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NAVIER-STOKES EQUATIONS IN ARBITRARY DOMAINS :
THE FUJITA-KATO SCHEME

Sylvie Monniaux

Abstract. Navier-Stokes equations are investigated in a functional setting in 3D open
sets Ω, bounded or not, without assuming any regularity of the boundary ∂Ω. The main

idea is to find a correct definition of the Stokes operator in a suitable Hilbert space of

divergence-free vectors and apply the Fujita-Kato method, a fixed point procedure, to
get a local strong solution.

1. Introduction

Since the pioneering work by Leray [3] in 1934, there have been several studies on
solutions of Navier-Stokes equations

(NS)

⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t − Δu + ∇π + (u · ∇)u = 0 in ]0, T [×Ω,

div u = 0 in ]0, T [×Ω,
u = 0 on ]0, T [×∂Ω,

u(0) = u0 in Ω.

Fujita and Kato [2] in 1964 gave a method to construct so called mild solutions in
smooth domains Ω, producing local (in time) smooth solutions of (NS) in a Hilbert
space setting. These solutions are global in time if the initial value u0 is small enough
in a certain sense. The case of non smooth domains has been studied by Deuring
and von Wahl [1] in 1995 where they considered domains Ω ⊂ R

3 with Lipschitz
boundary ∂Ω. They found local smooth solutions using results contained in Shen’s
PhD thesis [4]. Their method does not cover the critical space case as in [2]. One
of the difficulty there was to understand the Stokes operator, and in particular its
domain of definition.

In Section 2, we give a “universal” definition of the Stokes operator, for any domain
Ω ⊂ R

3 (Defintion 2.4). In Section 3, we construct a mild solution of (NS) with a
method similar to Fujita-Kato’s [2] (Theorem 3.5) for initial values u0 in the critical
space D(A

1
4 ). We show in Section 4 that this mild solution is a strong solution, i.e.

(NS) is satisfied almost everywhere.

2. The Stokes operator

Let Ω be an open set in R
3. The space

L2(Ω)3 = {u = (u1, u2, u3); ui ∈ L2(Ω), i = 1, 2, 3}
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endowed with the scalar product

〈u, v〉 =
∫

Ω

u · v =
3∑

i=1

∫
Ω

ui vi

is a Hilbert space. Define

G = {∇p; p ∈ L2
loc(Ω) with ∇p ∈ L2(Ω)3};

the set G is a closed subspace of L2(Ω)3. Let

H = G⊥ =
{
u ∈ L2(Ω)3; 〈u,∇p〉 = 0, ∀p ∈ L2

loc(Ω) with ∇p ∈ L2(Ω)3
}

.

The space H, endowed with the scalar product 〈·, ·〉 is a Hilbert space. We have the
following Hodge decomposition

L2(Ω)3 = H ⊥⊕ G.

We denote by P the projection from L2(Ω)3 onto H : P is the usual Helmoltz projec-
tion. We denote by J the canonical injection H ↪→ L2(Ω)3 : J ′ = P (J ′ beeing the
adjoint of J) and PJ is the identity on H. Let now D(Ω)3 = C∞

c (Ω)3 and

D = {u ∈ D(Ω)3; divu = 0}.
It is clear that D is a closed subspace of D(Ω)3. We denote by J0 : D ↪→ D(Ω)3 the
canonical injection : J0 ⊂ J . Let P1 be the adjoint of J0 : P1 = J ′

0 : D ′(Ω)3 → D′.
We have P ⊂ P1. The following theorem characterizes the elements in ker P1.

Theorem 2.1 (de Rham). Let T ∈ D ′(Ω)3 such that P1T = 0 in D′. Then there
exists S ∈ (C∞

c (Ω))′ such that T = ∇S. Conversely, if T = ∇S with S ∈ (C∞
c (Ω))′,

then P1T = 0 in D′.

We denote by H1
0 (Ω)3 the closure of D(Ω)3 with respect to the scalar prod-

uct (u, v) 
→ 〈u, v〉1 = 〈u, v〉 +
∑3

i=1〈∂iu, ∂iv〉. By Sobolev embeddings, we have
H1

0 (Ω)3 ↪→ L6(Ω)3. Define
V = H ∩ H1

0 (Ω)3.

The space V is a closed subspace of H1
0 (Ω)3 ; endowed with the scalar product 〈·, ·〉1,

V is a Hilbert space.

Proposition 2.2. The space V is dense in H.

Proof. Let u ∈ H be in the orthogonal of V with respect to H, i.e.

(2.1) 〈u, v〉 = 0 for all v ∈ V.

Since D ⊂ V, (2.1) implies also

〈u, v〉 = 0 for all v ∈ D.

It means that u, viewed as an element of D′, is 0. By Theorem 2.1, there exists
a distribution S ∈ D(Ω)′ such that Ju = ∇S. Since Ju ∈ L2(Ω)3, so is ∇S and
therefore, u = PJu = P∇S = 0. �
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The canonical injection J̃ : V ↪→ H1
0 (Ω)3 is the restriction of J to V. We denote

by P̃ the adjoint of J̃ : since J̃ is the restriction of J to V, P̃ is an extension of P to

V ′. On V ×V we define now the form a by a(u, v) =
3∑

i=1

〈∂iJ̃u, ∂iJ̃v〉 : a is a bilinear,

symmetric, δ + a is a coercive form on V × V for all δ > 0, then defines a bounded
self-adjoint operator A0 : V → V ′ by (A0u)(v) = a(u, v) with δ + A0 invertible for all
δ > 0.

Proposition 2.3. For all u ∈ V, A0u = P̃(−ΔΩ
D)J̃u, where ΔΩ

D denotes the Dirichlet-
Laplacian on H1

0 (Ω)3.

Proof. For all u, v ∈ V, we have

(A0u)(v)
(1)
= a(u, v)

(2)
=

3∑
i=1

〈∂iJ̃u, ∂iJ̃v〉

(3)
= 〈(−ΔΩ

D)J̃u, J̃v〉H−1,H1
0

(4)
= 〈P̃(−ΔΩ

D)J̃u, v〉V′,V .

The first two equalities come from the definition of A0 and a. The third equality
comes from the definition of the Dirichlet-Laplacian on H1

0 (Ω)3 and the fact that for
v ∈ V, J̃v = v. The last equality is due to J̃ ′ϕ = P̃ϕ in V ′ for all ϕ ∈ H−1(Ω)3. This
shows that A0u and P̃(−ΔΩ

D)J̃u are two continuous linear forms on V which cöıncide
on V, they are then equal. �

Definition 2.4. The operator A defined on its domain D(A) = {u ∈ V; A0u ∈ H}
by Au = A0u is called the Stokes operator.

Theorem 2.5. The Stokes operator is self-adjoint in H, generates an analytic semi-
group (e−tA)t≥0, D(A

1
2 ) = V and satisfies

D(A) = {u ∈ V ; ∃π ∈ (C∞
c (Ω))′ : ∇π ∈ H−1(Ω) and − Δu + ∇π ∈ H}

Au = −Δu + ∇π.

Remark 2.6. Since H1
0 (Ω)3 ↪→ L6(Ω)3, it is clear by interpolation and dualization

that P̃ maps Lp(Ω)3 to D(As)′ for 6
5 ≤ p ≤ 2, 0 ≤ s ≤ 1

2 and s = − 3
4 + 3

2p . Since
A is self-adjoint, one has (δ + A0)−sD(As)′ = {(δ + A0)−su; u ∈ D(As)′} = H. In
particular, (δ + A0)−

1
4 P1 maps L

3
2 (Ω)3 into H.

3. Mild solution to the Navier-Stokes system

Let T > 0.
Define the following Banach space

ET =
{

u ∈ C ([0, T ];D(A
1
4 )) ∩ C 1(]0, T ]; D(A

1
4 ))

such that sup
0<s<T

‖s 1
4 A

1
2 u(s)‖H + sup

0<s<T
‖sA 1

4 u′(s)‖H < ∞
}
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endowed with the norm

‖u‖ET
= sup

0<s<T
‖A 1

4 u(s)‖H + sup
0<s<T

‖s 1
4 A

1
2 u(s)‖H + sup

0<s<T
‖sA 1

4 u′(s)‖H.

Let α be defined by α(t) = e−tAu0 where u0 ∈ D(A
1
4 ). Then α ∈ ET . Indeed, it

is clear that α ∈ C ([0, T ];D(A
1
4 )). We also have that t

1
4 A

1
2 α(t) = t

1
4 A

1
4 e−tAA

1
4 u0

is bounded on (0, T ) since (e−tA)t≥0 is an analytic semigroup. Moreover, one has
α′(t) = −Ae−tAu0 which yields to tA

1
4 α′(t) = −tAe−tAA

1
4 u0 continuous on ]0, T ],

bounded in H. For u, v ∈ ET , we define now

Φ(u, v)(t) =
∫ t

0

e−(t−s)A(− 1
2 P̃)((u(s) · ∇)v(s) + (v(s) · ∇)u(s))ds, 0 < t < T.

Notation 3.1. Let X, Y be Banach spaces. For a bounded linear operator S : X →
Y , we denote by ‖S‖L (X;Y ) the norm of S, i.e.

‖S‖L (X;Y ) = sup{‖Sx‖Y ; ∀x ∈ X with ‖x‖X ≤ 1}.
If X = Y , we adopt the notation ‖S‖L (X) instead of ‖S‖L (X;Y ). For a bilinear
operator B : X × X → Y , we denote by ‖B‖L (X×X;Y ) the norm of B, i.e.

‖B‖L (X×X;Y ) = sup{‖B(x, x′)‖Y ; ∀x, x′ ∈ X with ‖x‖X ≤ 1 and ‖x′‖X ≤ 1}.
Notation 3.2. For u, v ∈ L2(Ω)3, we denote by u ⊗ v the matrix defined by

(u ⊗ v)i,j = uivj , 1 ≤ i, j ≤ 3.

Remark 3.3. If u, v are sufficiently smooth vector fields such that divu = 0, then

div(u ⊗ v) :=
3∑

i=1

∂i(uiv) =
3∑

i=1

ui∂iv = (u · ∇)v.

Proposition 3.4. The transform Φ is bilinear, symmetric, continuous from ET ×ET

to ET and the norm of Φ is independent of T .

Proof. The fact that Φ is bilinear and symmetric is clear. Moreover, Φ(u, v) = e−·A∗f ,
where f is defined by

f(s) = (− 1
2 P̃)((u(s) · ∇)v(s) + (v(s) · ∇)u(s)), s ∈ [0, T ].

For u, v ∈ ET , it is clear that (u(s) · ∇)v(s) + (v(s) · ∇)u(s) ∈ L
3
2 (Ω)3 and therefore

(δ+A0)−
1
4 f(s) ∈ H with sup

0<s<T
s

1
2 ‖(δ + A0)−

1
4 f(s)‖H ≤ c‖u‖ET

‖v‖ET
. We have then

Φ(u, v) = e−·A ∗ f = (δ + A)
1
4 e−·A ∗ ((δ + A0)−

1
4 f)

and therefore

‖A 1
4 Φ(u, v)(t)‖H ≤

∫ t

0

‖A 1
4 (δ + A)

1
4 e−(t−s)A‖L (H)‖(δ + A0)−

1
4 f(s)‖Hds

≤ c

(∫ t

0

1√
t − s

1√
s

ds

)
‖u‖ET

‖v‖ET

≤ c

(∫ 1

0

1√
1 − σ

1√
σ

dσ

)
‖u‖ET

‖v‖ET

≤ c‖u‖ET
‖v‖ET

.
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Continuity with respect to t ∈ [0, T ] of t 
→ A
1
4 Φ(u, v)(t) is clear once we have proved

the boundedness. We also have

‖A 1
2 Φ(u, v)(t)‖H ≤

∫ t

0

‖A 1
2 (δ + A)

1
4 e−(t−s)A‖L (H)‖(δ + A0)−

1
4 f(s)‖Hds

≤ c

(∫ t

0

1
(t − s)

3
4

1√
s

ds

)
‖u‖ET

‖v‖ET

≤ ct−
1
4

(∫ 1

0

1
(1 − σ)

3
4

1√
σ

dσ

)
‖u‖ET

‖v‖ET

≤ ct−
1
4 ‖u‖ET

‖v‖ET
.

Continuity with respect to t ∈]0, T ] is clear once we have proved the boundedness. To
prove the last part of the norm of Φ(u, v) in ET , we first write f , using Notation 3.2
and Remark 3.3, in the following form

f(s) = (− 1
2 P̃) div (u(s) ⊗ v(s) + v(s) ⊗ u(s)), s ∈ [0, T ].

We have then for s ∈]0, T [

f ′(s) = (− 1
2 P̃) div (u′(s) ⊗ v(s) + u(s) ⊗ v′(s) + v′(s) ⊗ u(s) + v(s) ⊗ u′(s)).

For all s ∈]0, T ] we have

s
5
4 ‖u′(s) ⊗ v(s)‖2

(1)

≤ ‖su′(s)‖3‖s 1
4 v(s)‖6

(2)

≤ ‖sA 1
4 u′(s)‖H‖s 1

4 A
1
2 v(s)‖H

(3)

≤ ‖u‖ET
‖v‖ET

,

where the first inequality comes from the fact that L3 · L6 ↪→ L2, the second comes
from the inclusions D(A

1
4 ) ↪→ L3(Ω)3 and D(A

1
2 ) ↪→ L6(Ω)3 and the third inequality

follows directly from the definition of the space ET . Of course the same occurs for the
other three terms u(s) ⊗ v′(s), v′(s) ⊗ u(s) and v(s) ⊗ u′(s). Therefore, since A

− 1
2

0

maps V ′ to H, we obtain

sup
0<s<T

‖s 5
4 (δ + A0)−

1
2 f ′(s)‖H ≤ c‖u‖ET

‖v‖ET
.

We have

Φ(u, v)(t) =
∫ t

2

0

e−sAf(t − s)ds +
∫ t

2

0

e−(t−s)Af(s)ds t ∈]0, T [,

and therefore

Φ(u, v)′(t) = e−
t
2 Af( t

2 ) +
∫ t

2

0

(δ + A)
1
2 e−sA(δ + A0)−

1
2 f ′(t − s)ds

+
∫ t

2

0

−A(δ + A)
1
4 e−(t−s)A(δ + A0)−

1
4 f(s)ds,
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which yields

‖A 1
4 Φ(u, v)′(t)‖H ≤ c√

t

∥∥∥(δ + A0)−
1
4 f( t

2 )
∥∥∥
H

+ c

(∫ t
2

0

1
s

1
2

1
(t − s)

5
4
ds

)
‖u‖ET

‖v‖ET

+c

(∫ t
2

0

1
(t − s)

5
4

1
s

1
2
ds

)
‖u‖ET

‖v‖ET

≤ c

t

(∫ 1
2

0

dσ

(1 − σ)
5
4 σ

1
2

)
‖u‖ET

‖v‖ET
.

This last inequality ensures that Φ(u, v) ∈ ET whenever u, v ∈ ET . �

Theorem 3.5. For all u0 ∈ D(A
1
4 ), there exists T > 0 such that there exists a unique

u ∈ ET solution of u = α+Φ(u, u) on [0, T ]. This function u is called the mild solution
to the Navier-Stokes system.

Proof. Let T > 0. Since Φ : ET × ET → ET is bilinear continuous, it suffices to apply
Picard fixed point theorem, as in [2]. The sequence in ET (vn)n∈N defined by v0 = α
as first term and

vn+1 = α + Φ(vn, vn), n ∈ N

converges to the unique solution u ∈ ET of u = α + Φ(u, u) provided ‖A 1
4 u0‖H is

small enough (‖α‖ET
< 1

4‖Φ‖L (ET ×ET ;ET )
). In the case where ‖A 1

4 u0‖H is not small

(that is, if ‖α‖ET
≥ 1

4‖Φ‖L (ET ×ET ;ET )
) then for ε > 0, there exists u0,ε ∈ D(A) such

that ‖A 1
4 (u0 − u0,ε)‖H ≤ ε. If we take as initial value u0,ε ∈ D(A), we have

‖αε‖ET
≤ cT

3
4 ‖Au0,ε‖H −−−→

T→0
0.

Therefore, we can find T > 0 such that ‖α‖ET
< 1

4‖Φ‖L (ET ×ET ;ET )
. �

4. Strong solutions

Let u be the mild solution to the Navier-Stokes system. We show in this section
that u in fact satisfies the equations of the Navier-Stokes system in an Lp−sense (for
a suitable p). To begin with, we know that u ∈ ET and satisfies

u = α + Φ(u, u) = α + e−·A ∗ ϕ(u),

where ϕ(u) = −P̃((u · ∇)u) and we have ‖t 1
2 (u(t) · ∇)u(t)‖ 3

2
≤ c‖u‖2

ET
. Therefore, we

get

(4.1) u(0) = α(0) = u0,

(4.2) divu(t) = 0 in the L2 − sense for t ∈]0, T [,

and
u′ + Au = f in C (]0, T [;V ′),

which means that for all t ∈]0, T [,

P̃(u′(t) − ΔΩ
Du(t) + (u(t) · ∇)u(t)) = 0.
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Then, by Theorem 2.1, there exists (−π)(t) ∈ (C∞
c (Ω))′ such that ∇π(t) ∈ H−1(Ω)3

and

(4.3) ∇(−π)(t) = u′(t) − ΔΩ
Du(t) + (u(t) · ∇)u(t)

and we have for 0 < t < T

−ΔΩ
Du(t) + ∇π(t) = −u′(t) − (u(t) · ∇)u(t) ∈ L3(Ω)3 + L

3
2 (Ω)3.

The equation (4.3), together with (4.1) and (4.2), give the usual Navier-Stokes equa-
tions which are fulfilled in a strong sense (a.e.) where we consider the expression
−Δu + ∇π undecoupled.
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