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AN ENDPOINT (1,∞) BALIAN-LOW THEOREM

John J. Benedetto,Wojciech Czaja, Alexander M. Powell, and Jacob

Sterbenz

Abstract. It is shown that a (1,∞) version of the Balian-Low Theorem holds. If
g ∈ L2(R), Δ1(g) < ∞ and Δ∞(bg) < ∞, then the Gabor system G(g, 1, 1) is not a Riesz

basis for L2(R). Here, Δ1(g) =
R |t||g(t)|2dt and Δ∞(bg) = supN>0

R |γ|N |bg(γ)|2dγ.

1. Introduction

Given a square integrable function g ∈ L2(R), and constants a, b > 0, the associated
Gabor system, G(g, a, b) = {gm,n}m,n∈Z, is defined by

gm,n(t) = e2πiamtg(t − bn).

Gabor systems provide effective signal decompositions in a variety of settings ranging
from eigenvalue problems to applications in communications engineering. Background
on the theory and applications of Gabor systems can be found in [16], [12], [13], [3].

We shall use the Fourier transform defined by ĝ(γ) =
∫

g(t)e−2πiγtdt, where the
integral is over R. Depending on the context, | · | will denote either the Lebesgue
measure of a set, or the modulus of a function or complex number.

The Balian-Low Theorem is a classical manifestation of the uncertainty principle
for Gabor systems.

Theorem 1.1 (Balian-Low). Let g ∈ L2(R). If∫
|t|2|g(t)|2dt < ∞ and

∫
|γ|2|ĝ(γ)|2dγ < ∞,

then G(g, 1, 1) is not an orthonormal basis for L2(R).

The Balian-Low Theorem has a long history and some of the original references
include [1], [19], [2]. The theorem still holds if “orthonormal basis” is replaced by
“Riesz basis”. For this and other generalizations of the Balian-Low Theorem, we
refer the reader to the survey articles [6], [9], as well as [4], [5], [7], [8], [10], [14], [17].
The issue of sharpness in the Balian-Low Theorem was investigated in [5], where the
following was shown.
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Theorem 1.2. If 1
p + 1

q = 1, where 1 < p, q < ∞, and d > 2, then there exists a
function g ∈ L2(R) such that G(g, 1, 1) is an orthonormal basis for L2(R) and∫

1 + |t|p
logd(2 + |t|) |g(t)|2dt < ∞ and

∫
1 + |γ|q

logd(2 + |γ|) |ĝ(γ)|2dγ < ∞.

When (p, q) = (2, 2), this says that the Balian-Low Theorem no longer holds if the
weights (t2, γ2) are weakened by appropriate logarithmic terms. In view of Theorem
1.2, it is also natural to ask if there exist versions of the Balian-Low Theorem for the
general (p, q) case corresponding to the weights (tp, γq). The best that is known is
the following.

Theorem 1.3. Suppose 1
p + 1

q = 1 with 1 < p < ∞ and let ε > 0. If∫
|t|(p+ε)|g(t)|2dt < ∞ and

∫
|γ|(q+ε)|ĝ(γ)|2dγ < ∞

then G(g, 1, 1) is not an orthonormal basis for L2(R).

The above theorem follows by combining Theorem 4.4 of [11] and Theorem 1 in [15].
The ε > 0 can, of course, be removed in the case (p, q) = (2, 2), by the Balian-Low
Theorem.

This note shows the existence of a Balian-Low Theorem in the case (p, q) = (1,∞),
and thus extends Theorems 1.1 and 1.3. To define what this means, let g ∈ L2(R)
and 1 ≤ p < ∞ and set

Δp(g) =
∫

|t|p|g(t)|2dt and Δ∞(g) = supN>0

∫
|t|N |g(t)|2dt.

With this notation, the classical Balian-Low Theorem says that if Δ2(g) < ∞ and
Δ2(ĝ) < ∞ then G(g, 1, 1) is not an orthonormal basis for L2(R).

Our main result of this note is the following theorem.

Theorem 1.4. Let g ∈ L2(R) and suppose that G(g, 1, 1) is a Riesz basis for L2(R).
Then

Δ1(g) = ∞ or Δ∞(ĝ) = ∞.

This yields the following (1,∞) version of the classical Balian-Low Theorem.

Corollary 1.5. Let g ∈ L2(R) and suppose

Δ1(g) < ∞ and Δ∞(ĝ) < ∞.

Then G(g, 1, 1) is not an orthonormal basis for L2(R).

2. Background

A collection {en}n∈Z ⊆ L2(R) is a frame for L2(R) if there exist constants 0 < A ≤
B < ∞ such that

∀f ∈ L2(R), A||f ||2L2(R) ≤
∑
n∈Z

|〈f, en〉|2 ≤ B||f ||2L2(R).

A and B are the frame constants associated to the frame. If {en}n∈Z is a frame for
L2(R), but is no longer a frame if any element is removed, then we say that {en}n∈Z

is a Riesz basis for L2(R). Riesz bases are also known as exact frames or bounded
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unconditional bases, e.g., see [3]. The Zak transform is an important tool for studying
Riesz bases given by Gabor systems.

Given g ∈ L2(R), the Zak transform is formally defined by

∀(t, γ) ∈ Q ≡ [0, 1)2, Zg(t, γ) =
∑
n∈Z

g(t − n)e2πinγ .

This defines a unitary operator from L2(R) to L2(Q). Further background on the Zak
transform, as well as the next theorem, can be found in [3], [16].

Theorem 2.1. Let g ∈ L2(R). G(g, 1, 1) is a Riesz basis for L2(R) with frame
constants 0 < A ≤ B < ∞ if and only if A ≤ |Zg(t, γ)|2 ≤ B for a.e. (t, γ) ∈ Q.

A function g ∈ L2(R) is said to be in the homogeneous Sobolev space of order s > 0,
denoted Ḣs(R), if ||g||2

Ḣs(R)
≡ ∫ |γ|2s|ĝ(γ)|2dγ < ∞. Since the condition Δ1(g) < ∞

in Theorem 1.5 is equivalent to ĝ ∈ Ḣ1/2(R), we shall need some results on Ḣ1/2(R).
The following alternate characterization of Ḣ1/2(R) will be useful, e.g., [18].

Theorem 2.2. If f ∈ Ḣ1/2(R) then

||f ||2
Ḣ1/2(R)

=
1

4π2

∫ ∫ |f(x) − f(y)|2
|x − y|2 dxdy.

We let 1S(t) denote the characteristic function of a set S ⊆ R, and let Sc denote
the complement of S ⊆ R. Given f ∈ L2(R), the symmetric-decreasing rearrangement
f∗ of f is defined by

f∗(t) =
∫ ∞

0

1Sx
(t)dx,

where Sx = (−sx/2, sx/2) and sx = |{t : |f(t)| > x}|. An important property of a
symmetric-decreasing rearrangement is that it decreases the Ḣ1/2(R) norm of func-
tions, [18].

Theorem 2.3. If f ∈ Ḣ1/2(R) then

||f ||Ḣ1/2(R) ≥ ||f∗||Ḣ1/2(R).

This has the following useful corollary, [18].

Corollary 2.4. If S ⊂ R is a measurable set of positive and finite measure then
||1S ||Ḣ1/2(R) = ∞.

3. Proof of the (1,∞) Balian-Low Theorem

The proof of Theorem 1.4 requires the following preliminary technical theorem.

Theorem 3.1. Let f be a non-negative measurable function supported in the interval
[−1, 1] and suppose that there exist constants 0 < A ≤ B < ∞ such that

(3.1) A ≤ |f(x) ± f(x − 1)| ≤ B, a.e. x ∈ [−1, 1].

Then ||f ||Ḣ1/2(R) = ∞.
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Proof. We begin by defining the measurable sets

S = {x ∈ [0, 1] : f(x − 1) ≤ f(x)},
T = Sc ∩ [0, 1] = {y ∈ [0, 1] : f(y) < f(y − 1)},

and note that (3.1) implies

A ≤ f(x) − f(x − 1), a.e. x ∈ S,(3.2)

A ≤ f(y − 1) − f(y), a.e. y ∈ T.(3.3)

We break up the proof into two cases depending on whether or not S is a proper
non-trivial subset of [0, 1].

Case I. We shall first consider the case where

(3.4) 0 < |S| < 1,

and hence that 0 < |T | < 1.
Define the following capacity type integral over the product set S × T .

(3.5) I =
∫

S

∫
T

1
|x − y|2 dydx.

Conditions (3.2) and (3.3) allow one to bound I in terms of the Ḣ
1
2 (R) norm of f as

follows.

I ≤ 1
4A2

∫
S

∫
T

∣∣f(x) − f(x − 1) + f(y − 1) − f(y)
∣∣2

|x − y|2 dy dx

≤ 1
2A2

(∫
S

∫
T

∣∣f(x) − f(y)
∣∣2

|x − y|2 dy dx +
∫

S

∫
T

∣∣f(y − 1) − f(x − 1)
∣∣2

|x − y|2 dy dx

)

≤ 1
A2

∫
R

∫
R

∣∣f(x) − f(y)
∣∣2

|x − y|2 dy dx

=
4π2

A2
||f ||2

Ḣ1/2 .

It therefore suffices to show that I = ∞.
Since by the Lebesgue differentiation theorem almost every point of T is a point

of density, it follows from (3.4) that we may chose a ∈ (0, 1) such that a is point of
density of T which satisfies either

(3.6) 0 < |S ∩ [0, a]| < a

or

(3.7) 0 < |S ∩ [a, 1]| < 1 − a.

Without loss of generality, we assume (3.6). If (3.7) holds then our arguments proceed
analogously; for example in the first subcase below we would symmetrize about x = 1
instead of x = 0.

To estimate I, we shall proceed separately depending on whether
∫ a

0
1S(x)
|x−a|dx is

finite or infinite.
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Subcase i. Suppose
∫ a

0
1S(x)
|x−a|dx < ∞. It will be convenient to work with the follow-

ing set

S̃ = (S ∪ (−S)) ∩ [−a, a].

By (3.6) we have |S̃| = 2|S∩[0, a]| �= 0. It follows from Corollary 2.4 and the definition
of S̃ that

Ĩ ≡
∫ a

−a

∫ ∞

−∞

1
eS(x)1(eS)c(y)

|x − y|2 dydx =
∫ ∞

−∞

∫ ∞

−∞

1
eS(x)1(eS)c(y)

|x − y|2 dydx

=
∫ ∞

−∞

∫ ∞

−∞

|1
eS(x) − 1

eS(y)|2
|x − y|2 dxdy

= 4π2 ||1
eS ||2Ḣ1/2(R)

= ∞.

The symmetric definition of S̃ implies that

(3.8) Ĩ = 2
∫ a

0

∫ ∞

−∞

1
eS(x)1(eS)c(y)

|x − y|2 dydx = 2(I1 + I2 + I3),

where

I1 ≡
∫ a

0

∫ −a

−∞

1
eS(x)1(eS)c(y)

|x − y|2 dydx ≤
∫ a

0

∫ −a

−∞

1
|y|2 dydx < ∞,

I2 ≡
∫ a

0

∫ ∞

a

1
eS(x)1(eS)c(y)

|x − y|2 dydx ≤
∫ a

0

1S(x)
|x − a|dx < ∞,

I3 ≡
∫ a

0

∫ a

−a

1
eS(x)1(eS)c(y)

|x − y|2 dydx.

A simple calculation for I3 shows that

(3.9) I3 =
∫ a

0

∫ a

0

1
eS(x)1(eS)c(y)

|x − y|2 dydx +
∫ a

0

∫ a

0

1
eS(x)1(eS)c(y)

|x + y|2 dydx ≤ 2I,

where the inequality for the second term in the middle of (3.9) follows from the fact
that |x − y| ≤ |x + y| in the square [0, a] × [0, a].

It follows from (3.8) and (3.9) that

∞ = Ĩ ≤ 2I1 + 2I2 + 4I.

Since I1 and I2 are finite, we have I = ∞, as desired.

Subcase ii. Suppose
∫ a

0
1S(x)
|x−a|dx = ∞. Define

ID =
∫ a

0

∫ a

0

1S(x)1T (y)
|x − y|2 1D(x, y)dydx ≤ I,

where D = {(x, y) ∈ R
2 : x < y}. To compute a lower bound for ID first note that

since a is a point of density of T, there exists a sufficiently large constant 0 < C < ∞
such that

|a − x| ≤ C |T ∩ [x, a]|, a.e. x ∈ [0, 1].
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Therefore for a.e. x ∈ [0, a)

1
|a − x| ≤

C|T ∩ [x, a]|
|a − x|2 = C | T ∩ [x, a] | · miny∈[x,a]

{
1

|x − y|2
}

≤ C

∫ a

x

1T (y)
|x − y|2 dy.

This implies that

∞ =
∫ a

0

1S(x)
|a − x|dx ≤ C

∫ a

0

∫ a

x

1S(x)1T (y)
|x − y|2 dydx = CID,

and it follows that ID = ∞, and hence I = ∞, as desired.

Case II. We conclude by addressing the cases where |S| = 0 or |S| = 1. Without
loss of generality we only consider |S| = 1, and hence assume that S = [0, 1] up to a
set of measure zero. It follows from (3.2) and the positivity of f that

A ≤ f(x), a.e. x ∈ [0, 1].

This, together with the fact that f is supported in [−1, 1], implies that

∞ =
∫ ∞

1

∫ 1

0

1
|x − y|2 dxdy

≤ 1
A2

∫
R

∫
R

|f(x) − f(y)|2
|x − y|2 dxdy

=
4π2

A2
||f ||2

Ḣ1/2(R)
,

as desired. This completes the proof.
�

We are now ready to prove Theorem 1.4.
Proof of Theorem 1.4. We proceed by contradiction. Assume that g ∈ L2(R), that
G(g, 1, 1) is a Riesz basis for L2(R) with frame constants 0 < A ≤ B < ∞, and that
Δ1(g) < ∞ and Δ∞(ĝ) < C < ∞, for some constant C.

By Theorem 2.1,
√

A ≤ |Zg(x, w)| ≤
√

B a.e. on [0, 1)2.

Since Zĝ(x, w) = e2πixwZg(−w, x) we have
√

A ≤ |Zĝ(x, w)| ≤
√

B a.e. on [0, 1)2.

Next, the assumption
∫ |γ|N |ĝ(γ)|2dγ < C for all N > 0 implies that

supp ĝ ⊆ [−1, 1].

Thus, for (x, w) ∈ [0, 1)2, we have

Zĝ(x, w) =
∑
n∈Z

ĝ(x − n)e2πinw = ĝ(x) + ĝ(x − 1)e2πiw,

so that we have

(3.10)
√

A ≤ |ĝ(x) + ĝ(x − 1)e2πiw| ≤
√

B for a.e. (x, w) ∈ [0, 1)2.
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In particular, it follows that√
A ≤ | |ĝ(x)| ± |ĝ(x − 1)| | ≤

√
B, for a.e. x ∈ [0, 1].

It now follows from Theorem 3.1 that |ĝ| /∈ Ḣ1/2(R), which implies that ĝ /∈ Ḣ1/2(R).
In other words, Δ1(g) = ||ĝ||2

Ḣ1/2(R)
= ∞. This contradiction completes the proof.

�
Since orthonormal bases are Riesz bases with frame constants A = B = 1, Corollary

1.5 follows from Theorem 1.4.

4. Further Comments

1. Theorem 1.5 is sharp in the sense investigated in Theorem 1.2, see [5]. In fact,
Theorem 1.5 no longer holds if one weakens the Δ1 decay hypotheses by a certain
logarithmic amount. For example, if d > 1 and ĝ(γ) = 1[0,1](γ) then G(g, 1, 1) is an
orthonormal basis for L2(R), and∫ |t|

logd(|t| + 2)
|g(t)|2dt < ∞ and supN>0

∫
|γ|N |ĝ(γ)|2dγ < ∞.

2. There are two noteworthy cases in which the proof of Theorem 1.4 can be signifi-
cantly simplified. If one assumes that G(g, 1, 1) is an orthonormal basis for L2(R) then
the frame constants satisfy A = B = 1 and it follows from (3.10) that |ĝ(x)| = 1R(x)
for some set R ⊂ R of positive and finite measure. Corollary 2.4 completes the proof
in this case. Likewise, if G(g, 1, 1) is a Riesz basis for L2(R) whose frame bounds A

and B are sufficiently close to one another, e.g.,
√

B < 3
√

A, then a direct argument
involving Theorem 2.2 and Theorem 2.3 completes the proof. The main difficulty in
Theorem 1.4 and Theorem 3.1 arises when the frame constants A and B are far apart.

3. We conclude by noting that if one strengthens the hypotheses in Theorem 1.4 to
Δ∞(ĝ) < ∞ and Δ1+ε(g) < ∞, for some ε > 0, then the result is a simple consequence
of the Amalgam Balian-Low Theorem. The Amalgam Balian-Low Theorem, e.g., [6],
states that if G(g, 1, 1) is a Riesz basis for L2(R) then

g /∈ W (C0, l
1) and ĝ /∈ W (C0, l

1),

where

W (C0, l
1) = {f : f is continuous and

∑
k∈Z

||f1[k,k+1)||L∞(R) < ∞}.

The assumptions Δ1+ε(g) < ∞ and Δ∞(ĝ) < ∞ imply that ĝ is continuous and
supported in [−1, 1], which, in turn, implies that ĝ ∈ W (C0, l

1).
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Acad. Sci. Paris 292 (1981), no. 20, 1357–1362.
[2] G. Battle, Heisenberg proof of the Balian-Low theorem, Lett. Math. Phys. 15 (1988), no. 2,

175–177.

[3] J.J. Benedetto and D.F. Walnut, Gabor frames for L2 and related spaces, in Wavelets: math-
ematics and applications, CRC Press, Boca Raton, FL, 1994, 97–162.



474 J. BENEDETTO, W. CZAJA, A. POWELL, AND J. STERBENZ

[4] J.J. Benedetto, W. Czaja, and A. Y. Maltsev, The Balian-Low theorem for the symplectic form
on R

2d, J. Math. Phys. 44 (2003), no. 4, 1735–1750.
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Boston, MA, 2003.

[14] J.-P. Gabardo and D. Han, Balian-Low phenomenon for subspace Gabor frames, J. Math. Phys.
45 (2004), no. 8, 3362–3378.
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