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AN ENDPOINT (1,00) BALIAN-LOW THEOREM

JOHN J. BENEDETTO,WOJCIECH CZAJA, ALEXANDER M. POWELL, AND JACOB
STERBENZ

ABSTRACT. It is shown that a (1,00) version of the Balian-Low Theorem holds. If
g € L2(R), A1(g) < co and Ao (§) < 00, then the Gabor system G(g, 1, 1) is not a Riesz
basis for L2(R). Here, A1(g) = [ [t||g(t)|?dt and Ao (g) = supn=o J VIV G(7)[2dr.

1. Introduction

Given a square integrable function g € L?(R), and constants a, b > 0, the associated
Gabor system, G(g,a,b) = {gmn}tm.nez, is defined by

gm,n(t) _ €2ﬂiamtg(t _ bn)

Gabor systems provide effective signal decompositions in a variety of settings ranging
from eigenvalue problems to applications in communications engineering. Background
on the theory and applications of Gabor systems can be found in [16], [12], [13], [3].

We shall use the Fourier transform defined by g(v) = [ g(t)e 2™*dt, where the
integral is over R. Depending on the context, | - | will denote either the Lebesgue
measure of a set, or the modulus of a function or complex number.

The Balian-Low Theorem is a classical manifestation of the uncertainty principle
for Gabor systems.

Theorem 1.1 (Balian-Low). Let g € L*(R). If

[1laPdt <o and [ 1PlaePay < oc,
then G(g,1,1) is not an orthonormal basis for L*(R).

The Balian-Low Theorem has a long history and some of the original references
include [1], [19], [2]. The theorem still holds if “orthonormal basis” is replaced by
“Riesz basis”. For this and other generalizations of the Balian-Low Theorem, we
refer the reader to the survey articles [6], [9], as well as [4], [5], [7], [8], [10], [14], [17].
The issue of sharpness in the Balian-Low Theorem was investigated in [5], where the
following was shown.
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Theorem 1.2. If % —|—% =1, where 1 < p,q < oo, and d > 2, then there exists a
function g € L*(R) such that G(g,1,1) is an orthonormal basis for L*(R) and
1+ |t L+ .
/d|g(t)|2dt <oo and /d|g(7)|2d’y < 0.
log®(2 + [t]) log®(2 + 1)

When (p,q) = (2,2), this says that the Balian-Low Theorem no longer holds if the
weights (¢2,72) are weakened by appropriate logarithmic terms. In view of Theorem
1.2, it is also natural to ask if there exist versions of the Balian-Low Theorem for the
general (p,q) case corresponding to the weights (¢?,~v7). The best that is known is
the following.

Theorem 1.3. Suppose %—I— % =1 withl <p<oo andlete > 0. If

/ 19 g()|2dt < 0o and / 49y Py < oo

then G(g,1,1) is not an orthonormal basis for L*(R).

The above theorem follows by combining Theorem 4.4 of [11] and Theorem 1 in [15].
The € > 0 can, of course, be removed in the case (p,q) = (2,2), by the Balian-Low
Theorem.

This note shows the existence of a Balian-Low Theorem in the case (p, q) = (1, 00),
and thus extends Theorems 1.1 and 1.3. To define what this means, let g € L?*(R)
and 1 < p < oo and set

Aylg) = / tPlg(®)Pdt and A (g) = supyoo / 1Y lg(0) .

With this notation, the classical Balian-Low Theorem says that if As(g) < oo and
As(g) < oo then G(g,1,1) is not an orthonormal basis for L(R).
Our main result of this note is the following theorem.

Theorem 1.4. Let g € L*(R) and suppose that G(g,1,1) is a Riesz basis for L*(R).
Then
Ai(g) =00 or Ax(g) = 0.

This yields the following (1, 00) version of the classical Balian-Low Theorem.

Corollary 1.5. Let g € L*(R) and suppose
A1(g) <o and Ax(g) < oo.
Then G(g,1,1) is not an orthonormal basis for L*(R).

2. Background

A collection {e, }nez € L*(R) is a frame for L?(R) if there exist constants 0 < A <
B < oo such that

VfeL*R), Allflll@ < D_I{fen))* < Bl @)
nez

A and B are the frame constants associated to the frame. If {e,},ecz is a frame for
L?(R), but is no longer a frame if any element is removed, then we say that {e, }nez
is a Riesz basis for L?(R). Riesz bases are also known as exact frames or bounded
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unconditional bases, e.g., see [3]. The Zak transform is an important tool for studying
Riesz bases given by Gabor systems.
Given g € L%(R), the Zak transform is formally defined by

V() €Q=10,1)% Zg(t,y) =Y gt —n)e*™™.
nez

This defines a unitary operator from L?(R) to L?(Q). Further background on the Zak
transform, as well as the next theorem, can be found in [3], [16].

Theorem 2.1. Let g € L?*(R). G(g,1,1) is a Riesz basis for L*(R) with frame
constants 0 < A < B < oo if and only if A < |Zg(t,7)|*> < B for a.e. (t,7) € Q.

A function g € L?(R) is said to be in the homogeneous Sobolev space of order s > 0,
denoted H*(R), if ||g||%IS(R) = [|7]**|9(v)Pdy < oo. Since the condition Aq(g) < oo

in Theorem 1.5 is equivalent to § € H'/?(R), we shall need some results on H/?(R).
The following alternate characterization of H'/2(R) will be useful, e.g., [18].

Theorem 2.2. If f € H'/2(R) then

e
16y = g7 | [ LT

We let 15(t) denote the characteristic function of a set S C R, and let S°¢ denote
the complement of S C R. Given f € L?(R), the symmetric-decreasing rearrangement
f* of f is defined by

(1) = / " 1s (1),

where S, = (—$4/2,5,/2) and s, = |{t : |f(t)] > z}|. An important property of a
symmetric-decreasing rearrangement is that it decreases the H'/ 2(R) norm of func-
tions, [18].

Theorem 2.3. If f € H'/?(R) then
Uiy 2 7 e -
This has the following useful corollary, [18].
Corollary 2.4. If S C R is a measurable set of positive and finite measure then

||1S||H1/2(]R) = 0.

3. Proof of the (1,00) Balian-Low Theorem
The proof of Theorem 1.4 requires the following preliminary technical theorem.

Theorem 3.1. Let f be a non-negative measurable function supported in the interval
[—1,1] and suppose that there exist constants 0 < A < B < oo such that

(3.1) A<|f(x) £ f(x—1)| < B, ae zel[-1,1].
Then HfHHl/?(R) =
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Proof. We begin by defining the measurable sets
S={ze01]: f(z-1) < f(x)},
T=50[0,1={y[0,1]: f(y) < fly—1)},
and note that (3.1) implies
(3.2) A< f(z) = f(x —1), ae. z €S,
(3:3) A< fly—1)—fy) ae. yeT.

We break up the proof into two cases depending on whether or not S is a proper
non-trivial subset of [0, 1].

Case I. We shall first consider the case where
(3.4) 0<|S] <1,

and hence that 0 < |T| < 1.
Define the following capacity type integral over the product set S x T'.

1
3.5 I:// ——=dydx.
3:5) sJr e —yl?

Conditions (3.2) and (3.3) allow one to bound I in terms of the 2 (R) norm of f as
follows.
2

fa-D+fly-1) - fy)
I < 4A2 // dy dx

IfC -yl

(// S e [ [ e )
=X // I:E—yl2 o v

2 ||f||H1/2 .

It therefore suffices to show that I = cc.

Since by the Lebesgue differentiation theorem almost every point of T is a point
of density, it follows from (3.4) that we may chose a € (0,1) such that a is point of
density of T" which satisfies either

(3.6) 0<|SN[0,d]| <a
or
(3.7) 0<|SNa1]<1-a

Without loss of generality, we assume (3.6). If (3.7) holds then our arguments proceed
analogously; for example in the first subcase below we would symmetrize about x = 1
instead of x = 0.
a 1lg(x)
To estimate I, we shall proceed separately depending on whether fo ;
finite or infinite.

dx is
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a1g(z
lz—al

Subcase i. Suppose f )dz < oo. It will be convenient to work with the follow-

ing set
= (SU(=95))N[—a,al.

By (3.6) we have |S| = 2|SN[0, a]| # 0. It follows from Corollary 2.4 and the definition
of S that

c oo 1
I_/ / (S)Z dydx—/ / 2< )dyd:v
—a Iw*yl Iw*yl
> 1g(z) —15()1*
= o o

=472 |1

s||Hl/2 ®) —

The symmetric definition of S implies that

(3-8) / /oo ls S)C( )dydx =2(I, + I + I3),

where
L = / / 3 dydx / / —zdydm < 00,
yl [yl
e () 1
Iy = / / — 5 dydz < / s(z) dx < oo,
Iﬂc - yl |z — al
I3 = / / Loy >dydm.
—a |aj —yl?

A simple calculation for Ig shows that

(S)° (%)
(3.9) I; = / / |x e / / |x n y|2 == dydx < 21,

where the inequality for the second term in the middle of (3.9) follows from the fact
that |z — y| < |z + y| in the square [0,a] x [0, a].
It follows from (3.8) and (3.9) that

0o =1 <2y + 2I, + 4I.

Since I7 and I, are finite, we have I = oo, as desired.

) dz = oco. Define

Subcase ii. Suppose fo

|o— a\

Ip = 1 <]I
D / / |{IZ— |2 ($7y)dyd$_ )

where D = {(z,y) € R? : # < y}. To compute a lower bound for I first note that
since a is a point of density of T, there exists a sufficiently large constant 0 < C' < oo
such that

la—z| < C |T'N[z,a]|, ae. ze]l0,1].
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Therefore for a.e. z € [0, a)
1 C|TN[x,ad
<
a=a] = Ja—aP

T |‘T - y|

This implies that

oo—/ d <C// 2 dda:—CID,
0 Ia—xl Iw— |

and it follows that Ip = oo, and hence I = oo, as desired.

. 1
:C ‘ Tﬂ [m,a] | ~mlny€[m7a] {x_yp}

Case II. We conclude by addressing the cases where |S| = 0 or |S| = 1. Without
loss of generality we only consider |S| = 1, and hence assume that S = [0,1] up to a
set of measure zero. It follows from (3.2) and the positivity of f that

A< f(z), ae x€][0,1].
This, together with the fact that f is supported in [—1, 1], implies that

o0 1 1
OO_/l /0 =y
1 _ 2
1 / JLCB

A2 ||f||H1/2(]R)’

| A

as desired. This completes the proof.
O

We are now ready to prove Theorem 1.4.
Proof of Theorem 1.4. We proceed by contradiction. Assume that g € L?(R), that
G(g,1,1) is a Riesz basis for L?(R) with frame constants 0 < A < B < oo, and that
Aq(g) < 0o and Ay (g) < C < oo, for some constant C.

By Theorem 2.1,

VA <|Zg(z,w)] < VB ae. on [0,1)%
Since Zg(x,w) = 2™ Zg(—w, z) we have
VA< |Zj(z,w)| < VB ae. on [0,1)2.
Next, the assumption [ |v|V[g(7)|?dy < C for all N > 0 implies that
supp § C [-1,1].
Thus, for (z,w) € [0,1)?, we have

= 37— m)ET = ) + e — 1),

nez

so that we have

(3.10) VA< [§(z) +G(z — )™ < VB for ae. (z,w) € [0,1)2.
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In particular, it follows that
VA< | [§(z)| £ |§(z —1)| | < VB, forae. z €]0,1].

It now follows from Theorem 3.1 that [§] ¢ H'/?(R), which implies that § ¢ H/?(R).
In other words, A;(g) = 00. This contradiction completes the proof.
O

Since orthonormal bases are Riesz bases with frame constants A = B = 1, Corollary
1.5 follows from Theorem 1.4.

= 118112z,

4. Further Comments

1. Theorem 1.5 is sharp in the sense investigated in Theorem 1.2, see [5]. In fact,
Theorem 1.5 no longer holds if one weakens the A; decay hypotheses by a certain
logarithmic amount. For example, if d > 1 and g(v) = 1jo,1)(7) then G(g,1,1) is an
orthonormal basis for L?(R), and

t ~
[ i P <o and s [ 1A Py < o0

2. There are two noteworthy cases in which the proof of Theorem 1.4 can be signifi-
cantly simplified. If one assumes that G(g,1,1) is an orthonormal basis for L?(R) then
the frame constants satisfy A = B =1 and it follows from (3.10) that [g(z)| = 1r(x)
for some set R C R of positive and finite measure. Corollary 2.4 completes the proof
in this case. Likewise, if G(g,1,1) is a Riesz basis for L?(R) whose frame bounds A
and B are sufficiently close to one another, e.g., v'B < 3v/A, then a direct argument
involving Theorem 2.2 and Theorem 2.3 completes the proof. The main difficulty in
Theorem 1.4 and Theorem 3.1 arises when the frame constants A and B are far apart.

3. We conclude by noting that if one strengthens the hypotheses in Theorem 1.4 to
A (9) < oo and A11c(g) < oo, for some € > 0, then the result is a simple consequence
of the Amalgam Balian-Low Theorem. The Amalgam Balian-Low Theorem, e.g., [6],
states that if G(g,1,1) is a Riesz basis for L?(R) then

g ¢ W(Co,1") and g¢ W(Co,l),
where
W(Co,1*) = {f : f is continuous and Z [f Lt k1) || 2o () < 00}
keZ

The assumptions Ajy(g) < oo and A (g) < oo imply that g is continuous and
supported in [—1, 1], which, in turn, implies that g € W (Co, ).
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