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A PROOF OF A THEOREM OF LUTTINGER AND SIMPSON
ABOUT THE NUMBER OF VANISHING CIRCLES OF A

NEAR-SYMPLECTIC FORM ON A 4-DIMENSIONAL MANIFOLD

Clifford Henry Taubes

Abstract. A proof is given of a theorem announced some years ago by Luttinger and

Simpson to the effect that a compact 4-manifold that has a near-symplectic form in a
given cohomology class admits one in the same class whose zero locus consists of any

given, but strictly positive number of disjoint, embedded circles.

1. Introduction

A symplectic form on a smooth, oriented 4-manifold is a closed, 2-form whose
square is nowhere vanishing and positive. A near symplectic form is a non-trivial,
closed form whose square is non-negative and, on its zero locus, has rank 3 derivative.
A number of years ago, Karl Luttinger and Carlos Simpson announced the following
theorem:

Theorem 1. Let n denote a positive integer. A smooth, oriented compact, connected
4-manifold that admits a near symplectic form in a given cohomology class admits
one in the same class whose zero locus consists of the disjoint union of n embedded
circles.

No proof has been published. Having been asked at times about this theorem, and
having quoted it on various occasions (see, e.g., [T1]), the author set about the task of
providing a proof. This paper contains the author’s proof of this theorem of Luttinger
and Simpson. After writing this paper, the author learned that Tim Perutz [P] has
recently proved the Luttinger-Simpson theorem along somewhat different lines.

To give some context to this theorem, note first that Hodge theory can be used
to construct a non-trivial 2-form with non-negative square on any 4-manifold with
postive self-dual, 2nd Betti number. Meanwhile, a folk theorem known to gauge theory
afficianados from the work of Simon Donaldson in the 1980’s (see [DK]) asserted that
such a 2-form can be found with rank 3 derivative on its zero locus. Thus, its zero
locus consists of some number of disjoint, embedded circles. A proof of this folk
theorem was published by Honda [Ho].

By definition, a near symplectic form with no vanishing locus is symplectic. How-
ever, there are compact 4-manifolds with near symplectic forms but no symplectic
ones [T2], [T3], [K]. Thus, any near symplectic form on such a manifold must have
at least one component circle to its zero locus.
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Theorem 1 has an analog for non-compact, but asymptotically Euclidean 4-man-
ifolds. In this regard, a manifold is said to be asymptotically Euclidean when the
complement of a compact set is diffeomorphic to the complement in R

4 of a ball.
A closed 2-form on such a manifold is deemed asymptotically standard when such a
diffeomorphism pulls it back as dx1 ∧ dx2 + dx3 ∧ dx4. Hodge theory with arguments
like those used in [Ho] can be used to prove that every asymptotically Euclidean
4-manifold has an asymptotically standard, exact near-symplectic form.

Theorem 2. Let n be a positive integer. Every smooth, oriented, asymptotically
Euclidean 4-manifold has an asymptotically standard, exact, near symplectic form
whose zero locus consists of the disjoint union of n embedded circles.

A celebrated theorem of Gromov [G] asserts that R
4 is the only asymptotically

Euclidean 4-manifold with an asymptotically standard symplectic form.
By the way, recent works of Kirby and Gay [KG] for the compact manifold case and

Scott [S] for the case of an asymptotically Euclidean manifold construct near symplec-
tic forms whose zero loci are determined apriori from a Kirby calculus presentation
of the manifold. Near symplectic forms are used in [ADK] to study the differential
topology of 4-manifolds. Applications towards this same end are conjectured in [T1].

The remainder of this article contains the proofs of Theorems 1 and 2.

2. The birth of circles

The purpose of this section is to prove the following proposition:

Proposition 2.1. Let n denote a non-negative integer and let X denote a smooth
oriented 4-manifold with a near symplectic form whose zero locus consists of n disjoint,
embedded circles. Then X has a cohomologically equivalent near symplectic form whose
zero locus consists of n+ 1 disjoint, embedded circles.

Proof of Proposition 2.1. A newborn circle is constructed here by changing the
original 2-form on a compact set in a coordinate chart that is disjoint from all zeros
of the original form. As a theorem of Moser [M] asserts that all symplectic forms are
locally symplectomorphic, the construction of a new vanishing circle is needed only
for the case when the original form is the standard symplectic form on a ball in R

4.
This standard form is denoted in what follows as ω; it is the form on C

2 = R
4 that is

given with respect to complex coordinates (z, w) by

(2.1) ω =
i

2
(dz ∧ dz̄ + dw ∧ dw̄).

The plan is to modify ω only near the origin so that the result, ω′, is a near symplectic
form that vanishes on a single circle. The description of this modification is given
in five parts. The first part describes ω′ in a small ball about the origin, and the
subsequent parts describe ω′ at successively larger distances from the origin through
a distance beyond which ω′ = ω

Part 1: Let ε denote a real number with absolute value less than 1 and suppose
that R� 1. Now introduce the form μ = μ(ε,R) given by

(2.2) μ =
i

2
(−ε+|z|2−|w|2)(dz∧dz̄+dw∧dw̄)+

i

2
(zw−Rw̄)dz̄dw̄− i

2
(z̄w̄−Rw)dzdw.
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This form is closed, and is such that μ ∧ μ ≥ 0. When ε > 0, the zero locus of μ
consists of two circles, these being

• Zε = {(z, w) : |z|2 = ε and w = 0}.
• ZR = {(z, w) : |w|2 = R2 − ε and z = Rw̄/w}.(2.3)

In the case ε < 0, there is only one vanishing circle; this is the locus

(2.4) {(z, w) : |w|2 = R2 − ε and z = Rw̄/w}.
Thus, as long as R2 � |ε|, the 1-parameter family ε → μ(ε,R) sees the birth of a
vanishing circle as ε crosses zero from negative values to positive values. Of course,
reversing the motion of ε sees the death of a vanishing circle.

Now, fix ε > 0 but much less than 10−10, and then fix R so that Rε1/2 � 1. Fix
some large number, T . A lower bound for T is 1012Rε1/2. The form ω′ on the ball of
radius δ = (2ε)1/2 about the origin is given by

(2.5) ω′ = T−1μ.

Part 2: Let r = (|z|2 + |w|2)1/2. This part describes ω′ where δ ≤ r ≤ 4δ. For this
purpose, fix a smooth, non-decreasing function on [0,∞) that has value 0 on [0, 1] and
value 1 on [2,∞). Let β denote the chosen function. When κ > 0 has been specified,
then βκ denotes the function on R

4 that maps (z, w) to β(r2/κ2). Thus, βκ is zero
where r ≤ κ and is equal to 1 where r ≥ 21/2κ.

The form ω is exact; in particular, ω = dα where

(2.6) α =
i

4
(zdz̄ − z̄dz) +

i

4
(wdw̄ − w̄dw).

With α understood, define ω′ where δ ≤ r ≤ 4δ to equal

(2.7) ω′ = T−1(μ+ d(βδα)).

The form depicted in (2.7) is closed. Moreover, its square can be written as the
product of the Euclidean volume form and the function T−2σ0 where

(2.8) σ0 = 2θ2 + 2δ−2r2θβ′
δ + 2|(δ−2β′

δ + 1)zw −Rw̄|2.
Here, θ = βδ + (−ε + |z|2 − |w|2) and β′

δ is shorthand for the function ( d
dtβ)(r2/δ2).

As explained momentarily, (2.8) depicts a positive function where δ ≤ r ≤ 4δ.
To see that σ0 > 0 where δ ≤ r ≤ 4δ, note first that σ0 is positive if θ is positive,

and θ is positive unless |w|2 +ε > |z|2. Since ε = 1
2δ

2 and |w|2 + |z|2 ≥ δ2, this implies
that θ is negative only where |w|2 = 1

4δ
2. This understood, θ ≥ −3|w|2 in any event.

Now suppose that the right most term in (2.8) is greater than 1
2R

2|w|2. When such
is the case, the previous lower bound for θ implies that the expression in (2.8) is no
less than

(2.9) 2θ2 − 48|w|2 +
1
2
R2|w|2.

This last expression is positive granted that R2 > 96. As R ≥ 10, the preceding
inequality holds.

Meanwhile, the right most term in (2.8) is greater than 1
2R

2|w|2 unless

(2.10) |(δ−2β′
δ + 1)|z| −R| ≤ 1

2
R.
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This then requires that |z| ≥ 1
2Rδ

2. Under the circumstances, this last condition does
not hold on the domain of interest because 1

2Rδ
2 = 2−1/2(Rε1/2)δ. Indeed, this is

much greater than 4δ given that Rε1/2 is much greater than 1.

Part 3: This part describes the form ω′ where 4δ ≤ r ≤ 8δ. To this end, note that
where r ≥ 2δ, the form that is depicted in (2.7) can be written as T−1ω1 where

ω1 = (1 + ε)ω − i

2
R(w̄dz̄dw̄ − wdzdw)(2.11)

+
[
(|z|2 − |w|2)ω +

i

2
zwdz̄dw̄ − i

2
z̄w̄dzdw

]
.

Note in particular that the form that is depicted in the brackets on the far right in
(2.11) has norm where 4δ ≤ r ≤ 8δ that is bounded by 103δ2. Moreover, it can be
written as dτ where |τ | = 105δ3. As a consequence, the norm of d[(1 − β4δ)τ ] is
bounded by 106δ2.

Granted these last points, define ω′ where 4δ ≤ r ≤ 8δ to be

(2.12) ω′ = (1 + ε)ω − i

2
R(w̄dz̄dw̄ − wdzdw) + d[(1 − β4δ)τ ].

Because the norm of the right most term in (2.12) is smaller than 106δ2, the square
of the form that is depicted in (2.12) is nowhere zero where 4δ ≤ r ≤ 8δ if δ < 10−4.

Part 4: This part describes ω′ where 8δ ≤ r ≤ 16δ. To this end, choose a
nondecreasing function, χ, on [0,∞) with value T−1(1 + ε) on [0, 1] and value 1 on
[2,∞). Let χ8δ denote the function χ(r2/(8δ)2) on R

4. Let α denote the 1-form in
(2.6). Noting that

(2.13) ω′ = T−1(1 + ε)dα− i

2
T−1Rw̄dz̄dw̄ +

i

2
T−1Rwdzdw

where r ∼ 8δ, the definition of ω′ extends to where 8δ ≤ r ≤ 16δ as

(2.14) ω′ = d(χ8δα) − i

2
T−1Rw̄dz̄dw̄ +

i

2
T−1Rwdzdw

The square of the form that is depicted in (2.14) is a nowhere zero multiple of the
Euclidean volume form. Indeed, the square is obtained by multiplying the volume
form by the function

(2.15) 2χ2
8δ + 2(8δ)−2r2χ8δχ

′
8δ + 2|(8δ)−2zwχ′

8δ − T−1Rw̄|2;
and this function is positive because χ′

8δ = ( d
dtχ)(r2/(8δ)2) is non-negative.

Part 5: This last part describes ω′ where r ≥ 16δ. To this end, note that the
2-form − i

2 w̄dz̄dw̄+ i
2wdzdw can be written as dν with ν = − i

2 (w̄z̄dw̄−wzdw). This
understood, extend the definition of ω′ to where r ≥ 16δ using

(2.16) ω′ = ω + T−1Rd[(1 − β16δ)ν].

This form has everywhere positive square provided that T−1Rδ 	 10−6. Thus, as
long as T � 106Rδ = 21/2106Rε1/2, the form depicted in (2.16) is symplectic where
r ≥ 16δ. By design, it is equal to ω where r ≥ 32δ.
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3. Melding component circles

Suppose that ω is a near symplectic form on a given 4-manifold whose zero locus
is a smooth, embedded, union of circles. Let Z denote this zero locus. Suppose that
p 
= p′ are points in Z. The purpose of the subsequent discussion is to describe a
second near symplectic form that is cohomologous to ω and whose zero locus, Z ′, is
a disjoint union of embedded circles with the following property: There exists a ball,
B0, that contains p and p′ and is such that

• Z ∩B0 is the disjoint union of two intervals, I and I ′, with p ∈ I and p′ ∈ I ′.
• Z ∩ (M −B0) = Z ′ ∩ (M −B0).
• Z ′ ∩B0 is the disjoint union of two arcs that connect ∂I to ∂I ′.

The new form is denoted in what follows by ω′.
Theorems 1 and 2 follow directly given Proposition 2.1 and the existence of the

form ω′ as just described.
There are six parts to the construction of B0 and ω′.

Part 1: Here is the strategy: The ball B0 contains a smaller, closed ball, B1, that
is chosen to have the following four properties: First, p and p′ are in B1 and Z ∩B1

is a pair of disjoint arcs, one containing p and the other p′. Second, the inclusion
ι : ∂B1 → X is transversal to Z and so ∂B1 intersects Z at four points. Third, ι∗ω.
can be written as dα and α∧dα ≥ 0 with equality only at the four points in Z ∩∂B1.
In particular, α is a contact form on the complement in ∂B1 of Z ∩ ∂B1. Finally, the
contact structure that α defines on the complement of Z ∩ ∂B1 is overtwisted.

With the preceding understood, a diffeomorphism is constructed from B1 to itself
with certain special properties. First, the diffeomorphism interchanges two of the
four points that comprise Z ∩ ∂B1; it fixes one boundary of I and one of I ′ while
interchanging the other boundary component of I with that of I ′. Second, the dif-
feomorphism pulls ω back as itself in a neighborhood of four small radius balls that
are centered on the four points of Z ∩ ∂B1. Third, the diffeomorphism pulls α back
as itself near these same four point. Let ψ denote this diffeomorphism. With the
preceding understood, the form ψ∗α agrees with α near Z ∩ ∂B1 and is a contact
form on the complement in ∂B1 of Z ∩ ∂B1. Note that ψ∗α is overtwisted since α is
overtwisted. Finally, the 2-plane fields kernel(α) and kernel(ψ∗α) are homotopic as
2-plane fields with fix boundary values.

Theorems of Eliashberg and Gray are invoked next to find a diffeomorphism, φ :
∂B1 → ∂B1 that restricts as the identity on a neighbhood of Z ∩ ∂B1, and is such
that φ∗ψ∗α = gα with g > 0 a function on ∂B1 that equals 1 near Z ∩ ∂B1. With φ
in hand, define a new manifold, X ′, by surgery on X:

(3.1) X ′ = (X −B1) ∪φ B1.

Thus, B1 is removed and then glued back using the diffeomorphism φ. A theorem of
Hatcher [Ha] says that φ is homotopic to the identity map of ∂B1 via a 1-parameter
family of diffeomorphisms ofB1. As a result, X is diffeomorphic toX ′. Here is another
consequence: Use (3.1) to define a canonical embedding, υ : X − B1 → X ′. Let
B0 ⊂ X denote a ball that contains B1 in its interior. There exists a diffeomorphism
λ : X → X ′ such that λ = υ on X −B0.
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The final step argues that the form ω on X − B1 can be modified in a small
neighborhood of B1 so as to match up smoothly across ∂B1 with a small, positive,
constant multiple of the form φ∗ψ∗ω. The two thus define a smooth, near-symplectic
form on X ′ whose zero locus is a disjoint union of embedded circles. Take ω′ to be
the pull back via the diffeomorphism λ of this near symplectic form on X ′.

Part 2: This part of the story describes the ball B1. This ball is obtained by
smoothing a C1 ball that is obtained as the union of five parts. Two of these parts
consist of a pair that lie near p and two consist of an analogous pair near p′. The
remaining part is a small radius, tubular neighborhood of a path between p and p′.
The interior of this path should be disjoint from Z, and it is constrained near its
endpoints. These five parts are described in turn.

To consider the parts near p, remark first that the form ω can be modified near its
zero locus so that the modification has the same zero locus as the original, and such
that any given point on the zero locus has a neighborhood with coordinates (t, x, y, z)
for which the modified form appears as:

(3.2) dt(xdx+ ydy − 2zdz) + xdydz − ydxdz − 2zdxdy.

Thus, the zero locus is the t-axis in this coordinate chart. The Euclidean metric
defines a metric for such a coordinate chart. Such modifications near the points p and
p′ are assumed implicitly in what follows; the modified form is denoted by ω as was
the original.

Suppose now that (t, x, y, z) are coordinates as just described that are centered on
the point p. Fix a small real number, ε > 0, and let C− denote the half ball in the
coordinate system given by the conditions

(3.3) C− = {(t, x, y, z) : t2 + x2 + y2 + z2 = ε2 and z ≤ 0}.
This C− is the first of the pair of components that defines the ball B1.

The second component is denoted as C+. The specification of C+ requires the
choice of a small, positive number, δ > 0. I shall take δ � ε, and this will require
that ε be very small. Here is C+:

(3.4) C+ = {(t, x, y, z) : t2 + x2 + y2 ≤ ε2 and 0 ≤ z ≤ δ}.
Thus, C− ∪ C+ is a half-ball that extends a distance δ along the positive z axis.

Analogous versions of C− and C+ are defined near p′ using the p′ version of the
coordinates (t, x, y, z). These are denoted in what follows by C ′

− and C ′
+.

To define the final component of B1, choose an embedded arc, γ : [−1, 1] → X
such that γ(−1) = p and γ(1) = p′. Require that γ have the following properties:
First, its interior is disjoint from Z. Second γ coincides where its affine parameter is
near −1 with a segment of the positive z axis. To be precise, assume that

(3.5) γ(s) = (t = 0, x = 0, y = 0, z = s+ 1)

for −1 ≤ s ≤ −1 + δ. An analogous constraint as defined using the p′ version of
the coordinates (t, x, y, z) is required near s = 1. In this case, γ should coincide
where its affine parameter is near 1 with a segment of the negative z axis; thus
γ(s) = (0, 0, 0, s− 1) when 1 − δ ≤ s ≤ 1.

Granted (3.5), the fifth part of B1 consists of the radius ε tubular neighborhood
of the portion of γ where −1 + δ ≤ s ≤ 1 − δ. Use C0 to denote this portion of B1.
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Note that ∂B1 is a C1 submanifold, but not C2. The failure of differentiablility
occurs where C+ joins to C−, thus on the 2-sphere where z = 0 and t2 +x2 +y2 = ε2.
One way to rectify this is to replace C− as follows: Fix some ε1 > 0 but very small
so that ε1 	 ε. Let f : [0, 1] → [0,∞) denote a smooth, non-decreasing function with
f(t) = t where t ≥ ε21 and f(t) = 0 where t ≤ 1

2ε
2
1. Now set

(3.6) C ′
− = {(t, x, y, z) : t2 + x2 + y2 + f(z2) ≤ ε2 and z ≤ 0}.

Part 3: This part describes the 1-form α. To this end, I first define α on the part of
∂B1 in C+. To do so, I write t = r cos(λ), x = r sin(λ) cos(ϕ) and y = r sin(λ) sin(ϕ);
I then observe that ω on C+ is given by

(3.7) ω = r2 sin(λ)drdλ− 2z cos(λ)drdz + 2zr sin(λ)dλdz

+ r2 sin2(λ)dϕdz − 2zr sin2(λ)drdϕ− 2zr2 sin(λ) cos(λ)dλdϕ.

This understood, the pull-back of ω to the part of ∂B1 in C+ is

(3.8) ω+ = 2rz sin(λ)dλdz − r2 sin2(λ)dzdϕ− 2r2z sin(λ) cos(λ)dλdϕ.

Granted (3.8), note that ω = dα+ with

(3.9) α+ = −r2z sin2(λ)dϕ− 2r cos(λ)zdz +
1
3
r3 sin(λ)dλ.

Thus, upon restriction to ∂B1, one has ω+ = dα+. In addition:

(3.10) α+ ∧ dα+ =
[
1
3
r2 sin2(λ) + 2z2(1 + cos2(λ))

]
r3 sin(λ)dλdϕdz.

This 3-form vanishes only where x = y = z = 0.
Consider next the story for C ′

−. On the portion of ∂B1 in C− near where z > −ε,
the function r becomes a function of z via

(3.11) r = (ε2 − f(z2))1/2.

As a consequence, the pull-back of ω to the portion of ∂B1 ∩ C ′
− were z > −ε is

(3.12) ω− = (−r2rz + 2zr) sin(λ)dλdz − (r2 + 2rzrz) sin2(λ)dzdϕ

− 2zr2 sin(λ) cos(λ)dλdϕ.

Note that I can write ω− as dα− with

(3.13) α− = −r2z sin2(λ)dϕ− 2r cos(λ)zdz +
1
3
r3 sin(λ)dλ.

A calculation finds that

(3.14) α− ∧ dα− =
[
1
3
((r2 + z2f ′) sin2(λ) + 2z2(1 + cos 2(λ))

]
r3 sin(λ)dλdϕdz.

A change of coordinates near where z = −ε finds that α− is smooth on this locus also.
The 3-form that is depicted in (3.14) vanishes only on the locus where z = x = y = 0.

A comparison between (3.13) and (3.9) finds that α− smoothly extends α+ from
the C+ portion of ∂B1 to the C− portion.

Here is one last observation: The contact structure just described in overtwisted.
Indeed, the circle where z = 0 and cos(λ) = 0 is tangent to the contact plane field,
but bounds a disk in the portion of ∂B1 in C− ∪ C+ that avoids the two points
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where the contact form vanishes and is transverse to the contact plane field along its
boundary. This disk is obtained as a perturbation of the disk that is defined by the
conditions z = 0 and 1

2π ≤ λ ≤ π; the pertubation has z becoming slightly negative
as λ approaches π. The existence of a disk with these properties characterizes an
overtwisted contact structure.

An analogous contact form should be defined on the part of ∂B1 in C ′
− ∪C ′

+. The
C ′

+ part of the latter is denoted below by α′
+.

The next task is to extend the contact structure just described to the portion of
∂B1 that lies in C0. To this end, observe that for z ∼ δ on the part of ∂B1 in C+,
the contact form α+ can be written as

(3.15) −τdk − zb2dϕ+
1
3
r3 sin(λ)dλ

where b = r sin(λ), τ = r cos(λ) and k = z2 − 1. Meanwhile, for z′ ∼ −δ on the part
of ∂B1 in C ′

+, the contact form α′
+ can be written as

(3.16) −τ ′dk′ − |z′|b′2d(−ϕ′) +
1
3
r3 sin(λ′)dλ′

where b′ = r sin(λ′), τ ′ = r cos(π − λ′), and k′ = 1 − z′2. Note in this regard that
the change of coordinates from (z′, λ′, ϕ′) to (z′, π− λ′,−ϕ′) defines an oriented map
that extends over C ′

+ ∪ C ′
− as the map (t′, z′, x′, y′) → (−t′, z′, x′,−y′).

Here is a crucial point: The function k = z2 − 1 restricts to the −1 < s ≤ −1 + δ
part of γ as an increasing function of s. It is also the case that k′ = 1 − z′2 restricts
to the part of γ where 1− δ ≤ s < 1 as an increasing function of s. As a consequence,
there is an oriented diffeomorphism, s → σ(s), that sends (−1, 1) to (−1, 1) and is
such that k = σ where σ ∼ −1 + δ2, and such that k′ = σ where σ ∼ 1 − δ2.

To proceed, it is worth considering what ω looks like on a neighborhood of an
embedded path in X that avoids Z. I’ll denote this path by γ. Choose a coordinate
system (σ, v1, v2, v3) on a tubular neighborhood of γ so that γ = {(−, 0, 0, 0)}. Then

(3.17) ω|γ = dσ ∧Ai(σ)dvi + εijkBk(σ)dvi ∧ dvj ,

where BiAi > 0 at all values of σ. I can change coordinates w1 = Ai(σ)vi so that

(3.18) ω|γ = dσ ∧ dw1 + 2B1dw2 ∧ dw3 + (B2dw3 −B3dw2) ∧ dw1

after redefining the collection {Bi}. Note that B1 > 0. Change coordinates again,
this time to coordinates (σ, c1, c2, c3) with (c1, c2, c3) given by

(3.19) w1 = c1, w2 = −mB−1/2
1 (c2 + (B2/B1)c1), w3 = mB

−1/2
1 (c3 + (B3/B3)c1);

here σ → m(σ) is a favorite, strictly positive function on the domain of σ. With
respect to these new coordinates,

(3.20) ω|γ = dσ ∧ dc1 − 2m(σ)dc2 ∧ dc3.
Now consider extending ω off of γ. To this end, fix in advance a smooth function
σ → n(σ) and then use Moser’s procedure [M] to find a tubular neighborhood of γ
with coordinates (σ, c1, c2, c3) where (3.20) can be extended as

(3.21) ω = dσ ∧ dc1 +m′(c2dc3 − c3dc2) ∧ dσ
− 2mdc2 ∧ dc3 +

1
2
dc1 ∧ d[n(σ)(c22 + c23)].
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These coordinates are unique up to a Hamiltonian diffeomorphism that preserves γ.
To say more, write ω as in (3.21) on the tubular neighborhood and note that

writing c1 = r cos(θ), c2 = r sin(θ) sin(φ) and c3 = r sin(θ) cos(φ), finds ω = da with

(3.22) a = −r cos(θ)dσ −m(σ)r2 sin2(θ)dφ+
1
3
n(σ)r3 sin(θ)dθ.

This looks very much like what is written in (3.15) with the following identifications:
First, k = σ while m(σ) = z and n(σ) = 1 when σ ∼ −1 + δ2. Second, θ = λ and
φ = ϕ when σ ∼ −1 + δ2. It also looks much like what appears in (3.16) with the
identifications k′ = σ, m(σ) = |z′|, n(σ) = −1, θ = −λ′ and φ = −ϕ′ when σ ∼ 1+δ2.

These identifications can be made if c1 = t near p and c1 = −t′ near p′ and (c2, c3) =
(x, y) near p; meanwhile c1 = −t′ and (c2, c3) = (−x′, y′) near p′. This last set of
identifications can be arranged with no difficulties when the tubular neighborhood
has small radius (thus ε is very small).

Note finally that the restriction of ω as depicted in (3.21) to the locus where
r = (c21 + c22 + c23)

1/2 = ε is the form

(3.23) ω0 =
(

1 − 1
3
n′r2

)
r sin(θ)dθ ∧ dσ −m′r2 sin2(θ)dσ ∧ dφ

− 2mr2 sin(θ) cos(θ)dθ ∧ dφ.
In addition,
(3.24)

a ∧ ω0 =
(

2m cos2(θ) +m

(
1 − 1

3
n′r2

)
sin2(θ) +

1
3
nm′r2 sin2(θ)

)
r3 sin(θ)dσdθdφ,

which is positive provided that r is small.
Thus, taking α = a on the part of ∂B1 in C0 extends the definition of α to the

whole of ∂B1 as a contact form for the restriction of ω to B1.

Part 4: This part of the discussion concerns the diffeomorphism ψ. As noted at
the very outset, each point on the zero locus of ω has a neighborhood with coordinates
in which ω appears as depicted in (3.2). In particular, this is the case for the four
points where the zero locus intersects ∂B1. This understood, there is no obstruction
to demanding that ψ, as it permutes these points, maps balls about the points so as
to identify the version of (t, x, y, z) in the domain ball with the corresponding version
in the range ball. This will insure that ψ∗ω = ω and ψ∗α = α on these four balls.

It is proves convenient when discussing the 2-plane fields kernel(α) and kernel(ψ∗α)
to make a further constraint on ψ beyond the requirement that it permute the four
balls described above. To describe this additional constraint, agree to fix a small ball
in ∂B1 about each of the zeros of ω where the coordinates used in (3.2) are valid.
Let S ⊂ ∂B1 denote the complement of these four balls. This S can be viewed as
the complement inside the unit ball of R

3 of three smaller open balls, b0, b1 and b2.
To be explicit, take these smaller balls to have radius 1

100 , with the center of b0 at
(− 1

25 ,− 1
25 , 0), the center of b1 at ( 1

25 , 0, 0) and the center of b2 at (0, 1
25 , 0). The map

ψ will send b1 to b2 while fixing b0 and the boundary of the 3-ball. Let L denote the
2-complex that is obtained from ∂b0 ∪ ∂b1 ∪ ∂b2 by adjoining three arcs, these the
respective shortest arcs between the origin and ∂b0, ∂b1 and ∂b2. Let L denote this
2-complex. Here is a picture of L:
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A sketch of L.

The map ψ can be constructed so as to map L to itself and so that ψ∗(α) = α on a
neighborhood of b0 ∪ b1 ∪ b2 and on a neighborhood of the boundary of the unit ball
in R

3.
Keeping in mind that α and ψ∗α agree on the boundary of S, the final point here

is made by

Lemma 3.1. The kernel of ψ∗α can be homotoped as a 2-plane field to the kernel of
α with no change along the homotopy on the boundary of S.

Proof of Lemma 3.1. Frame T ∗S using the standard coordinate framing from R
3.

As an oriented 2-plane field on S is the kernel of a nowhere zero 1-form on S, this fixed
framing identifies any given 2-plane field with a map from S to S2, and it identifies
any given map from S to S2 with a 2-plane field. This understood, the kernels of
α and ψ∗α are homotopic as 2-plane fields (rel ∂S) if and only if the corresponding
maps to S2 are homotopic rel ∂S. To prove that such a homotopy exists, note that
S can be written as ((S2 × [0, 1]) ∪ L)/ ∼, where the equivalence relation identifies
S2 × {0} with L via a surjective map f : S2 → L. This follows from the fact that L
has a regular neighborhood whose boundary is a 2-sphere. This picture of S identifies
the boundary of the unit ball with S2 × {1} ⊂ S.

Let σ : S → S2 denote a given map to S2. Agree to identify the image S2 with the
unit sphere in the Lie algebra of SU(2). The pull-back of σ from S to S2 × [0, 1] can
be lifted as a map to SU(2) in the following manner: The lift, h : S2 × [0, 1] → SU(2)
is such that σ(z, t) = h(z, t)σ(z, 0)h−1(z, t) and such that h(z, 0) = I ∈ SU(2). Note
that h is not unique; it can be modified by h → h exp(uσ) where u : S2 × [0, 1] →
R/(2πZ).

If σ and σ′ are two maps from S to S2 that agree on S2×{1}, then the corresponding
lifts h and h′ can be chosen so as to agree on S2 × {1} as well. This being the case,
then the map from S2 × [0, 1] to S2 that sends (z, t) to h′(z, 2t) for t ≤ 1

2 and to
h(z, 2−2t) for t ≥ 1

2 is a map from S2× [0, 1] to SU(2) that restricts to both S2×{0}
and S2 × {1} as the identity. Let μ denote a volume form on SU(2) with volume 1.
Then the integral over S2 × [0, 1] of the pull-back of this form by g is an integer, this
denoted in what follows by nh,h′ . It is relevant only by virtue of the following fact:
Given maps h and h′ as just described are homotopic if and only if nh,h′ = 0. Note
for reference below that this integer is zero in the case where h is defined by α and h′

by ψ∗α; this is because h′ can be taken to equal ψ∗h. This last conclusion requires
that ψ map L to itself.
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The preceding observation does not imply that the respective maps from S to S2

defined by a and ψ∗α are homotopic. One further item is needed. To explain, let
σ : S → S2 denote the map that is defined by α and let σ′ denote the one defined
ψ∗α. A homotopy from h to h′ would give one from σ and σ′ were σ = σ′ on L.
However, such need not be the case. To address this concern, note first that σ and
σ′ agree on the boundary of the unit ball, and also on the parts of L that comprise
boundaries of the balls b0, b1 and b2. The maps σ and σ′ can only differ on the three
arcs that connect ∂b0, ∂b1 and ∂b2 to the origin. Of course, σ and σ′ agree on the
endpoints of these arcs. In any event, the map σ′ can be homotoped rel ∂S so that
the result, σ′′, differs from σ′ only in a small tubular neighborhood of each arc from
L and agrees with σ on L. This is because the image space S2 is simply connected.
This map σ′′ produces a corresponding map, h′′ : S2 × [0, 1] → S2. The issue here is
whether h and h′′ are homotopic.

To see that such is the case, σ′′ will be constructed in steps, and each step will
results in a corresponding map from S2× [0, 1] that is homotopic to h′ rel S2×{0, 1}.
The first step homotopes σ′ to a map, σ1, that agrees with σ′ on the complement of
a very small radius ball about the origin and also at the origin; but differs in being
constant on a small neighborhood of the origin. This can be done so that σ1 is as
close as desired to σ′ in the C0 topology. The result gives a map, h1, that is C0 close
to h′ and so is homotopic to h′ rel ∂S.

The second step changes σ1 to σ2. The map σ2 can be made as close as desired
to σ1 in the C0 topology. In particular, it agrees with σ1 on the complement of the
union of a small radius tubular neighborhood of each arc in L and it agrees with σ1

on each such arc. However, in a very small radius neighborhood of each such arc from
L, the map σ2 depends only on the affine coordinate along the central arc. The fact
that σ2 is C0 close to σ1 implies that the corresponding h2 is homotopic to h1.

The final step changes σ2 to σ′′. The map σ′′ agrees with σ2 on the complement of
a very small tubular neighborhood of each arc in L. It is assumed in what follows that
the radius of these neighborhoods is chosen so that in any such neighborhood, the map
σ2 depends only on the affine coordinate along the central arc. Inside such a tubular
neighborhood, the map σ′′ depends only on the affine coordinate along the central
arc and on the radial coordinate on the transverse disks to the arc. Meanwhile, σ′′

agrees with σ along each arc in L. Now, there is no reason for σ′′ to be C0 close to σ2

since there is no apriori reason for α and ψ∗α to be close along these arcs. However,
where σ′′ differs from σ2, both maps factor through a two dimensional space. Here is
why: Where σ2 
= σ′′, the map σ2 depends only on the affine coordinate along each
arc of L, and σ′′ depends only on the latter coordinate and on the radial coordinate
on the transverse disks. As a consequence, the corresponding maps h2 and h′′ can
be taken so as to differ only where they both factor through a 2-dimensional space.
This implies that the volume form on SU(2) is pulled back as zero by both h2 and
h′′ where these two maps differ. As a consequence, nh2,h′′ = 0 and so h2 and h′′ are
homotopic as desired.

Part 5: This part concern the existence of the diffeomorphism φ. To begin, recall
that Lemma 3.1 asserts that α and ψ∗α define 2-plane fields on S that are homotopic
rel ∂S. As both define overtwisted contact plane fields, a theorem of Eliashberg (The-
orem 3.1.1 in [E]) asserts that these contact 2-plane fields are homotopic as contact
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fields on S via an homotopy that restricts to the identity on ∂S. This understood,
a theorem of Gray [Gr] asserts that there exists a diffeomorphism, this being φ, that
restricts as the identity on a neighborhood of the 4 points in ∂B1 where ω = 0, and
pulls back the kernel of ψ∗α as the kernel of α where these 1-forms are non-zero. The
fact that φ∗ψ∗kernel (α) = kernel (α) and φ∗ψ∗α = α near the zeros of ω imply that

(3.25) φ∗ψ∗α = gα

where g is a strictly positive function on ∂B1.

Part 6: Fix some very small but positive number ε2 and use the exponential map
from the metric to trivialize a tubular neighborhood of ∂B1 as (−ε2, ε2)×∂B1 so that
∂B1 identified with {0}× ∂B1. This trivialization can and should be chosen with the
following property: Near each zero of ω in ∂B1, the fibers of the projection to ∂B1

appear in the coordinates (r, λ, ϕ, z) that are used in (3.9) as the loci where (λ, ϕ, z)
is constant. In what follows, s denotes the coordinate on (−ε2, ε2). Near each zero of
ω where the projection sends (r, λ, ϕ, z) to (λ, ϕ, z), the coordinate s is taken to be
r − ε.

Extend φ to this tubular neighborhood as the identity on the (−ε2, ε2) factor.
Doing so produces two symplectic forms on the (−ε2, 0) portion of the tubular neigh-
borhood; the first being ω, and the second φ∗ψ∗ω. Note that they agree on the portion
of the tubular neighborhood that lies over any small radius ball in ∂B1 about a zero
of ω.

Let s now denote the coordinate on (−ε2, ε2) and write

(3.26) ω = d(α+ sb)

where b is a smooth s-valued 1-form on ∂B1. In this regard,

(3.27) b|s=0 ∧ dα ≥ 0

with equality only on the four zeros of ω in ∂B1. Note that over a small radius ball in
∂B1 about a zero of ω, one can assume without loss of generality that α + sb = α+,
this the form that is depicted in (3.9).

Meanwhile, φ∗ψ∗ω can be written as

(3.28) φ∗ψ∗ω = d(g · α+ sb′)

where b′ is another smooth, s-valued 1-form on ∂B1. In this case,

(3.29) b′|s=0 ∧ (dg ∧ α+ gdα) ≥ 0

with equality only on the zeros of ω in ∂B1. As in the case with ω, there is no
generality lost by taking g · α+ sb′ = α+ over a small radius ball about a zero of ω.

Now, let β denote a non-decreasing, smooth function on [−ε2, ε2] that is 0 near
−ε2 and 1 on [0, ε2]. In particular, given some positive ε3 	 ε2, choose β so that
β′ = 1/ε2 where −ε2 + ε3 ≤ s ≤ −ε3 and β′ < 2/ε2 everywhere. Let κ denote a
positive number that is less than 1 and consider

μ = d[β(α+ sb) + κ(1 − β)(gα+ sb′)](3.30)

= ds ∧ [βb+ κ(1 − β)b′ + β′((1 − κg)α+ sb− κsb′)]

+ [β + κg(1 − β)]dα+ κ(1 − β)dg ∧ α+ · · · ,
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where the unwritten terms are O(ε2) in size. The important point here is that the
form depicted in (3.30) is symplectic except at the zeros of ω if κ < sup(g), ε2 is very
small, and then ε3 very much smaller than ε2. To see why this is, consider first the
story near a zero of ω. Near such a point, g = 1, the coordinate s = r − ε, and

(3.31) μ = (β + κ(1 − β))ω + dr ∧ β′(1 − κ)α+.

Given (3.7), this finds

μ = dr ∧
[
(β + κ(1 − β)) +

1
3
rβ′(1 − κ)

]
r2 sin(λ)dλ(3.32)

− dr ∧ [(β + κ(1 − β)) + rβ′(1 − κ)]2z cos(λ)dz

− dr ∧ [(β + κ(1 − β)) + rβ′(1 − κ)]z sin2(λ)dϕ

+ 2zr sin(λ)dλdz + r2 sin2(λ)dϕdz − 2zr2 sin(λ) cos(λ)dλdϕ.

When κ < 1, the square of this form is positive except on the line segments where
both z and sin(λ) are 0. This follows from the fact that β′ ≥ 0. In particular, (3.32)
defines a near symplectic form when κ < 1.

The next point to make is that μ∧μ is strictly positive away from the zero locus of
ω. To see why, remark that if κ < sup(g) and ε2 is very small, then μ∧μ is dominated
by the following part of μ

(3.33) β(1 − κg)ds ∧ α+ [β + κg(1 − β)]dα+ κ(1 − β)dg ∧ α
except where β′ is on the order of unity or smaller. If ε3 is much smaller than ε2,
then the latter region has β very close to 1 and (1 − β) ∼ ε3/ε2 or (1 − β) very close
to 1 and β ∼ ε3/ε2. In the former case, terms with (1 − β) are negligible, and

(3.34) μ ∼ ds ∧ [βb+ β′((1 − κg)α+ sb− κsb′)] + βdα.

This understood, the fact that μ is near symplectic here follows from (3.27). In the
case where β is very small,

(3.35) μ ∼ ds ∧ [κ(1 − β)b′ + β′((1 − κg)α+ sb− κsb′)] + κ(1 − β)(gdα+ dg ∧ α).

Here, the fact that μ is near symplectic follows from (3.29).
Note that μ = ω where s ≥ 0 and μ = φ∗ψ∗ω where s is very near −ε2.
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