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ON A CONJECTURE OF ATKIN
FOR THE PRIMES 13, 17, 19, AND 23

P. Guerzhoy

Abstract. In his paper [2], Atkin pioneered computer investigations of divisibility prop-

erties of Fourier coefficients of the modular invariant by powers of 13, 17, 19, and 23. On

the basis of these computations he formulated certain conjectures in [2, 3]. In particular,
the question why similar congruence properties occur for these primes is posed in [2]. We

show how a combination of Serre’s theory of p-adic modular forms and Hida’s Control

Theorem explains the phenomenon.

1. Introduction

For a rational prime p the action of Up = U -operator on formal power series in
variable q is defined by f �→ f |U , where

f =
∑

a(n)qn and f |U =
∑

a(pn)qn.

In his papers [2, 3] Atkin formulated conjectures about certain divisibility proper-
ties of the q-expansion coefficients of the modular invariant j. Roughly, it turns out
that the more one applies the U -operator to j, the closer p-adically it becomes to a
Hecke eigenform. This takes place for primes p ≤ 23 and was discovered by Atkin
on the basis of extensive numerical experiments. As far as the current author knows,
after this research the U -operator, which was well-known well before, acquired its
personal name ”Atkin’s U -operator”.

Atkin summarizes one of his conjectures in [3]:
‘Given ”any” entire function on Γ0(p), then repeated application of U leads to a

series of Fourier coefficients which become multiplicative modulo increasing powers of
p.’

We use the common notation q = e2πiτ with τ in the complex upper half-plane.
Let F be a meromorphic modular function (of weight 0) on Γ0(pN ) for a prime p and
N ≥ 0. Denote by c(F , n) its q-expansion coefficients:

(1) F =
∑

n�−∞
c(F , n)qn,

and assume that c(F , n) ∈ Q. Let tm(F , n) = c(F , pmn)/c(F , pm) for a positive
integer m. For a function on integers it is assumed that the value is zero if the
argument is not an integer.

With these notations we formulate the above claim.
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Conjecture (Atkin). For any positive integer α there exists a positive integer M =
M(α) such that the congruences

tm(F , nl) − tm(F , n)tm(F , l) + l−1tm(F , n/l) ≡ 0 mod pα

and

tm(F , np) − tm(F , n)tm(F , p) ≡ 0 mod pα.

hold for every prime l �= p, every positive integer n and every integer m ≥ M .

In the case when

F = j = q−1 + 744 + 196884q + ... = q−1 + 744 +
∑
n≥1

c(n)qn

is the usual elliptic modular function on SL(2, Z), the congruences claimed in the
conjecture were discovered on the basis of numerical experiments [2]. Conjecturally
in this case one can put M = α. Later, there appeared a proof for the case p = 13
(with M = α) by Koike [10] as an application of a profound result of Koike and a
result of Atkin and O’Brien [4]; the latter is specific for the case p = 13. Another
proof for the case p = 13 which makes use of a result of Dwork [6] was presented by
Katz [9] in the framework of his theory of p-adic modular forms. A proof for p = 2
(with a more precise M < [α/4]) was found later by Akiyama [1].

The conjecture was tested numerically in [2] exactly for the primes p = 13, 17, 19,
and 23. In that paper Atkin wrote:

‘... it is remarkable that all these primes should exhibit the same behaviour with
regard to our multiplicative congruence properties. It thus seems possible that some
entirely different method or theory may exist which would give an uniform proof of
all these cases.’

We present such a uniform approach in this paper and prove the conjecture for a
certain class of meromorphic modular functions which contains j along with infinitely
many other functions, in particular, polynomials in j. In the cases when p = 13, 17, 19,
or 23, we have dim Sp−1(SL2(Z), C) = 1 and the unique normalized cusp form Fp−1 ∈
Sp−1(SL2(Z), C) is p-ordinary (see below for the definitions). In the framework of
our approach, this is the key property shared by the primes under consideration.

We formulate our results in Section 2 and prove them in Section 3. The essential
ingredients of the proof are (a version of) Hida’s Control Theorem [7, Chapter 7] and
Serre’s theory of p-adic modular forms [12, 13].

Throughout this paper p denotes one of the primes 13, 17, 19, or 23.

2. Statement of results

Fix an algebraic closure Qp of the p-adic field Qp and an embedding of Q into Qp.
Thus any algebraic number can be regarded as a p-adic number. We denote by vp(x)
the p-adic ordinal of an algebraic number x (with respect to the fixed embedding).
For a formal power series h =

∑
u(n)qn ∈ Q[[q]] define vp(h) = infn vp(u(n)), and

say h ≡ g mod pβ if vp(h − g) ≥ β.
For an even positive integer k, an integer N ≥ 0 and a Z-algebra A inside C we

denote by Sk(Γ0(pN ), A) the A-module of cusp forms of weight k with respect to the
congruence subgroup Γ0(pN ) such that all their q-expansion coefficients belong to A.
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We assume Γ0(1) = SL(2, Z). It is known that Sk(Γ0(pN ), A) = Sk(Γ0(pN ), Z) ⊗ A
for A ⊂ C, and we set Sk(Γ0(pN ), A) = Sk(Γ0(pN ), Z) ⊗ A for a Z-algebra A inside
Qp.

Recall that a Hecke operator Tl for a rational prime l with (l, pN ) = 1 is defined
by f �→ f |Tl, where

(2) f =
∑
n>0

a(n)qn and f |Tl =
∑
n>0

(a(ln) + lk−1a(n/l))qn.

The operator Tl acts on Sk(Γ0(pN ), A). We also put Tp = U if N ≥ 1. A modular
form f ∈ Sk(Γ0(pN ), A) is a simultaneous Hecke eigenform if f |Tl = λlf for some
λl ∈ A for all l. In this case a(1) �= 0 and λl = a(l)/a(1). It is known that all λl

are algebraic integers, in particular, vp(λl) ≥ 0. It is also known that for any Hecke
eigenform the extension of Q generated by λl for all l is finite. Every linear space
Sk(Γ0(pN ), C) is finite-dimensional and has a basis which consists of simultaneous
Hecke eigenforms which have their Fourier expansion coefficients in Q.

Let F be a meromorphic modular function on Γ0(pN ) for an integer N ≥ 0 with the
q-expansion (1). In order to formulate our result we have to replace the word ”any”
in Atkin’s conjecture by certain conditions on F . In the case when F = j, the fact
that (j − 744)|U is a p-adic cusp form of weight 0 was first observed by Deligne [12,
Remarque 3.2]. We need a similar statement for our F (see Proposition 1 below). For
this, we allow F to have poles at cusps (including infinity) and we impose a certain
restriction which pertains to its poles in the interior of the complex upper half-plane.

If N > 0 we require that F is holomorphic in the interior of the complex upper half-
plane. Otherwise (i.e. if F is a modular function on SL(2, Z)) choose a fundamental
domain of the action of SL(2, Z), and let the poles be at points τi in the fundamental
domain. Consider the (finite) product

D(F , X) =
∏

i

(X − j(τi)).

We require this polynomial to have rational p-integral coefficients:

(3) D(F , X) ∈ Q[X] ∩ Zp[X]

Denote by D̄(F , X) ∈ Fp[X] the polynomials obtained by reducing the coefficients
modulo p. Let Sp(X) ∈ Fp[X] be the supersingular polynomial at p, namely

Sp(X) =

⎧⎪⎪⎨
⎪⎪⎩

X + 8 if p = 13
X(X + 9) if p = 17

(X + 1)(X + 12) if p = 19
X(X + 4)(X + 20) if p = 23.

We require D̄(F , X) to divide a power of Sp(X):

(4) Sp(X)t/D̄(F , X) ∈ Fp[X]

for an integer t ≥ 0.

Theorem 1. Let F be a meromorphic modular function with respect to Γ0(pN ) for
some N ≥ 0 with the q-expansion (1) with rational coefficients c(F , n) ∈ Q. Assume
that vp(c(F , pn)) are bounded.
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If N > 0 we assume that F is holomorphic in the interior of the complex upper
half-plane.

If N = 0 we assume that the locus of those poles of F which lie in the interior of
the upper half-plane satisfies (3) and (4).

Then for any positive integer α there exists M = M(α) such that for every m ≥ M
there exists a simultaneous Hecke eigenform f ∈ Sk(Γ0(p), Zp) (for an even positive
integer k) such that

f ≡ (F − c(F , 0))|Um mod pα.

Remark. The conclusion of Theorem 1 remains true and in fact becomes vacuous with-
out the assumption that vp(c(F , pn)) are bounded. We add the assumption because
we need it for the applications.

If a modular function F satisfies the conditions of Theorem 1 then Atkin’s con-
jecture holds for F . This follows at once from Theorem 1, the definition of Hecke
operators (2) and the assumption that vp(c(F , pn)) are bounded.

Corollary 1. The function F = j satisfies the conditions of Theorem 1 and, therefore,
Atkin’s conjecture is true for F = j.

Proof. All we need to check is the boundedness of vp(c(pn)). We claim that in fact
vp(c(pn)) = 0 for all n ≥ 0. The space Sp−1(SL2(Z), C) is one-dimensional. Denote
by Fp−1 =

∑
n>0 b(n)qn the unique cusp form (which is therefore a Hecke eigenform)

in this space normalized such that b(1) = 1. Then b(n) are known to be rational
integers and the congruences

(5) c(p)Fp−1 ≡ (j − 744)|U mod p

with c(p) �≡ 0 mod p are proved by Serre in [13, 6.16] (this congruence for p = 13
was proved earlier by Newman [11]). Since Fp−1 is a normalized eigenform for Tp, it
follows from (2) that b(p)b(pn−1) = b(pn) + pp−2b(pn−2), and an induction argument
on n implies that b(pn) �≡ 0 mod p for n ≥ 0. For the induction base we calculate the
quantities b(p)

p 13 17 19 23
b(p) -577738 1646527986 1487499860 -73845437470344

in order to check that

(6) b(p) �≡ 0 mod p.

Now, by (5), c(p)b(pn−1) ≡ c(pn) mod p, and this implies our claim, namely that

(7) c(pn) �≡ 0 mod p for any n ≥ 0.

�

There are many functions F which satisfy the conditions of Theorem 1. In partic-
ular, we prove the following.

Theorem 2. Let P ∈ XZ[X]. Consider the modular function F = P (j)+βj+γ with
β, γ ∈ Z. There is a modulo p residue class ξ(P ) such that the conditions of Theorem
1 are satisfied and therefore the congruences claimed in Atkin’s conjecture hold for F
if α �≡ ξ(P ) mod p.
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3. Proofs of Theorem 1 and 2

We use Serre’s definition of p-adic modular forms [12]. Recall that a power series
φ ∈ Zp[[q]] is a p-adic cusp form of weight 0 if for every integer α > 0 there exists
Φ ∈ Sk(SL(2, Z), Z) such that Φ ≡ φ mod pα. Here k is an even positive integer, and
by [12, Théorème 1] k ≡ 0 mod (p − 1)pα−1. We consider here only p-adic modular
forms of weight 0 without constant terms. This allows us to consider cusp forms
instead of merely modular forms.

Proposition 1. Let F be a meromorphic modular function with the q-expansion (1)
with rational coefficients c(F , n) ∈ Q. Assume that either F is holomorphic in the
interior of the upper half-plane or N = 0 and the locus of those poles of F which lie
in the interior of the upper half-plane satisfies (3) and (4).

Then (F − c(F , 0))|Ur is a p-adic cusp form of weight 0 for all sufficiently large r.

Proof. Let α ≥ 1 be a positive integer. We first consider the poles in the interior of
the upper half-plane and use a slight variation of the argument of Bruinier and Ono
[5, Proof of Theorem 2]. Let Ep−1 be the Eisenstein series of weight p − 1:

Ep−1 = 1 − 2p − 2
Bp−1

∑
n≥1

σp−2(n)qn,

and let Q1, . . . , Qs be its zeros in the fundamental domain of the action of SL2(Z).
(Note that s ≤ 3 since p ≤ 23.) Let

Vp(X) =
s∏

i=1

(X − j(Qi)).

Then (see, for example, [8, Theorem 1]) Vp(X) ≡ Sp(X) mod p.
Let Z(X) be any lift to Z[X] of St

p(X)/D̄(F , X) ∈ Fp[X]. Since Ep−1 ≡ 1 mod p,
we conclude that

G := Et
p−1

D(F , j)
V t

p (j)
Z(j) ≡ 1 mod p.

Thus
FGpα ≡ F mod pα,

and the product on the left is holomorphic in the interior of the fundamental domain
by construction.

Repeated application of the U -operator eliminates the pole at infinity. Consider

Ψ := ((F − c(F , 0))Gpα

)|Ur ≡ (F − c(F , 0)|Ur mod pα.

If r is big enough, then Ψ has poles neither in the interior of the fundamental domain
nor at infinity. A theorem of Serre [13, Théorème 5.4] implies that Ψ is a p-adic cusp
form; in other words, there exists Φ ∈ Sk(SL(2, Z), Z) for some positive integer k
such that Φ ≡ Ψ mod pα. Thus Φ ≡ (F − c(F , 0)|Ur mod pα. �

Proof of Theorem 1. Let α be a positive integer, and let Φr,α ∈ Sk(SL2(Z), Z) ⊂
Sk(Γ0(p), Z) be a cusp form such that Φr,α ≡ (F−c(F , 0))|Ur mod pα. The existence
of this cusp form of some weight k is guaranteed by Proposition 1. It follows from
a theorem of Serre [12, Théorème 1] that k ≡ 0 mod (p − 1)pα−1. Hida’s ordinary
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projector [7, 7.2] is defined as the p-adic limit E = limn→∞ Tn!
p . For a Hecke eigenform

φ ∈ Sk(Γ0(p), Q) with φ|Tp = λpφ

φ|E =

{
φ, if vp(λp) = 0
0, if vp(λp) > 0.

Recall that a cusp Hecke eigenform φ is called p-ordinary if vp(λp) = 0. The Zp-
module Sord

k (Γ0(p), Zp) is defined as the image of E acting on Sk(Γ0(p), Zp). Hecke
operators act on Sord

k (Γ0(p), Zp). Hida’s Control Theorem [7, Theorem 7.1] im-
plies that rankZpSord

k (Γ0(p), Zp) does not depend on k ≥ 2 if k is constant modulo
p − 1. Moreover, we have the equality rankSord

k (Γ0(p), Zp) = rankSord
k (SL2(Z), Zp),

which follows from [7, Proposition 7.2.2]. Thus rankZpSord
k (Γ0(p), Zp) = 1, since

dim Sp−1(SL2(Z), C) = 1 and the unique weight p − 1 cusp Hecke eigenform Fp−1 ∈
Sp−1(SL2(Z), Z) is p-ordinary by (6). The equality rankZpSord

k (Γ0(p), Zp) = 1 implies
that every element of Sord

k (Γ0(p), Zp) is a simultaneous Hecke eigenform; in partic-
ular, this applies to Φr,α|E . We also have Φr,α|E ∈ Sk(Γ0(p), Zp) by construction,
and Φr,α|E �= 0 because vp(c(F , pn)) are bounded. Thus (Φr,α|E)|U = λ(Φr,α|E) with
λ ∈ Z∗

p. The finite dimensional linear space Sk(Γ0(p), Qp) has a basis which consists
of simultaneous Hecke eigenforms. In particular,

Φr,α = μΦr,α|E + G,

where μ ∈ Qp, and G is a linear combination over Qp of normalized simultaneous
Hecke eigenforms which are not p-ordinary. Now apply E to both sides of the above
identity and note that G|E = 0 and E2 = E to conclude that μ = 1. It follows
that there exists J such that vp(G|U i) > α if i > J . Set now M = r + J and
f = λm−rΦr,α|E . We have

(F − c(F , 0))|Um ≡ Φr,α|Um−r ≡ f mod pα

for m > M as required. �

Proof of Theorem 2. All we need to check is the boundedness of vp(c(F , pn)). It is
thus sufficient to show that for a suitable choice of β

(8) c(F , pn) �≡ 0 mod p for all n ≥ 0.

Recall from [12] that for a p-adic modular form g the filtration w(g) is defined as
the minimal weight of a classical modular form G such that g ≡ G mod p. Let
S = P (j) + γ − c(P (j) + γ, 0) and J = j − c(j, 0) = j − 744. Proposition 1 implies
that both S|Ur and J |Ur are p-adic cusp forms for sufficiently big r. By a result of
Serre, [12, Théorème 6(i)], application of U decreases the filtration if the filtration
was bigger than p − 1. Thus there exists R such that S|UR ≡ BFp−1 mod p and
J |UR ≡ AFp−1 mod p with A, B ∈ Fp. Therefore for any β ∈ Z

(9) (S + βJ)|UR ≡ (βA + B)Fp−1 mod p.

It follows from (7) that A �≡ 0 mod p. Let ξ(P ) ≡ −B/A mod p. If β �≡ ξ(P ) mod p
then βA + B �≡ 0 mod p and (8) follows from this observation, (9), and (6).

�

q
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