NAVIER-STOKES EQUATIONS IN ARBITRARY DOMAINS : THE FUJITA-KATO SCHEME

Sylvie Monniaux

Abstract. Navier-Stokes equations are investigated in a functional setting in 3D open sets Ω , bounded or not, without assuming any regularity of the boundary $\partial\Omega$. The main idea is to find a correct definition of the Stokes operator in a suitable Hilbert space of divergence-free vectors and apply the Fujita-Kato method, a fixed point procedure, to get a local strong solution.

1. Introduction

Since the pioneering work by Leray [3] in 1934, there have been several studies on solutions of Navier-Stokes equations

$$
(NS) \begin{cases} \frac{\partial u}{\partial t} - \Delta u + \nabla \pi + (u \cdot \nabla)u = 0 & \text{in} \quad]0, T[\times \Omega, \\ \text{div } u = 0 & \text{in} \quad]0, T[\times \Omega, \\ u = 0 & \text{on} \quad]0, T[\times \partial \Omega, \\ u(0) = u_0 & \text{in} \quad \Omega. \end{cases}
$$

Fujita and Kato [2] in 1964 gave a method to construct so called mild solutions in smooth domains Ω , producing local (in time) smooth solutions of (NS) in a Hilbert space setting. These solutions are global in time if the initial value u_0 is small enough in a certain sense. The case of non smooth domains has been studied by Deuring and von Wahl [1] in 1995 where they considered domains $\Omega \subset \mathbb{R}^3$ with Lipschitz boundary ∂Ω. They found local smooth solutions using results contained in Shen's PhD thesis [4]. Their method does not cover the critical space case as in [2]. One of the difficulty there was to understand the Stokes operator, and in particular its domain of definition.

In Section 2, we give a "universal" definition of the Stokes operator, for any domain $\Omega \subset \mathbb{R}^3$ (Defintion 2.4). In Section 3, we construct a mild solution of (NS) with a method similar to Fujita-Kato's [2] (Theorem 3.5) for initial values u_0 in the critical space $D(A^{\frac{1}{4}})$. We show in Section 4 that this mild solution is a strong solution, *i.e.* (NS) is satisfied almost everywhere.

2. The Stokes operator

Let Ω be an open set in \mathbb{R}^3 . The space

$$
L^{2}(\Omega)^{3} = \{u = (u_{1}, u_{2}, u_{3}); u_{i} \in L^{2}(\Omega), i = 1, 2, 3\}
$$

Received by the editors November 15, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary 35Q10, 76D05 ; Secondary 35A15.

endowed with the scalar product

$$
\langle u, v \rangle = \int_{\Omega} u \cdot \overline{v} = \sum_{i=1}^{3} \int_{\Omega} u_i \, \overline{v_i}
$$

is a Hilbert space. Define

$$
\mathcal{G} = \{ \nabla p; p \in L^2_{loc}(\Omega) \text{ with } \nabla p \in L^2(\Omega)^3 \};
$$

the set G is a closed subspace of $L^2(\Omega)^3$. Let

$$
\mathcal{H} = \mathcal{G}^{\perp} = \left\{ u \in L^{2}(\Omega)^{3}; \langle u, \nabla p \rangle = 0, \ \forall p \in L^{2}_{loc}(\Omega) \text{ with } \nabla p \in L^{2}(\Omega)^{3} \right\}.
$$

The space \mathcal{H} , endowed with the scalar product $\langle \cdot, \cdot \rangle$ is a Hilbert space. We have the following Hodge decomposition

$$
L^2(\Omega)^3 = \mathcal{H} \overset{\perp}{\oplus} \mathcal{G}.
$$

We denote by $\mathbb P$ the projection from $L^2(\Omega)^3$ onto $\mathcal H$: $\mathbb P$ is the usual Helmoltz projection. We denote by J the canonical injection $\mathcal{H} \hookrightarrow L^2(\Omega)^3$: $J' = \mathbb{P} (J'$ beeing the adjoint of J) and $\mathbb{P}J$ is the identity on H. Let now $\mathscr{D}(\Omega)^3 = \mathscr{C}_c^{\infty}(\Omega)^3$ and

$$
\mathcal{D} = \{ u \in \mathcal{D}(\Omega)^3; \text{div} u = 0 \}.
$$

It is clear that D is a closed subspace of $\mathscr{D}(\Omega)^3$. We denote by $J_0 : \mathcal{D} \hookrightarrow \mathscr{D}(\Omega)^3$ the canonical injection : $J_0 \subset J$. Let \mathbb{P}_1 be the adjoint of $J_0 : \mathbb{P}_1 = J'_0 : \mathscr{D}'(\Omega)^3 \to \mathcal{D}'$. We have $\mathbb{P} \subset \mathbb{P}_1$. The following theorem characterizes the elements in ker \mathbb{P}_1 .

Theorem 2.1 (de Rham). Let $T \in \mathcal{D}'(\Omega)^3$ such that $\mathbb{P}_1T = 0$ in \mathcal{D}' . Then there exists $S \in (\mathscr{C}_c^{\infty}(\Omega))'$ such that $T = \nabla S$. Conversely, if $T = \nabla S$ with $S \in (\mathscr{C}_c^{\infty}(\Omega))'$, then $\mathbb{P}_1T=0$ in \mathcal{D}' .

We denote by $H_0^1(\Omega)^3$ the closure of $\mathscr{D}(\Omega)^3$ with respect to the scalar product $(u, v) \mapsto \langle u, v \rangle_1 = \langle u, v \rangle + \sum_{i=1}^3 \langle \partial_i u, \partial_i v \rangle$. By Sobolev embeddings, we have $H_0^1(\Omega)^3 \hookrightarrow L^6(\Omega)^3$. Define

$$
\mathcal{V} = \mathcal{H} \cap H_0^1(\Omega)^3.
$$

The space $\mathcal V$ is a closed subspace of $H_0^1(\Omega)^3$; endowed with the scalar product $\langle\cdot,\cdot\rangle_1$, V is a Hilbert space.

Proposition 2.2. The space V is dense in H .

Proof. Let $u \in \mathcal{H}$ be in the orthogonal of $\mathcal V$ with respect to $\mathcal H$, *i.e.*

(2.1)
$$
\langle u, v \rangle = 0
$$
 for all $v \in \mathcal{V}$.

Since $\mathcal{D} \subset \mathcal{V}$, (2.1) implies also

$$
\langle u, v \rangle = 0 \quad \text{ for all } v \in \mathcal{D}.
$$

It means that u, viewed as an element of \mathcal{D}' , is 0. By Theorem 2.1, there exists a distribution $S \in \mathcal{D}(\Omega)'$ such that $Ju = \nabla S$. Since $Ju \in L^2(\Omega)^3$, so is ∇S and therefore, $u = \mathbb{P}Ju = \mathbb{P}\nabla S = 0.$

The canonical injection $\tilde{J}: \mathcal{V} \hookrightarrow H_0^1(\Omega)^3$ is the restriction of J to V. We denote by $\tilde{\mathbb{P}}$ the adjoint of \tilde{J} : since \tilde{J} is the restriction of J to V, $\tilde{\mathbb{P}}$ is an extension of \mathbb{P} to V'. On $V \times V$ we define now the form a by $a(u, v) = \sum$ 3 $i=1$ $\langle \partial_i \tilde{J}u, \partial_i \tilde{J}v \rangle$: a is a bilinear, symmetric, $\delta + a$ is a coercive form on $\mathcal{V} \times \mathcal{V}$ for all $\delta > 0$, then defines a bounded self-adjoint operator $A_0: V \to V'$ by $(A_0u)(v) = a(u, v)$ with $\delta + A_0$ invertible for all $\delta > 0$.

Proposition 2.3. For all $u \in V$, $A_0 u = \tilde{\mathbb{P}}(-\Delta_D^{\Omega})\tilde{J}u$, where Δ_D^{Ω} denotes the Dirichlet-Laplacian on $H_0^1(\Omega)^3$.

Proof. For all $u, v \in V$, we have

$$
(A_0 u)(v) \stackrel{(1)}{=} a(u, v) \stackrel{(2)}{=} \sum_{i=1}^3 \langle \partial_i \tilde{J} u, \partial_i \tilde{J} v \rangle
$$

$$
\stackrel{(3)}{=} \langle (-\Delta_D^{\Omega}) \tilde{J} u, \tilde{J} v \rangle_{H^{-1}, H_0^1}
$$

$$
\stackrel{(4)}{=} \langle \tilde{\mathbb{P}}(-\Delta_D^{\Omega}) \tilde{J} u, v \rangle_{V', V}.
$$

The first two equalities come from the definition of A_0 and a. The third equality comes from the definition of the Dirichlet-Laplacian on $H_0^1(\Omega)^3$ and the fact that for $v \in \mathcal{V}, \tilde{J}v = v.$ The last equality is due to $\tilde{J}'\varphi = \tilde{\mathbb{P}}\varphi$ in \mathcal{V}' for all $\varphi \in H^{-1}(\Omega)^3$. This shows that A_0u and $\tilde{\mathbb{P}}(-\Delta_D^{\Omega})\tilde{J}u$ are two continuous linear forms on $\mathcal V$ which coïncide on V , they are then equal. \Box

Definition 2.4. The operator A defined on its domain $D(A) = \{u \in \mathcal{V}; A_0u \in \mathcal{H}\}\$ by $Au = A_0u$ is called the Stokes operator.

Theorem 2.5. The Stokes operator is self-adjoint in H, generates an analytic semigroup $(e^{-tA})_{t\geq 0}$, $D(A^{\frac{1}{2}}) = V$ and satisfies

$$
D(A) = \{u \in \mathcal{V} ; \exists \pi \in (\mathscr{C}_c^{\infty}(\Omega))': \nabla \pi \in H^{-1}(\Omega) \text{ and } -\Delta u + \nabla \pi \in \mathcal{H}\}\
$$

\n
$$
Au = -\Delta u + \nabla \pi.
$$

Remark 2.6. Since $H_0^1(\Omega)^3 \hookrightarrow L^6(\Omega)^3$, it is clear by interpolation and dualization that $\tilde{\mathbb{P}}$ maps $L^p(\Omega)^3$ to $D(A^s)'$ for $\frac{6}{5} \leq p \leq 2, 0 \leq s \leq \frac{1}{2}$ and $s = -\frac{3}{4} + \frac{3}{2p}$. Since A is self-adjoint, one has $(\delta + A_0)^{-s}D(A^s)' = \{(\delta + A_0)^{-s}u; u \in D(A^s)'\} = \mathcal{H}$. In particular, $(\delta + A_0)^{-\frac{1}{4}} \mathbb{P}_1$ maps $L^{\frac{3}{2}}(\Omega)^3$ into \mathcal{H} .

3. Mild solution to the Navier-Stokes system

Let $T > 0$. Define the following Banach space

$$
\mathcal{E}_T = \left\{ u \in \mathscr{C}([0,T]; D(A^{\frac{1}{4}})) \cap \mathscr{C}^1([0,T]; D(A^{\frac{1}{4}})) \right\}
$$

such that
$$
\sup_{0 < s < T} \|s^{\frac{1}{4}} A^{\frac{1}{2}} u(s)\|_{\mathcal{H}} + \sup_{0 < s < T} \|s A^{\frac{1}{4}} u'(s)\|_{\mathcal{H}} < \infty \right\}
$$

endowed with the norm

$$
||u||_{\mathcal{E}_T} = \sup_{0 < s < T} ||A^{\frac{1}{4}} u(s)||_{\mathcal{H}} + \sup_{0 < s < T} ||s^{\frac{1}{4}} A^{\frac{1}{2}} u(s)||_{\mathcal{H}} + \sup_{0 < s < T} ||s A^{\frac{1}{4}} u'(s)||_{\mathcal{H}}.
$$

Let α be defined by $\alpha(t) = e^{-tA}u_0$ where $u_0 \in D(A^{\frac{1}{4}})$. Then $\alpha \in \mathcal{E}_T$. Indeed, it is clear that $\alpha \in \mathscr{C}([0,T]; D(A^{\frac{1}{4}}))$. We also have that $t^{\frac{1}{4}} A^{\frac{1}{2}} \alpha(t) = t^{\frac{1}{4}} A^{\frac{1}{4}} e^{-tA} A^{\frac{1}{4}} u_0$ is bounded on $(0, T)$ since $(e^{-tA})_{t\geq 0}$ is an analytic semigroup. Moreover, one has $\alpha'(t) = -Ae^{-tA}u_0$ which yields to $tA^{\frac{1}{4}}\alpha'(t) = -tAe^{-tA}A^{\frac{1}{4}}u_0$ continuous on $[0,T]$, bounded in \mathcal{H} . For $u, v \in \mathcal{E}_T$, we define now

$$
\Phi(u,v)(t) = \int_0^t e^{-(t-s)A} \left(-\frac{1}{2}\tilde{\mathbb{P}}\right) \left((u(s)\cdot\nabla)v(s) + (v(s)\cdot\nabla)u(s)\right)ds, \quad 0 < t < T.
$$

Notation 3.1. Let X, Y be Banach spaces. For a bounded linear operator $S: X \to$ Y, we denote by $||S||_{\mathscr{L}(X;Y)}$ the norm of S, *i.e.*

$$
||S||_{\mathscr{L}(X;Y)} = \sup \{ ||Sx||_Y ; \ \forall x \in X \text{ with } ||x||_X \le 1 \}.
$$

If $X = Y$, we adopt the notation $||S||_{\mathscr{L}(X)}$ instead of $||S||_{\mathscr{L}(X;Y)}$. For a bilinear operator $B: X \times X \to Y$, we denote by $||B||_{\mathscr{L}(X \times X;Y)}$ the norm of B, *i.e.*

 $||B||_{\mathscr{L}(X\times X;Y)} = \sup{||B(x,x')||_Y ; \forall x, x' \in X \text{ with } ||x||_X \leq 1 \text{ and } ||x'||_X \leq 1}$.

Notation 3.2. For $u, v \in L^2(\Omega)^3$, we denote by $u \otimes v$ the matrix defined by

$$
(u \otimes v)_{i,j} = u_i v_j, \quad 1 \le i, j \le 3.
$$

Remark 3.3. If u, v are sufficiently smooth vector fields such that div $u = 0$, then

$$
\operatorname{div}(u \otimes v) := \sum_{i=1}^3 \partial_i(u_i v) = \sum_{i=1}^3 u_i \partial_i v = (u \cdot \nabla)v.
$$

Proposition 3.4. The transform Φ is bilinear, symmetric, continuous from $\mathcal{E}_T \times \mathcal{E}_T$ to \mathcal{E}_T and the norm of Φ is independent of T.

Proof. The fact that Φ is bilinear and symmetric is clear. Moreover, $\Phi(u, v) = e^{-A}*f$, where f is defined by

$$
f(s) = \left(-\frac{1}{2}\tilde{\mathbb{P}}\right)\left(\left(u(s)\cdot\nabla\right)v(s) + \left(v(s)\cdot\nabla\right)u(s)\right), \quad s \in [0, T].
$$

For $u, v \in \mathcal{E}_T$, it is clear that $(u(s) \cdot \nabla) v(s) + (v(s) \cdot \nabla) u(s) \in L^{\frac{3}{2}}(\Omega)^3$ and therefore $(\delta + A_0)^{-\frac{1}{4}} f(s) \in \mathcal{H}$ with sup $0 < s < T$ $s^{\frac{1}{2}} \| (\delta + A_0)^{-\frac{1}{4}} f(s) \|_{\mathcal{H}} \leq c \| u \|_{\mathcal{E}_T} \| v \|_{\mathcal{E}_T}.$ We have then

$$
\Phi(u, v) = e^{-A} * f = (\delta + A)^{\frac{1}{4}} e^{-A} * ((\delta + A_0)^{-\frac{1}{4}} f)
$$

and therefore

$$
\begin{array}{rcl}\n\|A^{\frac{1}{4}}\Phi(u,v)(t)\|_{\mathcal{H}} & \leq & \displaystyle \int_{0}^{t} \|A^{\frac{1}{4}}(\delta+A)^{\frac{1}{4}}e^{-(t-s)A}\|_{\mathscr{L}(\mathcal{H})}\|(\delta+A_{0})^{-\frac{1}{4}}f(s)\|_{\mathcal{H}}ds \\
& \leq & c\left(\int_{0}^{t} \frac{1}{\sqrt{t-s}}\frac{1}{\sqrt{s}}ds\right)\|u\|_{\mathcal{E}_{T}}\|v\|_{\mathcal{E}_{T}} \\
& \leq & c\left(\int_{0}^{1} \frac{1}{\sqrt{1-\sigma}}\frac{1}{\sqrt{\sigma}}d\sigma\right)\|u\|_{\mathcal{E}_{T}}\|v\|_{\mathcal{E}_{T}} \\
& \leq & c\|u\|_{\mathcal{E}_{T}}\|v\|_{\mathcal{E}_{T}}.\n\end{array}
$$

Continuity with respect to $t \in [0, T]$ of $t \mapsto A^{\frac{1}{4}}\Phi(u, v)(t)$ is clear once we have proved the boundedness. We also have

$$
\|A^{\frac{1}{2}}\Phi(u,v)(t)\|_{\mathcal{H}} \leq \int_{0}^{t} \|A^{\frac{1}{2}}(\delta+A)^{\frac{1}{4}}e^{-(t-s)A}\|_{\mathscr{L}(\mathcal{H})}\|(\delta+A_{0})^{-\frac{1}{4}}f(s)\|_{\mathcal{H}}ds
$$

$$
\leq c\left(\int_{0}^{t} \frac{1}{(t-s)^{\frac{3}{4}}}\frac{1}{\sqrt{s}}ds\right) \|u\|_{\mathcal{E}_{T}}\|v\|_{\mathcal{E}_{T}}
$$

$$
\leq ct^{-\frac{1}{4}}\left(\int_{0}^{1} \frac{1}{(1-\sigma)^{\frac{3}{4}}}\frac{1}{\sqrt{\sigma}}d\sigma\right) \|u\|_{\mathcal{E}_{T}}\|v\|_{\mathcal{E}_{T}}
$$

$$
\leq ct^{-\frac{1}{4}}\|u\|_{\mathcal{E}_{T}}\|v\|_{\mathcal{E}_{T}}.
$$

Continuity with respect to $t \in]0, T]$ is clear once we have proved the boundedness. To prove the last part of the norm of $\Phi(u, v)$ in \mathcal{E}_T , we first write f, using Notation 3.2 and Remark 3.3, in the following form

$$
f(s) = \left(-\frac{1}{2}\widetilde{\mathbb{P}}\right) \operatorname{div} \left(u(s) \otimes v(s) + v(s) \otimes u(s)\right), \quad s \in [0, T].
$$

We have then for $s \in]0, T[$

$$
f'(s) = \left(-\frac{1}{2}\widetilde{\mathbb{P}}\right) \operatorname{div} \left(u'(s) \otimes v(s) + u(s) \otimes v'(s) + v'(s) \otimes u(s) + v(s) \otimes u'(s)\right).
$$

For all $s\in]0,T]$ we have

$$
s^{\frac{5}{4}} \|u'(s) \otimes v(s)\|_2 \leq \|su'(s)\|_3 \|s^{\frac{1}{4}}v(s)\|_6
$$

$$
\leq \|sA^{\frac{1}{4}}u'(s)\|_{\mathcal{H}} \|s^{\frac{1}{4}}A^{\frac{1}{2}}v(s)\|_{\mathcal{H}}
$$

$$
\leq \|u\|_{\mathcal{E}_T} \|v\|_{\mathcal{E}_T},
$$

where the first inequality comes from the fact that $L^3 \cdot L^6 \hookrightarrow L^2$, the second comes from the inclusions $D(A^{\frac{1}{4}}) \hookrightarrow L^{3}(\Omega)^{3}$ and $D(A^{\frac{1}{2}}) \hookrightarrow L^{6}(\Omega)^{3}$ and the third inequality follows directly from the definition of the space \mathcal{E}_T . Of course the same occurs for the other three terms $u(s) \otimes v'(s)$, $v'(s) \otimes u(s)$ and $v(s) \otimes u'(s)$. Therefore, since $A_0^{-\frac{1}{2}}$ maps V' to H , we obtain

$$
\sup_{0 < s < T} \|s^{\frac{5}{4}}(\delta + A_0)^{-\frac{1}{2}} f'(s)\|_{\mathcal{H}} \leq c \|u\|_{\mathcal{E}_T} \|v\|_{\mathcal{E}_T}.
$$

We have

$$
\Phi(u,v)(t) = \int_0^{\frac{t}{2}} e^{-sA} f(t-s)ds + \int_0^{\frac{t}{2}} e^{-(t-s)A} f(s)ds \quad t \in]0,T[,
$$

and therefore

$$
\Phi(u,v)'(t) = e^{-\frac{t}{2}A}f(\frac{t}{2}) + \int_0^{\frac{t}{2}} (\delta + A)^{\frac{1}{2}}e^{-sA}(\delta + A_0)^{-\frac{1}{2}}f'(t-s)ds
$$

$$
+ \int_0^{\frac{t}{2}} -A(\delta + A)^{\frac{1}{4}}e^{-(t-s)A}(\delta + A_0)^{-\frac{1}{4}}f(s)ds,
$$

which yields

$$
\|A^{\frac{1}{4}}\Phi(u,v)'(t)\|_{\mathcal{H}} \leq \frac{c}{\sqrt{t}} \left\| (\delta + A_0)^{-\frac{1}{4}} f(\frac{t}{2}) \right\|_{\mathcal{H}} + c \left(\int_0^{\frac{t}{2}} \frac{1}{s^{\frac{1}{2}}} \frac{1}{(t-s)^{\frac{5}{4}}} ds \right) \|u\|_{\mathcal{E}_T} \|v\|_{\mathcal{E}_T} \n+ c \left(\int_0^{\frac{t}{2}} \frac{1}{(t-s)^{\frac{5}{4}}} \frac{1}{s^{\frac{1}{2}}} ds \right) \|u\|_{\mathcal{E}_T} \|v\|_{\mathcal{E}_T} \n\leq \frac{c}{t} \left(\int_0^{\frac{1}{2}} \frac{d\sigma}{(1-\sigma)^{\frac{5}{4}} \sigma^{\frac{1}{2}}} \right) \|u\|_{\mathcal{E}_T} \|v\|_{\mathcal{E}_T}.
$$

This last inequality ensures that $\Phi(u, v) \in \mathcal{E}_T$ whenever $u, v \in \mathcal{E}_T$.

Theorem 3.5. For all $u_0 \in D(A^{\frac{1}{4}})$, there exists $T > 0$ such that there exists a unique $u \in \mathcal{E}_T$ solution of $u = \alpha + \Phi(u, u)$ on $[0, T]$. This function u is called the mild solution to the Navier-Stokes system.

Proof. Let $T > 0$. Since $\Phi : \mathcal{E}_T \times \mathcal{E}_T \to \mathcal{E}_T$ is bilinear continuous, it suffices to apply Picard fixed point theorem, as in [2]. The sequence in $\mathcal{E}_T(v_n)_{n\in\mathbb{N}}$ defined by $v_0 = \alpha$ as first term and

$$
v_{n+1} = \alpha + \Phi(v_n, v_n), \quad n \in \mathbb{N}
$$

converges to the unique solution $u \in \mathcal{E}_T$ of $u = \alpha + \Phi(u, u)$ provided $||A^{\frac{1}{4}}u_0||_{\mathcal{H}}$ is small enough $(\|\alpha\|_{\mathcal{E}_T} < \frac{1}{4\|\Phi\|_{\mathscr{L}(\mathcal{E}_T\times\mathcal{E}_T;\mathcal{E}_T)}})$. In the case where $\|A^{\frac{1}{4}}u_0\|_{\mathcal{H}}$ is not small (that is, if $\|\alpha\|_{\mathcal{E}_T} \geq \frac{1}{4\|\Phi\|_{\mathscr{L}(\mathcal{E}_T \times \mathcal{E}_T; \mathcal{E}_T)}}$) then for $\varepsilon > 0$, there exists $u_{0,\varepsilon} \in D(A)$ such that $||A^{\frac{1}{4}}(u_0 - u_{0,\varepsilon})||_{\mathcal{H}} \leq \varepsilon$. If we take as initial value $u_{0,\varepsilon} \in D(A)$, we have

$$
\|\alpha_{\varepsilon}\|_{\mathcal{E}_T} \leq cT^{\frac{3}{4}} \|Au_{0,\varepsilon}\|_{\mathcal{H}} \xrightarrow[T \to 0]{} 0.
$$

 \Box

Therefore, we can find $T > 0$ such that $\|\alpha\|_{\mathcal{E}_T} < \frac{1}{4\|\Phi\|_{\mathscr{L}(\mathcal{E}_T \times \mathcal{E}_T; \mathcal{E}_T)}}$. \Box

4. Strong solutions

Let u be the mild solution to the Navier-Stokes system. We show in this section that u in fact satisfies the equations of the Navier-Stokes system in an L^p -sense (for a suitable p). To begin with, we know that $u \in \mathcal{E}_T$ and satisfies

$$
u = \alpha + \Phi(u, u) = \alpha + e^{-A} * \varphi(u),
$$

where $\varphi(u) = -\tilde{\mathbb{P}}((u \cdot \nabla)u)$ and we have $||t^{\frac{1}{2}}(u(t) \cdot \nabla)u(t)||_{\frac{3}{2}} \leq c||u||_{\mathcal{E}_T}^2$. Therefore, we get

(4.1)
$$
u(0) = \alpha(0) = u_0,
$$

(4.2)
$$
\operatorname{div}u(t) = 0 \text{ in the } L^2 \text{ - sense for } t \in]0, T[,
$$

and

$$
u' + Au = f \quad \text{in } \mathscr{C}(]0,T[;\mathcal{V}'),
$$

which means that for all $t \in]0, T[,$

$$
\tilde{\mathbb{P}}(u'(t) - \Delta_D^{\Omega}u(t) + (u(t) \cdot \nabla)u(t)) = 0.
$$

Then, by Theorem 2.1, there exists $(-\pi)(t) \in (\mathscr{C}_c^{\infty}(\Omega))'$ such that $\nabla \pi(t) \in H^{-1}(\Omega)^3$ and

(4.3)
$$
\nabla(-\pi)(t) = u'(t) - \Delta_D^{\Omega}u(t) + (u(t) \cdot \nabla)u(t)
$$

and we have for $0 < t < T$

$$
-\Delta_D^{\Omega}u(t)+\nabla\pi(t)=-u'(t)-(u(t)\cdot\nabla)u(t)\in L^3(\Omega)^3+L^{\frac{3}{2}}(\Omega)^3.
$$

The equation (4.3), together with (4.1) and (4.2), give the usual Navier-Stokes equations which are fulfilled in a strong sense $(a.e.)$ where we consider the expression $-\Delta u + \nabla \pi$ undecoupled.

References

- [1] P. Deuring, W. von Wahl. Strong solutions of the Navier-Stokes system in Lipschitz bounded domains. Math. Nachr. **171** (1995) 111–148.
- [2] H. Fujita, T. Kato. On the Navier-Stokes initial value problem I. Arch. Rational Mech. Anal. **16** (194) 269–315.
- [3] J. Leray. Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. J. **63** (1934) 193–248.
- [4] Z. Shen. Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders. Amer. J. Math. **113** (1991) 293–373.

LATP UMR 6632, CASE COUR A, FACULTÉ DES SCIENCES DE SAINT-JÉRÔME, UNIVERSITÉ PAUL CÉZANNE (AIX-MARSEILLE 3), 13397 MARSEILLE CÉDEX 20, FRANCE

E-mail address: sylvie.monniaux@univ.u-3mrs.fr