψ̃(L) = u− ⊗ u− ⊗ · · · ⊗ u− ∈ U⊗b = CKh(Lo).

Proposition 1. The element ψ̃(L) is a cycle in (CKh(L), d).
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Proof. The differential d on CKh(Lv) is the sum of maps for all edges e which have
v as their initial end. By our choice of the resolution Lv, such edges correspond to
positive crossings. Moreover, when a 0-resolution of a positive crossing is changed into
a 1-resolution, the two circles of Lv which are “connected” by this crossing merge into
one. This means that each map de is given by multiplication, and then

de(ψ̃(L)) = m(u− ⊗ u−) = 0.

Taking the sum over all positive crossings, we see that d(ψ̃(L)) = 0. �

Proposition 2. ψ(L) ∈ Kh0,sl(L).

Proof. By construction, ψ(L) is a homogeneous element. The homological and quan-
tum gradings are easy to compute: since the number of 1’s for the chosen resolution
is exactly the number of negative crossings, gr(ψ(L)) = 0. Now, p(ψ(L)) is the braid
index of L, and the formula q(ψ(L)) = sl(L) is an immediate consequence of (1) and
the definition of the quantum grading. �

Now we want to check that ψ(L) is independent of a particular braid representa-
tion of the transverse knot. The Transverse Markov Theorem says that the braids
representing two transversely isotopic knots are related by a sequence of positive sta-
bilizations and braid isotopies. The two braid words will then be related via positive
stabilizations, conjugations and the braid group identities. For the corresponding
braid diagrams, this yields a sequence of “transverse Reidemeister moves”, as follows.
Positive stabilization gives the move (R1) with a positive crossing introduced (the
other version of (R1) is not allowed). The braid isotopies give the (R2) and (R3)
moves, all versions of which are allowed. In the following Lemma, we check that the
moves (R1)-(R3) respect ψ(L) by analyzing the effect of each move on Khovanov’s
homology. If we were dealing with knots, it would suffice to consider only the versions
of (R1)-(R3) shown in Fig. 2, since all the other versions can be obtained by a com-
bination of these three. With braids, more care is needed: there is another version
of (R2) obtained by turning our picture upside down; since we cannot turn braids
upside down, we actually need to consider both versions of (R2). However, the two
proofs are identical, so we only give one of them. Also, it is not hard to check that all
possible versions of the (R3) move can be reduced to the one shown by a combination
of (R2) moves.

Lemma 1. Let L and L′ be two braid diagrams related by one of the three transverse
Reidemeister moves (R1), (R2), (R3), and denote by ρi : CKh(L) → CKh(L′),
i = 1, 2, 3, the associated quasi-isomorphisms between the two chain complexes. Then

ρi(ψ̃(L)) = ±ψ̃(L′).

Proof. We recall how the quasi-isomorphisms ρi are constructed in [Kh], and see what
happens to the distinguished element ψ̃(L).

(R1) move: The complex CKh(L′) decomposes as a direct sum X1 ⊕ X2, where
the X2 is acyclic, and X1 is isomorphic to CKh(L) (Fig. 3). The isomorphism ρ1 is
given by

ρ1(u−) = u− ⊗ u−
ρ1(u+) = u+ ⊗ u− − u− ⊗ u+,

and we see that ψ̃(L) is mapped to ψ̃(L′).
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R3

R1

R2

Figure 2. Reidemeister moves in the transverse braid setting.

(L) X
1
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oCKh(L  )(L)

v+

X
2

Figure 3. Construction of the quasi-isomorphism ρ1.

(R2) move: The four possible resolutions of the two extra crossings of L′ are
shown in Fig. 4. Again, the complex CKh(L′) decomposes as X1 ⊕X2 ⊕X3, where
X2 and X3 are both acyclic, and X1 isomorphic to CKh(L) via the isomorphism
ρ2 : CKh(L) → CKh(L′) given by

ρ2(x) = (−1)gr(x)(x+ ι(de(x))).

(The map ι defined in section 3.2 and the map ∂e corresponding to the edge e are
shown in the Figure, and the oriented resolution of L is naturally identified with the
oriented resolution of L′, so that x on the right-hand side actually lives in CKh(L′)).

We see that ρ2 maps ψ̃(L) to ±(ψ̃(L′) + ι(de(ψ̃(L′))). In the proof of Proposition
1, we’ve checked that de(ψ̃(L′)) = 0. It follows that up to a sign, ψ̃(L) is mapped to
ψ̃(L′).

(R3) move: Now we have decompositions CKh(L) = X1⊕X2⊕X3 and CKh(L′) =
X ′

1 ⊕ X ′
2 ⊕ X ′

3 where X2, X3, X ′
2, X

′
3 are all acyclic, and there is an isomorphism

ρ3 : X1 → X ′
1.

We briefly describe how X1 is formed. First, pick 1-resolutions of crossings r and
r′ (note that the resulting diagrams are isomorphic). With this fixed, consider all
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Ld

e
e

~

Figure 4. Construction of the quasi-isomorphism ρ2.

possible resolutions of other crossings, and denote the direct sum of the associated
components of CKh(L) resp. CKh(L′) by CKh(L∗1) resp. CKh(L′

∗1). (This is not
a subcomplex.) Next, denote by CKh(L∗100) the part of CKh(L) arising from all

L
*1

L*1

r q

p

p

q

r

L
*010

L *100

L
*010L

*100

Figure 5. Construction of complexes X1 and X ′
1.

complete resolutions of L with a 1-resolution at p and 0-resolutions at both q and r;
form CKh(L∗010), CKh(L′

∗100) and CKh(L′
∗010) by analogy. Now, define

(6)
X1 = {x+ β(x) + y|x ∈ CKh(L∗100), y ∈ CKh(L∗1)}
X ′

1 = {x+ β(x) + y|x ∈ CKh(L′
∗010), y ∈ CKh(L′

∗1)},
where β : CKh(L∗100) → CKh(L∗010) and β : CKh(L′

∗010) → CKh(L′
∗100) are

certain chain maps. The isomorphism ρ3 : X1 → X ′
1 is given by

ρ3(x+ β(x) + y) = x+ β′(x) + y,
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where the natural identifications between CKh(L∗100) and CKh(L′
∗010) etc. are used.

We do not describe the maps β and β′, referring the reader to [Kh]: the only thing we
need to know is that ψ̃(L) ∈ CKh(L∗1) and ψ̃(L′) ∈ CKh(L′

∗1), so ρ3(ψ̃(L)) = ψ̃(L′).
�

We’ve checked that the distinguished element ψ(L) ∈ Kh(L) behaves nicely un-
der the three transverse Reidemeister moves, and we know that any two transversely
isotopic knots are related by a sequence of such moves, but why would an arbitrary
transverse isotopy between L and L′ send ψ(L) to ψ(L′)? We have to give the Trans-
verse Markov Theorem another look: in [Wr] it is actually shown that an arbitrary
transverse isotopy S can be smoothly modified into a composition of braid isotopies
and positive stabilizations while the two links are fixed. Then, up to an isotopy
of S rel ∂S, the cobordism S between L and L′ decomposes as S1 ∪ · · · ∪ Sk, and
Jacobsson’s theorem from section 3.2 implies that

fS(ψ(L)) = fSk
◦ · · · ◦ fS2 ◦ fS1(ψ(L)) = ±ψ(L′).

We have proved the following

Theorem 2. The element ψ(L) ∈ Kh(L) is an invariant of the transverse link L ∈
(S3, ξstd), well-defined up to a sign.

5. Properties of ψ(L)

5.1. Transverse stabilization.

Theorem 3. If L is the transverse stabilization of another transverse link, then
ψ(L) = 0.

x

L
L

L

v

o

ed

u

u

u

=de

Figure 6. Transverse stabilization and Khovanov’s complex.

Proof. We construct an element φ̃ ∈ CKh(L) such that dφ̃ = ψ̃(L). Since L is the
result of a transverse stabilization (that is, an addition to the braid of an extra string
and an extra negative crossing x), it has a diagram with a “negative kink” as shown
on Fig. 6. For the oriented resolution Lo, we take the 1-resolution of the crossing x.
Let e be the edge of the cube of resolutions corresponding to x; then o is the terminal
end of e. We denote by v the initial end of e. In other words, we take the 0-resolution
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of x to form Lv, and all the other crossings are resolved as in Lo. Now, label all the
components of Lv by u−, and set

φ̃ = u− ⊗ . . .u− ∈ CKh(Lv).

We compute dφ̃ as follows. The component de : CKh(Lv) → CKh(Lo) of d is given
by comultiplication Δ, since the change of the resolution for x splits a circle into two.
Thus, deφ̃ = ψ̃. Furthermore, similar to proof of Proposition 1, all the other terms
of d on the component CKh(Lv) correspond to positive crossings and are given by
multiplication maps, which send φ̃ to 0. It follows that dφ̃ = ψ̃, as required. �

5.2. Positive crossing resolution.

Theorem 4. Suppose that the transverse braid L2 is obtained from the transverse
braid L1 by resolving a positive crossing (note that it has to be a 0-resolution). Let
S be the resolution cobordism, and fS : Kh(L1) → Kh(L2) the associated map on
homology. Then

fS(ψ(L1)) = ±ψ(L2).

Proof. The cobordism S is a composition of a 1-handle attachment and a Reidemeister
move (R1), as shown on Fig. 7. On the component CKh(L1

o) of the Khovanov’s
complex for L1, the 1-handle attachment induces a map given by comultiplication Δ,
since the handle splits a circle on the oriented resolution. The map induced by the
(R1) move was analyzed in the proof of Lemma 1. It follows that the element ψ̃(L1),
given by the u− labels of all circles for L1

o, is mapped to ψ̃(L2) (given by the u−
labels on circles for L2

o).

u

u u

u

u

u

u
m

Figure 7. Resolving a positive crossing.

�

Recall that a braid is called quasipositive [Ru] if its braid word is a product of
conjugates of the form wσiw

−1, where w is an arbitrary element of the braid group.

Corollary 1. If L is represented by a quasipositive braid, then ψ(L) �= 0. Moreover,
it is a primitive non-torsion element of Kh(L).
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Proof. Resolving a few positive crossings, we convert the braid representing L into a
braid equivalent to a trivial one (of the same braid index). For the trivial braid O,
there are no differentials in the chain complex, and ψ(O) is a generator of Kh0,sl(O) =
Z. Since ψ(L) is mapped to ψ(O), it must be non-torsion and primitive. �

Remark 1. Let L be a positive braid of braid index b with n crossings. Then,
the homology of L lies in non-negative homological degrees, with Kh0,n−b = Z,
Kh0,n−b+2 = Z and no other homology in Kh0,∗. The element ψ(L) is a genera-
tor of Kh0,n−b.

Corollary 2. A transverse link L represented by a quasipositive braid cannot be
obtained by a transverse stabilization of any other link.

Remark 2. Corollary 2 follows easily from the fact that a quasipositive braid max-
imizes the self-linking number in its transverse link type. More precisely, for an
arbitrary transverse link L the slice-Bennequin inequality [Ru] gives

(7) sl(L) ≤ −χ(Σ)

where Σ ⊂ B4 is a surface with boundary ∂Σ = L ∈ S3 = ∂B4; for quasipositive
braids (7) becomes an equality. This bound was first proved by Rudolph by means of
gauge theory. It is interesting to note that it can be obtained purely by Khovanov-
homological methods. Indeed, as in [Ru], it is straightforward to reduce the question
to the case of a positive braid representing a torus knot Tp,q (introducing positive
crossings and keeping track of how both sides of (7) change). Then, the self-linking
number is easily seen to be 2g(Tp,q) − 1 (where g denotes genus), and g∗(Tp,q) =
g(Tp,q). The last identity is the Milnor conjecture, whose Khovanov homology proof
was recently obtained by Rasmussen [Ra] (the original gauge-theoretic proof is due
to Kronheimer and Mrowka [KM]).

5.3. Negative crossings. The following Proposition is useful for calculations and
shows that the invariant ψ vanishes for many transverse links.

Proposition 3. Suppose that the transverse link L is represented by a closed braid
whose braid word contains a factor of σ−1

i but no σi’s for some i = 1, . . . , n. (This
means that all the crossings in the braid diagram on the level between (i − 1)-th and
i-th string are negative.) Then ψ(L) = 0.

Proof. First of all, we delete all σ−1
i but one from the braid word, obtaining a link that

decomposes as a connected sum of two links (connected by a negative crossing, the σ−1
i

that remains). Then, we delete negative crossings from and insert positive crossings
into both components of the connected sum, obtaining as a result two positive torus
knots connected by a negative crossing. This is illustrated on Fig. 8. Denote the
obtained transverse link by L′. By Theorem 4, it suffices to show that ψ(L′) = 0.
Topologically, the link L′ is just the connected sum of two torus knots, but its self-
linking number is not maximal (because we can connect the two components by a
positive crossing to increase sl). Connected sums of torus knots are transversely
simple [EH2, Et], so L′ is the transverse stabilization of another link. By Theorem 3,
ψ(L′) = 0. �
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L

1
i

L

Figure 8. From L to L′.

6. Examples

Example 1. For q > 0, |p| ≥ q let L be a transverse link of the (p, q)-torus link type.
(1) Suppose p > 0. If L maximizes the self-linking number in its smooth link type, i.e.
sl(L) = pq−p−q, then ψ(L) is a generator of Kh0,pq−p−q = Z. Otherwise ψ(L) = 0.
(2) If p < 0, then ψ(L) vanishes.

Proof. (1) We use transverse simplicity of positive torus links [EH1, Et]. The (unique)
transverse positive (p, q)-torus link with sl(L) = pq−p−q is represented by a positive
braid with q strings and p(q − 1) crossings, so the result follows from Remark 1. If
sl(L) < pq − p − q, then L is obtained by transverse stabilization, so ψ(L) = 0 by
Theorem 3.

(2) Follows from Proposition 3. �

Example 2. Consider the transverse braids L1 = σ2p+1
1 σ2q

2 σ
2r
1 σ

−1
2 and L2 =

σ2p+1
1 σ−1

2 σ2r
1 σ

2q
2 . It is shown in [BM] that L1 and L2 are not transversely iso-

topic when p, q, r > 1, p + 1 �= q �= r (although they are smoothly isotopic, and
sl(L1) = sl(L2)). However, we have ψ(L1) = ±ψ(L2). Indeed, both ψ(L1) and ψ(L2)
are generators of Kh0,sl(Li) = Z.

Proof. Because of Proposition 2 and Corollary 1, we only need to check that Kh0,sl =
Z. In fact, Kh0,sl(L) has rank one and Kh−1,∗(L) = 0 for any link diagram L with
only one negative crossing (we assume that this crossing corresponds to some σ−1

i ,
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and there is another appearance of σi in the braid word for L). This can be shown
by a direct analysis of the relevant part of CKh(L). We sketch the proof for the case
of coefficients in Z/2Z; for coefficients in Z, an appropriate choice of signs needs to
be fixed.

Let L stand for L1 or L2. For the given diagram CKh−1,sl(L) has rank one and
is generated by u− ⊗ u− in the complete resolution of L given by 0-resolution of all
crossings (this resolution consists of two circles and is shown on Fig. 9). Similarly,

CKh
1,sl

0, sl
CKh

dd

i

... ......

d
j

i j

i j

Figure 9. Computing Kh0,sl(L). Each component of complete res-
olutions shown must be labelled by u−.

CKh0,sl(L) has rank 2q + 1, with generators given by ψ̃(L) and 2q elements φ̃i. The
elements φ̃i are formed by the u− labels on the complete resolutions obtained as
follows: the crossing that corresponds to the i-th σ2 in the product σ2q

2 is 1-resolved,
all other crossings are 0-resolved. Further, d(φ̃i) in turn comes from 1-resolutions of
the j-th crossing in σ2q

2 for all j �= i. It follows that, apart from ψ̃(L), the only cycle
in CKh0,sl(L) is φ1 + φ2 + · · · + φ2q. This cycle is homologous to ψ̃(L), since the
boundary of the generator of CKh−1,sl(L) is equal to ψ̃(L) +φ1 +φ2 + · · ·+φ2q. �

7. A bound on the self-linking number

In this section we obtain a bound on the self-linking number of a transverse knot
K in terms of the knot invariant s(K) introduced by Rasmussen [Ra]. As we mention
below, s(K) is defined as a certain quantum grading in Lee’s version of the Khovanov
homology [Lee]. (In Lee’s construction, which works for rational coefficients only, the
generators for the complex CKh′(K) and the gradings are the same as in CKh(K),
but the differential is different.) Rasmussen conjectured that this invariant coincides
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with the s(K) invariant of Bar-Natan [BN], and is twice the τ(K) invariant of Ozsváth
and Szabó [OS1]. (However, after the present paper was written, Rasmussen’s con-
jecture was disproved in [HO].) Most importantly, |s(K)| gives a lower bound for the
slice genus. If K is alternating, s(K) is simply the signature of the knot.

Proposition 4. For any transverse knot K

sl(K) ≤ s(K) − 1.

Proof. As Jake Rasmussen pointed out to the author, the invariant s(K) in [Ra] is
defined as s(K) = max q(x̃) + 1, where x̃ is an element of CKh′(K) homologous (in
CKh′(K)) to an element of the form ψ̃(K) + y, where q(y) > q( ˜ψ(L)). (Note that
Lee’s differential does not preserve the quantum grading.) Since q(ψ̃) = sl(K) for a
transverse knot K, it follows immediately that sl(K) ≤ s(K) − 1. �
Remark 3. Proposition 4 gives an improvement for the well-known
Thurston–Bennequin [Be] and slice–Bennequin [Ru] bounds on sl(K). The relation
between Rasmussen’s invariant and the slice–Bennequin inequality was independently
established by A. Shumakovich [Sh].

Corollary 3. If K is alternating, sl(K) ≤ σ(K)− 1, where σ(K) is the signature of
the knot.

Remark 4. Since every bound for the self-linking number of transverse knots is
automatically a bound for tb(K) + |r(K)|, the Thurston–Bennequin and rotation
numbers of Legendrian knots (Legendrian and transverse knots are related by push-
offs [Et]), for an alternating Legendrian knot K we have

tb(K) + |r(K)| ≤ σ − 1.

This bound was obtained in [Pl1] via Heegaard Floer homology techniques. Indeed,
it is a special case of the inequality

tb(K) + |r(K)| ≤ 2τ(K) − 1,

where τ(K) is the Ozsváth–Szabó invariant [OS1]. The latter bound, together with
Proposition 4, emphasizes the similarity between s(K) and 2τ , and gives yet another
connection between the Heegaard Floer theory and the Khovanov homology.

8. Reduced homology and a relation to Ozsváth–Szabó invariants

A transverse link invariant can also be defined in the reduced version of the Kho-
vanov homology. We recall the construction of the reduced complex. Starting with
a link L with a marked point on it, consider the usual Khovanov complex CKh(L).
For each complete resolution of L, exactly one of the circles contains the marked
point. Let CKhu−(L) be the subcomplex generated by those generators of CKh(L)
that have the label u− on the marked circle. Then, the reduced chain complex is the
factor C̃Kh(L) = CKh(L)/CKhu−(L), and K̃h(L) is the corresponding homology.
When the homology is taken with coefficients in Z/2Z, K̃h(L) is independent of the
choice of the marked point.

To define the transverse link invariant ψ(L) in the reduced homology, we observe
that C̃Kh(L) ∼= CKhu−(L); then, we can again define ψ(L) as the class of the element
obtained by labeling with u− each component of the oriented resolution.
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The “reduced” invariant ψ(L) ∈ K̃h(L) has the same properties as those we proved
in the non-reduced case (the proofs would be identical).

In the Introduction, we mentioned the connection between K̃h(L) and the Hee-
gaard Floer homology of the 3-manifold Σ(L), which is the double cover of S3

branched over a smooth link L. As shown by Oszváth and Szabó [OS2], there exist a
spectral sequence whose E2 term is K̃h(L), and E∞ term is the Heegaard Floer ho-
mology ĤF (−Σ(L)) (the coefficients for both homology theories are taken in Z/2Z).
More precisely, for a fixed link diagram, the construction of [OS2] gives a filtered chain
complex C(L), whose homology is ĤF (−Σ(L)), and the associated graded complex
is the chain complex C̃Kh(L) for reduced Khovanov homology (with its homological
grading). When L is alternating, the spectral sequence collapses, yielding a canon-
ical isomorphism between K̃h(L) and the associated graded group of ĤF (−Σ(L)).
(For coefficients in a field, the associated graded group of ĤF (−Σ(L)) is of course
isomorphic to ĤF (−Σ(L)), although non-canonically).

When S3 is equipped with the standard contact structure and L is a transverse link,
the manifold Σ(L) carries a natural contact structure ξL lifted from S3. In a related
paper [Pl2], we study the Ozsváth–Szábo contact invariant c(ξL) ∈ ĤF (−Σ(L)),
associated to the contact structure. It turns out that the properties of c(ξL) are very
similar to those of ψ(L); in particular, the results of section 5 hold true for c(ξL). It is
natural to conjecture that the element c(ξL) “corresponds” to ψ(L) under the spectral
sequence. To be more precise, we consider the case of alternating knots. We have
seen that ψ(L) is a homogeneous element of K̃h(L) of homological degree 0. We hope
that the filtration level c(ξL) in ĤF (−Σ(L)) matches the homological degree of ψ(L);
denoting by c0(ξL) the image of c(ξL) in the component ĤF 0(−Σ(L))/ĤF 1(−Σ(L))
of the associated graded group, we suggest

Conjecture 1. Let L be an alternating transverse link. Then the filtration level of
c(ξL) ∈ ĤF (−Σ(L)) is equal to the homological degree of ψ(L), and ψ(L) is mapped
to c0(ξL) under the isomorphism between K̃h(L) and the associated graded group of
ĤF (−Σ(L)).

Remark 5. Strictly speaking, the above isomorphism depends on the link diagram:
while the spectral sequence of [OS2] is believed to be a link invariant, this has not
been established. Therefore, we have to fix a braid diagram for our considerations.

In [Pl2], we prove a special case of conjecture 1.

Theorem 5. Let L be a transverse link represented by a closed braid whose diagram
is alternating. Then the filtration level of c(ξL) is 0, and ψ(L) = c0(ξL).

It should be said that the class of alternating braids is very narrow, and that
ψ(L) = c(ξL) = 0 for most of them.
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