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NAVIER-STOKES EQUATIONS IN ARBITRARY DOMAINS :
THE FUJITA-KATO SCHEME

SYLVIE MONNIAUX

ABSTRACT. Navier-Stokes equations are investigated in a functional setting in 3D open
sets 2, bounded or not, without assuming any regularity of the boundary 9. The main
idea is to find a correct definition of the Stokes operator in a suitable Hilbert space of
divergence-free vectors and apply the Fujita-Kato method, a fixed point procedure, to
get a local strong solution.

1. Introduction

Since the pioneering work by Leray [3] in 1934, there have been several studies on
solutions of Navier-Stokes equations

% —Au+Vr+(u-V)u = 0 in ]0,T[xQ,
dive = 0 in ]0,7[xQ,
(NS) u = 0 on ]0,T[x0%,
uw(0) = wy in Q.

Fujita and Kato [2] in 1964 gave a method to construct so called mild solutions in
smooth domains €2, producing local (in time) smooth solutions of (NS) in a Hilbert
space setting. These solutions are global in time if the initial value ug is small enough
in a certain sense. The case of non smooth domains has been studied by Deuring
and von Wahl [1] in 1995 where they considered domains @ C R3 with Lipschitz
boundary 0€2. They found local smooth solutions using results contained in Shen’s
PhD thesis [4]. Their method does not cover the critical space case as in [2]. One
of the difficulty there was to understand the Stokes operator, and in particular its
domain of definition.

In Section 2, we give a “universal” definition of the Stokes operator, for any domain
Q C R3 (Defintion 2.4). In Section 3, we construct a mild solution of (NS) with a
method similar to Fujita-Kato’s [2] (Theorem 3.5) for initial values ug in the critical
space D(Ai). We show in Section 4 that this mild solution is a strong solution, i.e.
(NS) is satisfied almost everywhere.

2. The Stokes operator
Let © be an open set in R3. The space
L3(Q)® = {u = (u1,ug,u3);u; € L*(Q), i =1,2,3}
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endowed with the scalar product

<u7v):/ﬂu~v:§;/guivi

is a Hilbert space. Define
G = {Vp;p € L}, () with Vp € L*(Q)*};
the set G is a closed subspace of L?(2)3. Let
H=G"={ue L*Q)% (u,Vp) =0, Vp € L},.(Q) with Vp € L*(Q)?} .
The space H, endowed with the scalar product (-,-) is a Hilbert space. We have the
following Hodge decomposition
203 *
L*(Y)°=HadG.

We denote by IP the projection from L2(2)? onto H : P is the usual Helmoltz projec-
tion. We denote by J the canonical injection H — L?(Q)3 : J' = P (J’ beeing the
adjoint of J) and PJ is the identity on H. Let now 2(Q)3 = €>°(Q)3 and

D = {u € 2(Q)* divu = 0}.

It is clear that D is a closed subspace of Z(Q)3. We denote by Jy : D — 2(Q)3 the
canonical injection : Jy C J. Let Py be the adjoint of Jy : Py = J) : 2'(Q)® — D'.
We have P C P;. The following theorem characterizes the elements in ker P;.

Theorem 2.1 (de Rham). Let T € 2'(Q)? such that PyT = 0 in D'. Then there
exists S € (€°(2))" such that T =VS. Conversely, if T = VS with S € (6°(2)),
then PyT =0 in D'.

We denote by Hg(2)? the closure of ()% with respect to the scalar prod-
uct (u,v) — (u,v); = (u,v) + 320 (diu,dv). By Sobolev embeddings, we have
HY(Q)3 — L5(2)3. Define

V=HnNH}Q)>.

The space V is a closed subspace of H}(Q)? ; endowed with the scalar product (-,-)1,
V is a Hilbert space.

Proposition 2.2. The space V is dense in H.
Proof. Let u € 'H be in the orthogonal of V with respect to H, i.e.
(2.1) (u,v) =0 forallv e V.
Since D C V, (2.1) implies also
(u,v) =0 for all v € D.

It means that u, viewed as an element of D', is 0. By Theorem 2.1, there exists
a distribution S € 2(Q)" such that Ju = VS. Since Ju € L?(2)3, so is VS and
therefore, u = PJu =PVS = 0. 0
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The canonical injection .J : V < H}(Q)? is the restriction of J to V. We denote

by P the adjoint of J : since J is the restriction of J to V, P is an extension of P to
3

V'. On V x V we define now the form a by a(u,v) = Z(@iju, d;Jv) : a is a bilinear,
i=1

symmetric, § + a is a coercive form on ¥V x V for all § > 0, then defines a bounded

self-adjoint operator Ay : V — V' by (Apu)(v) = a(u,v) with § + Ay invertible for all

0 > 0.

Proposition 2.3. Forallu € V, Agu = I?’(—A%)ju, where AY, denotes the Dirichlet-
Laplacian on H}(Q)3.
Proof. For all u,v € V, we have

3
(Apw)(v) = a(u,v) = > (9:iJu,d;.Jv)

i=1
= <(_A%)ju7 jU>H—1,Hé
(P(—=AD)Ju, v)vrv.

The first two equalities come from the definition of Ay and a. The third equality
comes from the definition of the Dirichlet-Laplacian on H{(€2)? and the fact that for
v eV, Ju=uv. The last equality is due to J'¢ = Py in V' for all ¢ € H~(Q)3. This
shows that Agu and ]f"(—A%)J~ u are two continuous linear forms on V which coincide
on V, they are then equal. O

Definition 2.4. The operator A defined on its domain D(A) = {u € V; Agu € H}
by Au = Agu is called the Stokes operator.

Theorem 2.5. The Stokes operator is self-adjoint in 'H, generates an analytic semi-
group (e7t4);>0, D(A2) =V and satisfies
D(A) = {ueV; Ire () :Vrec H Q) and — Au+ V7 € H}
Au = —Au+Vr.

Remark 2.6. Since H}(Q)3 — L5(Q2)3, it is clear by interpolation and dualization
that P maps LP(2)® to D(A®)’ for % <p<2,0<s< % and s = —% + %. Since
A is self-adjoint, one has (§ + Ag) " *D(A®) = {(§ + Ag) *u;u € D(A®)} = H. In
particular, (6 + Ag)~%P; maps L2 (Q)3 into H.

3. Mild solution to the Navier-Stokes system

Let T'> 0.
Define the following Banach space

&r = {ue®(0.1);D(A%) N (0,T]; D(A}))

such that  sup |[s7AZu(s)| + sup ||3A‘11u'(s)||H<oo}
0<s<T 0<s<T
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endowed with the norm

1 1 1 1
luller = sup [[ATu(s)|s+ sup [sTAZu(s)|ln + sup [|sATu/(s)]s.
0<s<T 0<s<T 0<s<T

Let a be defined by a(t) = e *4uy where ug € D(A%). Then a € &p. Indeed, it
is clear that o € €([0,T]; D(A7)). We also have that t1Aza(t) = tiAie 4 ATy,
is bounded on (0,7) since (e~'4);>0 is an analytic semigroup. Moreover, one has
o/ (t) = —Ae Ay which yields to tATa/(t) = —tAe 4 Aiug continuous on ]0, 7],
bounded in H. For u,v € Ep, we define now

t
O (u,v)(t) = / e_(t_S)A(—%IP’)((u(s) -V)v(s) + (v(s) - V)u(s))ds, 0<t<T.
0
Notation 3.1. Let XY be Banach spaces. For a bounded linear operator S : X —
Y, we denote by S|l (x;y) the norm of S, i.e.
I1S]| #(x;v) = sup{|[Sz|ly ; Vx € X with [|z||x <1}

If X =Y, we adopt the notation ||S||#(x) instead of [|S|| ¢ (x,y). For a bilinear
operator B : X x X — Y, we denote by || B|| #(xxx;y) the norm of B, i.e.

HB”z(XXX;y) = sup{||B(z,2')|ly ; Vz,2’ € X with ||z|x <1 and ||2'||x < 1}.
Notation 3.2. For u,v € L?(Q)3, we denote by u ® v the matrix defined by
(u®v)i; =uv;, 1<4,j<3.

Remark 3.3. If u,v are sufﬁciently smooth vector fields such that divu = 0, then
3
div(u ® v) Z 0;(uv Zuiaﬂ) = (u-V)v.

Proposition 3.4. The transform ® is bilinear, symmetric, continuous from Ep x Ep
to Er and the norm of ® is independent of T'.

Proof. The fact that @ is bilinear and symmetric is clear. Moreover, ®(u,v) = e~ 4% f,
where f is defined by

F(s) = (=3P)((u(s) - V)u(s) + (v

For u,v € &Ep, it is clear that (u ( ) - V)u(s) +
(6+Ag)~% f(s) € Hwith sup s2[|(6+ Ag)~

0<s<T

s)-Vu(s)), se€l0,7T].

(
(v(s) - V)u(s) € L2(Q)3 and therefore
F($)lm < clluller[[v]ler- We have then

M—‘

D(u,v) = e~ u f= (04 A)TemHx ((6+ Ag) 5 S)

and therefore

t
[ATD(u, v)(@)]# < /0||A4(5+A)4€(ts)AIIz<H>|(5+Ao)4f(8)||Hd8

< ( t 1ds) lulles ol
- 0o Vt—s+/s g :
< e ( / N do) lulles 1ol
- 0o V1I—0o+o ’ ’
< clulerlolles.
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Continuity with respect to t € [0, 7] of t — A3®(u, v)(t) is clear once we have proved
the boundedness. We also have

t
[A2 D (u, v)(@)]# < /0||A2(5+A)46(ts)AII$<H>|(5+Ao)4f(8)IIHd8

< </t Ll >|| e [0l
c ds | ||u v
B 0 (t—s)i Vs critlier

1
1 1
o,
([ 7 ) Il ol

1
ct™ 1 luller [[v]ler -

Bl

IN

ct™

IN

Continuity with respect to t €]0, T is clear once we have proved the boundedness. To
prove the last part of the norm of ®(u,v) in Ep, we first write f, using Notation 3.2
and Remark 3.3, in the following form

fls) = (—%]f”) div (u(s) @ v(s) +v(s) @ u(s)), s€[0,T].

We have then for s €]0,T]
1'(5) = (—B) div (/(s) @ 0(s) + u(s) @ v/(5) + v'(5) @ u(s) + v(s) @ ' (5)).
For all s €]0,T] we have

5 1) 1
stllu'(s) @v(s)llz < llsu/(s)llsllsv(s)lle

(2) 1 1,1
< llsAsd/(s)lnlls? Az v (s)

3)
< ullerllvller

where the first inequality comes from the fact that L? - LS < L2, the second comes
1

from the inclusions D(A3) < L3(€2)® and D(Az) — L5(Q)3 and the third inequality
follows directly from the definition of the space £p. Of course the same occurs for the
other three terms u(s) ® v/(s), v'(s) ® u(s) and v(s) @ u/(s). Therefore, since A, ?
maps V' to H, we obtain

5 1
sup ||s%(0 4+ Ao) "2 f'(s)lln < cllulles [v]lexr-
0<s<T

We have

@(u,v)(t):/o e—sAf(t—s)ds+/2e—“—s)Af(s)ds t €0, 7],

0

ol

and therefore
®uv)(t) = e FAf(L)+ / G ARG+ Ag) T f(t - s)ds
0

+ /2 —A(S + A)ie= A 4+ Ag) T3 f(s)ds,
0
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which yields
3] 1

%H(a + Ao)—%f(%)HH + C(/o 3 (t_s)ids> uller V]l ex

t
2 1 1
vel [T s ) Julle ole,
0o (t—s)i sz

1

< 2 /2 [uller (]l
U Vl|es-
t o (1 —g)%g% eriitlier

This last inequality ensures that ®(u,v) € Er whenever u,v € Ep. O

|AT®(u, v) (£)]|3

IN

Theorem 3.5. For allug € D(Ai), there exists T' > 0 such that there exists a unique
u € Ep solution of u = a+P(u,u) on [0,T]. This function u is called the mild solution
to the Navier-Stokes system.

Proof. Let T > 0. Since ® : Ep x Ep — Ep is bilinear continuous, it suffices to apply
Picard fixed point theorem, as in [2]. The sequence in & (v, )nen defined by vy = «
as first term and

Unt1 = @+ ®(v,,v,), neN
converges to the unique solution u € Ep of u = o 4+ ®(u,u) provided [|Aiug|x is
small enough (||lalle, < L

APl epxepier)
(that is, if ||a|le, > then for ¢ > 0, there exists ug. € D(A) such

). In the case where |[Adugl|y is not small

1
APl (epxepier) )

that || A7 (ug — ug,e)||[n < e. If we take as initial value up . € D(A), we have

lacller < T Aug el —— 0.
T—0

Therefore, we can find T' > 0 such that ||o|s, <

1
APl e epxepier)

4. Strong solutions

Let u be the mild solution to the Navier-Stokes system. We show in this section
that u in fact satisfies the equations of the Navier-Stokes system in an LP—sense (for
a suitable p). To begin with, we know that u € & and satisfies

u=a+d(u,u) =a+e s pu),
where (u) = —P((u- V)u) and we have ||£2 (u(t) - V)u(t)||

3 < cllul|2. . Therefore, we
5 T

get

(4.1) u(0) = a(0) = uo,

(4.2) divu(t) = 0 in the L? — sense for ¢ €]0, T7,
and

o +Au=f in%(0,T}V),
which means that for all ¢ €]0, T,

P(u'(t) — AZu(t) + (u(t) - V)u(t)) = 0.
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Then, by Theorem 2.1, there exists (—7)(t) € (4°°(2))’ such that Vr(t) € H-}(Q)3
and

(4.3) V(=m)(t) = u'(t) = ABu(t) + (u(t) - V)u(t)
and we have for 0 <t < T
—ARu(t) + Vr(t) = —u'(t) — (u(t) - V)u(t) € L3(Q)® + L3 (Q)>.

The equation (4.3), together with (4.1) and (4.2), give the usual Navier-Stokes equa-
tions which are fulfilled in a strong sense (a.e.) where we consider the expression
—Au + Vr undecoupled.
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