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QUARTIC K3 SURFACES WITHOUT NONTRIVIAL

AUTOMORPHISMS

Ronald van Luijk

Abstract. For any field k of characteristic at most 19 we exhibit an explicit smooth
quartic surface in P3

k
with trivial automorphism group over k. We also show how this

can be extended to higher characteristics. Over Q we construct an example on which
the set of rational points is Zariski dense.

1. Introduction

For any field k we fix an algebraic closure of k, denoted by k. For a variety
X ⊂ Pn+1

k we set X = X ×k k, we say that X is smooth if X is regular, and we let

AutX denote the group of k-automorphisms of X, while LinX denotes the group of
linear automorphisms of X, i.e., automorphisms induced by a linear transformation
of the coordinates of Pn+1. The following theorem was proved by Poonen, see [10],
Thm. 1.6.

Theorem 1.1. For any field k and integers n ≥ 1, d ≥ 3 with (n, d) �= (1, 3), there

exists a smooth hypersurface X in Pn+1
k of degree d with LinX = {1}.

Remark 1.2. For (n, d) = (1, 3) no such hypersurface exists. In that case we get a
plane cubic curve. With a flex as the origin, such a curve obtains the structure of an
elliptic curve on which multiplication by −1 is a nontrivial linear automorphism.

Poonen’s proof of Theorem 1.1 consists of giving carefully crafted explicit examples.
For fields that are large enough, a nonconstructive proof can be deduced from various
older results. For details we refer to [10] and the references given there. The next
theorem states that in many cases all automorphisms are linear, see [2], Thm. 1, for
dimension 1, and [8], Thm. 2, for higher dimension.

Theorem 1.3. If X is a smooth hypersurface in Pn+1 of degree d with n ≥ 1, d ≥ 3,
and (n, d) �∈ {(1, 3), (2, 4)}, then we have AutX = LinX.

Combining Theorem 1.1 and 1.3 we find the following corollary.

Corollary 1.4. For any field k and integers n ≥ 1, d ≥ 3 with (n, d) �∈ {(1, 3), (2, 4)},
there exists a smooth hypersurface X in Pn+1

k of degree d with Aut X = {1}.

In this paper we deal with the remaining case (n, d) = (2, 4) in small characteristics,
including zero. The following theorem states our main result.

Theorem 1.5. Let k be any field of characteristic at most 19. Then there exists a

smooth quartic surface X ⊂ P3
k with AutX = {1}.
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Smooth quartic surfaces in P3 are examples of K3 surfaces. Some do have nonlinear
automorphisms. The essential difference with the hypersurfaces in Theorem 1.3 is that
the canonical sheaf is trivial and the Picard group PicX may be larger than Z. The
arithmetic of K3 surfaces is not well understood in general. It is for instance not
known whether there exists a K3 surface over a number field on which the set of
rational points is neither empty nor dense. Bogomolov and Tschinkel [1] proved that
if a K3 surface X over a number field K has an infinite automorphism group or it
admits an elliptic fibration (not necessarily with a section), then there exists a finite
field extension L of K, such that the set X(L) of L-rational points on X is Zariski
dense. The next theorem shows that it is not always necessary to extend K, even if
the automorphism group is trivial and we have K = Q.

Theorem 1.6. Let X ⊂ P3
Q(x, y, z, w) be the surface given by

2x3w + 2x2z2 + 2x2zw + x2w2 + 2xy2w + 6xyz2 + 2xyw2 + xz2w+

+ 2y3z + 6y2z2 + y2w2 + 10yz2w + z3w + 7z2w2 − 4zw3 = 0.

Then X is smooth, we have AutX = {1}, and the set X(Q) is Zariski dense in X.

The surface in Theorem 1.6 admits an elliptic fibration. If the result of Bogomolov
and Tschinkel does not apply, then there may still be infinitely many rational points,
as shown by the next theorem.

Theorem 1.7. Let X ⊂ P3
Q(x, y, z, w) be the surface given by

w(3x3+3xy2−xyw+3xzw−xw2+y3−y2w+2z3+w3) = (xy+xz+yz)(xy+xz+3yz).

Then X is smooth and does not admit an elliptic fibration over Q. We have Aut X =
{1} and the set X(Q) is infinite.

To prove Theorem 1.5 we will write down explicit examples of quartic surfaces
X and show that we have both AutX = LinX and LinX = {1}. This is done
in section 3 and in a different way in section 4. The main idea behind both these
sections is described in section 2. As in [10], it is not particularly hard to check that
our examples have no nontrivial linear automorphisms. The hard part was to find
examples for which it is doable to verify this by hand. In section 5 we prove Theorems
1.5, 1.6, and 1.7.

Our method works for any characteristic. We are limited, however, by the lack of
the ability to compute the characteristic polynomial of Frobenius acting on certain
cohomology groups in large characteristics. This is used to show AutX = LinX.

2. The idea

The following lemma is the key ingredient to proving AutX = LinX .

Lemma 2.1. Let X be a normal complete intersection in Pn and let σ be a k-

automorphism of X. If σ sends a hyperplane section of X to another hyperplane

section of X, then we have σ ∈ Lin X.

Proof. Since σ sends a hyperplane section to a hyperplane section, it fixes OX(1),
so it sends a basis of H0(X,OX(1)) to another basis. By [5], Exc. II.8.4.c, the map
H0(Pn,OPn(1)) → H0(X,OX(1)) is surjective, so the change of basis of H0(X,OX(1))
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is induced by a change of basis of H0(Pn,OPn(1)). The lemma now follows from [5],
Thm. II.7.1. �

For the remaining of this paper we will assume that X is a smooth quartic surface
in P3. The condition of Lemma 2.1 is equivalent to σ fixing the class of hyperplane
sections in the Picard group PicX. This is the group of divisor classes on X modulo
linear equivalence. The Néron-Severi group NS(X) is the group of divisor classes
modulo algebraic equivalence. For a precise definition of algebraic equivalence, see
[5], Exc. V.1.7. The group NS(X) is a finitely generated group. Its rank ρ =
dimQ NS(X) ⊗ Q is called the Picard number of X . Note that in other papers ρ is
sometimes called the geometric Picard number of X .

For K3 surfaces, in particular for smooth quartic surfaces in P3, linear equivalence
is the same as algebraic and numerical equivalence. This means that two divisors on
X are linearly equivalent if and only if they have the same intersection number with
all other divisors. It implies that PicX is finitely generated and free, isomorphic to
NS(X) and the intersection pairing endows PicX with the structure of a lattice. For
a divisor D, let [D] denote the divisor class in PicX ∼= NS(X). We will say that a
divisor D on X is very ample if there exists an integer m and a closed immersion
ϕ : X → Pm such that ϕ(D) is a hyperplane section on ϕ(X).

Lemma 2.2. Let X be a smooth quartic surface in P3 and C a smooth, geometrically

irreducible curve on X. Then we have C2 = 2g − 2, where g denotes the genus of C.

Proof. Since the canonical divisor on X is trivial (see [5], Exm. II.8.20.3), this
follows from the adjunction formula, see [5], Prop. V.1.5. �

Proposition 2.3. Let X be a smooth quartic surface in P3 and let σ be a

k-automorphism of X. Let H denote the divisor class of hyperplane sections. Then

the following implications hold.

(1) If NS(X) is generated by H then we have σ ∈ Lin X.

(2) If NS(X) is generated by H and the divisor class of a line L, then we have

σ ∈ Lin X and σ fixes L.

(3) If NS(X) is generated by H and the divisor class of a conic C, then we have

σ ∈ LinX and σ fixes the plane that contains C.

Proof. Without loss of generality we may assume X = X . Since the induced
automorphism σ∗ of NS(X) preserves intersection numbers, it is an automorphism
of NS(X) as a lattice. Set H ′ = σ∗(H). Note that σ∗ sends very ample divisor classes
to very ample divisor classes and effective divisor classes to effective divisor classes,
so H ′ is a very ample divisor class.

Case (1). The divisor classes H ′ and H both generate NS(X) ∼= Z, so we have
either H ′ = −H or H ′ = H . As H ′ is effective, we find H ′ = H and by Lemma 2.1
we have σ ∈ LinX .

Case (2). We have H2 = deg X = 4 and H · [L] = deg L = 1, see [5], Exc. V.1.2.
By Lemma 2.2 we have L2 = −2. This means that with respect to the basis {H, [L]}
the lattice NS(X) has Gram matrix (

4 1
1 −2

)
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and thus discriminant −9. The automorphism group of this lattice is isomorphic
to (Z/2Z)2 and it is generated by the automorphisms [−1] : x 	→ −x and τ : H 	→
H + [L], [L] 	→ −[L]. The only automorphism that sends effective divisor classes to
effective divisor classes is the identity, so we find σ∗ = Id. This implies that every
hyperplane section is sent to a divisor that is linearly equivalent to it, i.e., another
hyperplane section. From Lemma 2.1 we get σ ∈ LinX. We also conclude that σ
maps L to an effective divisor L′ that is linearly equivalent to L. As two different
irreducible effective divisors have a nonnegative intersection number, we conclude
from L′ · L = L2 = −2 that we have L′ = L, so σ fixes L.

Case (3). We find similarly to case (2) that with respect to the basis {H, [C]} the
lattice NS(X) has Gram matrix (

4 2
2 −2

)

and thus discriminant −12. Note that the conic C is contained in a plane V , see [5],

Exc. IV.3.4. The other component C̃ in V ∩X has degree deg X · deg V − deg C = 2,
so it is also a conic, which a priori might be degenerated. Let a and b be integers such
that H ′ = aH + b[C]. Since H ′ is very ample, it has positive intersection number

with the effective divisor classes [C] and [C̃] = H − [C] (see [5], Thm. V.1.10), so we
find

0 < H ′ · [C] = (aH + b[C]) · [C] = 2a − 2b

0 < H ′ · [C̃] = (aH + b[C]) · (H − [C]) = 2a + 4b

We have 4 = H2 = H ′2 = 4a2 +4ab−2b2, so we deduce 4 = (2a−2b)(2a+4b)+6b2 >

6b2, which implies b = 0. From H ′2 = 4 and the inequalities above we conclude a = 1,
so σ∗H = H ′ = H . Again by Lemma 2.1 we have σ ∈ Lin X . The orthocomplement
of H in NS(X) is generated by D = 2[C] − H , so we find σ∗D = ±D. This implies

σ∗[C] = [C] or σ∗[C] = H − [C] = [C̃]. This means that σ sends C to a divisor that

is linearly equivalent to C or to C̃. As both C and C̃ have negative self intersection,
this implies as in case (2) that σ maps C to C or to C̃. Since V is the unique plane

containing C or C̃, the automorphism σ fixes V . �

The following lemma will be useful in conjunction with Proposition 2.3.

Lemma 2.4. Let X be a smooth quartic surface in P3 and let H denote the class

of hyperplane sections. Let ρ denote the Picard number of X. Then the following

implications hold.

(1) If ρ ≤ 1, then NS(X) is generated by H.

(2) If ρ ≤ 2 and X contains a line L, then NS(X) = 〈H, [L]〉.
(3) If ρ ≤ 2 and X contains a conic C, then NS(X) = 〈H, [C]〉.

Proof. Without loss of generality we may assume that the ground field is algebraically
closed, so we have X = X. We say that a lattice Λ with its pairing given by (x, y) 	→
x · y is even if the norm x · x is even for all x ∈ Λ. From Lemma 2.2 we find that the
integral lattice NS(X) is generated by elements of even norm, so NS(X) is an even
lattice. Note that the discriminants of a lattice Λ and a sublattice Λ′ of finite index
in Λ are related by disc Λ′ = [Λ : Λ′]2 · disc Λ.
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Case (1). From H2 = 4 we find H �= 0, so ρ = 1 and the lattice 〈H〉 has finite
index in NS(X). This implies [NS(X) : 〈H〉]2 · discNS(X) = disc〈H〉 = H2 = 4. As
any 1-dimensional even lattice has even discriminant, we find that disc NS(X) is even,
so [NS(X) : 〈H〉] = 1, and NS(X) is generated by H .

Case (2). As in the proof of Proposition 2.3, the lattice 〈H, [L]〉 is 2-dimensional and
has discriminant −9. Therefore we have ρ = 2 and [NS(X) : 〈H, [L]〉]2 ·discNS = −9.
We conclude NS(X) = 〈H, [L]〉 or disc NS(X) = −1. By the classification of even
unimodular lattices, the latter case implies that NS(X) is isomorphic to the lattice
with Gram matrix (

0 1
1 0

)
,

which is impossible for a quartic surface by a theorem of Van Geemen, see [13], 5.4.
We find that NS(X) is indeed generated by H and [L].

Case (3). As in the proof of Proposition 2.3, the lattice 〈H, [C]〉 is 2-dimensional
with discriminant −12 and Gram matrix(

4 2
2 −2

)
.(1)

Therefore we have [NS(X) : 〈H, [C]〉]2 · disc NS = −12. We conclude that the index
[NS(X) : 〈H, [C]〉] divides 2. Take D ∈ NS(X). Then we have 2D = aH + b[C] for
some integers a, b. Since NS(X) is even, we find 8|4D2 = (AH + b[C])2 = 4a2 +4ab−
2b2. This implies that a and b are both even, so we have D ∈ 〈H, [C]〉. Since this
holds for all D ∈ NS(X), we find NS(X) = 〈H, [C]〉. �

In view of implication (1) of Proposition 2.3 and Lemma 2.4, one approach to
proving Theorem 1.5 is to take Poonen’s examples of quartic surfaces X with Lin X =
{1} (see [10]) and prove that one of them has Picard number 1. There are at least two
problems with this approach. First of all, by Tate’s conjecture (see [12]) the Néron-
Severi group of a smooth quartic surface in P3 over a field of positive characteristic
has even rank. As Tate’s conjecture has been proved for all smooth quartic surfaces
in characteristic p ≥ 5 that are ordinary (see [9]), there is not much hope for this
approach in positive characteristic. The second problem lies in proving that the
Picard number of an explicit quartic surface X over a field of characteristic 0 equals
1. The only way known to do this is described in [15]. It requires two primes of
good reduction for which we know the discriminant of the Néron-Severi lattice of the
reduction up to a square factor. It is not clear how to obtain this.

Another way to use (1) of Proposition 2.3 is to take the quartic surfaces X with
Picard number 1 that the author found in [15] and prove that they satisfy LinX = {1}.
The problem with this approach is that these surfaces are defined by fairly erratic
polynomials, which makes it hard to get a handle on their linear automorphisms.

We will therefore use only implications (2) and (3) of Proposition 2.3. This gives the
extra advantage of knowing a specific subvariety that is fixed under any automorphism
σ, which severely restricts the possibilities for such σ.

Let X be a smooth surface over a number field K and let p be a prime of good
reduction with residue field k. Let X be an integral model for X over the localization
Op of the ring of integers O of K at p. Let l be any extension field of k. Then by
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abuse of notation we will write X × l for X ×SpecOp
Spec l. To bound the Picard

number of X we will use the following propositions.

Proposition 2.5. Let X be a smooth surface over a number field K and let p be a

prime of good reduction with residue field k. Then we have

rankNS(X × K) ≤ rankNS(X × k).

Proof. See [4], Example 20.3.6. It also follows from a natural injection NS(X ×K)⊗

Q ↪→ NS(X × k) ⊗ Q, see [14], Prop. 6.2. �

Proposition 2.6. Let X be a smooth surface over a finite field k with q elements.

Let l be a prime not dividing q. Let F denote the automorphism on H2
ét(X, Ql)(1)

induced by q-th power Frobenius. Let t denote the number of eigenvalues of F that

are roots of unity, counted with multiplicity. Then there is a natural injection

NS(X) ⊗ Ql ↪→ H2
ét(X, Ql)(1)

that respects the action of Frobenius and we have rankNS(X) ≤ t.

Proof. See [14], Prop. 6.2 and Cor. 6.4. Note that in the referred corollary Frobenius
acts on the cohomology group H2

ét(X, Ql) without a twist. Therefore, the eigenvalues
are scaled by a factor q. �

Remark 2.7. Tate’s conjecture (see [12]) states that the inequality in Proposition 2.6
is in fact an equality.

One way to find the characteristic polynomial of Frobenius is through the Lefschetz
formula. For a smooth, projective variety X over the field Fq and a positive integer
n, this formula relates the number of points on X over Fqn to the traces of Fn

i for

0 ≤ i ≤ 4, where Fi is the q-th power Frobenius acting on H i
ét(X, Ql). For a K3

surface only the action for i = 2 is unknown, so the trace of Fn
2 can be computed

from #X(Fqn). From these traces for various n one can deduce the characteristic

polynomial of F2. If a priori a Galois invariant subspace V of H2
ét(X, Ql) is known,

then it suffices to find the characteristic polynomial of Frobenius on the quotient,
which requires fewer traces. In our case V will always be generated by the class of
hyperplanes and the class of either a line or a conic. For details see [14], section 6
and 7, and [15], section 2. A faster way to find the number t as in Proposition 2.6
is to use Kedlaya’s algorithm based on De Rham cohomology [7], analogous to his
algorithm for hyperelliptic curves described in [6]. We will use both methods freely
without reproducing the details that can be found in these references.

The following lemmas will be used in sections 3 and 4.

Lemma 2.8. Let Z be a smooth, irreducible hypersurface in Pn over an algebraically

closed field, with n ≥ 3. Let H be a hyperplane not equal to Z and let C be an

irreducible component of the scheme theoretic intersection H ∩Z. Then C is reduced

and the intersection multiplicity of H and Z along C is equal to 1.

Proof. Let S = k[x0, . . . , xn] denote the homogeneous coordinate ring of Pn. Sup-
pose Z is given by f = 0 for some f ∈ S. Without loss of generality we may assume
that H is given by xn = 0. Then H is isomorphic to Pn−1 with homogeneous coor-
dinate ring T = k[x0, . . . , xn−1] and H ∩ Z is given by the image g of f under the
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homomorphism S → T that sends xn to 0. Since T is a unique factorization domain,
the component C corresponds to an irreducible factor h of g. We find from the defi-
nition of intersection multiplicity (see [5], p. 53) that the intersection multiplicity of
H and Z along C is equal to 1 if and only if the exponent of h in g equals 1, which is
the case if and only if the component C is reduced. Suppose the exponent of h in g
were at least 2. Then we could write f = xnq + h2p for some q ∈ S and p ∈ R. This
implies that for every point on C, which is given by xn = h = 0, we have f = 0 and
∂f/∂xi = 0 for i ∈ {0, . . . , n − 1}. From n ≥ 3 we conclude that C has dimension
at least 1. From the Projective Dimension Theorem (see [5], Thm. I.7.2) it follows
that there is a point P on C that also satisfies ∂f/∂xn = 0, which implies that Z is
singular at P . The lemma follows from this contradiction. �

Lemma 2.9. Let k be a field of characteristic different from 2 and 3. Let X be a

K3 surface over k with Picard number at most 2. Let π : X → P1 be an elliptic

fibration. Then all singular fibers are irreducible curves with either a node or a cusp.

Let n and c denote the number of nodal and cuspidal fibers respectively. Then we have

n + 2c = 24.

Proof. Let F be a fiber of π with r irreducible components. By [11], Prop. III.8.2,
these components generate a sublattice of NS(X) of rank r in which every element z
satisfies z2 ≤ 0. Any ample divisor has positive self intersection and therefore none
of its multiples is contained in this sublattice, so the Picard number of X is at least
r + 1. This proves that all fibers are irreducible. In general, all irreducible singular
fibers of an elliptic fibration are nodal or cuspidal curves. For any fiber F , let e(F )
denote the Euler characteristic of F . For K3 surfaces, we have

∑
F e(F ) = 24, where

the sum is taken over all singular fibers F of π, see [3], Cor. 7.16 and p. 178. The
lemma follows from the fact that outside characteristic 2 and 3, nodal and cuspidal
fibers have Euler characteristic 1 and 2 respectively. �

Lemma 2.10. Let f ∈ R[x] be a polynomial of degree d all of whose roots have

complex absolute value equal to 1. Then we have xdf(x−1) = (−1)nf(x), where n is

the order of vanishing of f at x = 1.

Proof. The only real numbers of absolute value 1 are ±1, so the factorization of f
into irreducible factors over R is

f = c(x − 1)n(x + 1)m

r∏
i=1

gi,

for some constant c, integers m, n, r, and quadratic monic polynomials gi. Since the
conjugate roots of gi have absolute value 1, we have gi = x2 +aix+1 for some ai ∈ R,
so x2gi(x

−1) = gi(x). The lemma follows. �

3. Explicit examples containing a line

Proposition 3.1. Let k be any field and let f1, f2, f3 ∈ k[x, y, z, w] be homogeneous

polynomials of degree 2. Let X be the surface in P3 given by

w(x3 + xy2 + wf1) + z(y3 + zf2) + zwf3 = 0.(2)
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Let π : X → P1 be the morphism given by [x : y : z : w] 	→ [z : w]. Suppose that X is

smooth and its Picard number is at most 2. Assume that the fiber of π above [1 : 0]
is singular at [0 : 0 : 1 : 0], the fiber above [0 : 1] has a cusp at [0 : 0 : 0 : 1], and no

other fiber is cuspidal. Then we have AutX = {1}.

Let L be the line given by w = z = 0. The morphism π in Proposition 3.1 is
an elliptic fibration (not necessarily with a section). Each fiber is the union of the
components other than L in some hyperplane section through L. In order for f1, f2,
and f3 to satisfy all conditions of Proposition 3.1, they have to satisfy other conditions
that are easier to check. The following lemma states some of these conditions. Not
only are they useful for finding explicit examples, some of them will also be used in
the proof of Proposition 3.1.

Lemma 3.2. Let f1, f2, f3, X, and π be as in Proposition 3.1. Then there are

f ′
1, f

′
2, f

′
3 ∈ k[x, y, z, w] that satisfy the following conditions.

(a) X is given by w(x3 + xy2 + wf ′
1) + z(y3 + zf ′

2) + zwf ′
3 = 0,

(b) f ′
1, f

′
2 ∈ k[x, y],

(c) f ′
1 is a square over k,

(d) the coefficients of z2 and w2 in f ′
3 are nonzero,

(e) the polynomials x3 + xy2 + wf ′
1 and y3 + zf ′

2 are irreducible over k,

(f) if k is finite, say #k = q, and F is the q-th power Frobenius acting on

H2
ét(X, Ql)(1), and Tate’s conjecture is true, then the sign of the functional

equation for the characteristic polynomial of F is positive.

Proof. By definition there are f ′
1, f

′
2, f

′
3 such that (a) is satisfied, namely given

by f ′
i = fi. After collecting all monomials of the polynomial g = w(x3 + xy2 +

wf ′
1) + z(y3 + zf ′

2) + zwf ′
3 that are divisible by zw in the term zwf ′

3 we may assume
f ′
1 ∈ k[x, y, w] and f ′

2 ∈ k[x, y, z]. Since the fiber F∞ of π above [1 : 0], given by
w = y3 + zf ′

2 = 0, contains the singular point Pz = [0 : 0 : 1 : 0], we find that the
polynomial y3 + zf ′

2 and its derivatives with respect to x, y, and z all vanish at Pz .
This implies that f ′

2 does not contain the variable z, so we have f ′
2 ∈ k[x, y]. Similarly

we find f ′
1 ∈ k[x, y] from the singularity Pw = [0 : 0 : 0 : 1] in the fiber F0 above [0 : 1],

which proves (b). The fact that F0 has a cusp at Pw is then equivalent to the fact
that f ′

1 is a square in k[x, y], which proves (c). It is now easily checked that g and its
derivatives with respect to x, y, and w all vanish at Pw. Since X is smooth at Pw, this
implies that ∂g/∂z does not vanish at Pw, which is equivalent to the coefficient of w2

in f ′
3 being nonzero. Similarly we find from the fact that X is smooth at Pz that the

coefficient of z2 in f ′
3 is nonzero. This takes care of (d). For (e), note that all fibers

are geometrically integral by Lemmas 2.8 and 2.9. The fibers F0 and F∞ are given by
z = x3 +xy2+wf ′

1 = 0 and w = y3 +zf ′
2 = 0 respectively, so the polynomials y3+zf ′

2

and x3 + xy2 + wf ′
1 are irreducible over k. Finally, assume all hypotheses of (f). By

Lemma 2.4 the Néron-Severi group NS(X) is generated by the class of hyperplane
sections and the divisor class of the line L. Since F acts trivially on these classes,
by Proposition 2.6 and Remark 2.7 we find that there are exactly two eigenvalues
of F that are roots of unity, both equal to 1. In particular, the multiplicity of the
eigenvalue 1 is even, which implies that the sign of the functional equation is positive
by Lemma 2.10. �
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Proof of Proposition 3.1. Replace the fi by the f ′
i of Lemma 3.2. Since X contains

the line L, we find from Lemma 2.4 that NS(X) is generated by the class of hyperplane
sections and the class [L]. Let σ be any k-automorphism of X. By Proposition 2.3
we have σ ∈ LinX and σ fixes L. The first claim implies that there exists a matrix A
such that σ sends [x : y : z : w] to [x′ : y′ : z′ : w′] with (x′ y′ z′ w′)t = A · (x y z w)t,
where vt denotes the transpose of the vector v. Since A maps the generators z, w of
the ideal of L to generators of the same ideal, we find that A is of the form⎛

⎜⎜⎝
a b κ λ
c d μ ν
0 0 p q
0 0 r s

⎞
⎟⎟⎠ .

Let g be the polynomial in the left-hand side of equation (2). Set (x′ y′ z′ w′)t =
A · (x y z w)t. As σ is an automorphism, the polynomial g′ = g(x′, y′, z′, w′) in terms
of the variables x, y, z, w also defines X , so g′ is a scalar multiple of g. After scaling
the matrix A we may assume g′ = g. Comparing the coefficients in g and g′ of the
monomials that are linear in z and w we find that the following expressions are all
zero.

Q1 = c3p + (a3 + ac2)r,

Q2 = c3q + (a3 + ac2)s − 1,

Q3 = 3c2dp + (3a2b + 2acd + bc2)r,

Q4 = 3c2dq + (3a2b + 2acd + bc2)s,

Q5 = 3cd2p + (3ab2 + ad2 + 2bcd)r,

Q6 = 3cd2q + (3ab2 + ad2 + 2bcd)s − 1,

Q7 = d3p + (b3 + bd2)r − 1,

Q8 = d3q + (b3 + bd2)s.

This implies that we also have

cr = −sdQ3 + rdQ4 + scQ5 − rcQ6 = 0,

c3s + d3r = sd3Q1 − rd3Q2 − sc3Q7 + rc3Q8 = 0.

From the first of these last two equations we find r = 0 or c = 0. In case of r = 0, we
find s �= 0 from the fact that A is invertible and from the second equation we then
find c = 0, so we have c = 0 in either case. Since A is invertible, we conclude a �= 0.
Then the equation Q1 = 0 implies r = 0 and Q2 = 0 gives s = a−3. From Q4 = 0 it
now follows that we have 3b = 0. Equation Q6 = 0 yields s = a−1d−2, which together
with s = a−3 gives d = ±a. The equation Q7 = 0 shows p = d−3.

From r = 0 we deduce that the fiber F∞ of π above [1 : 0] is mapped to itself.
All fibers are geometrically integral by Lemma 2.8 and 2.9. As integral cubic plane
curves have at most one singular point (see [5], Exm. V.3.9.2), the singular point
[0 : 0 : 1 : 0] of F∞ is unique and thus fixed by σ. This implies κ = μ = 0. The
cuspidal fiber F0 above [0 : 1] is sent isomorphically to the fiber above [q : s]. The
only cuspidal fibers lie above [0 : 1] and possibly [1 : 0], so from s �= 0 we find q = 0.
We deduce that σ sends the unique cusp [0 : 0 : 0 : 1] of F0 to itself, which implies
λ = ν = q = 0.
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From Lemma 3.2 we know that y3+zf2 is irreducible, so f2 ∈ k[x, y] is not divisible
by y. Therefore the coefficient χ of x2 in f2 is nonzero. Comparing the coefficient of
x2z2 in g′ and g we find from a2 = d2 that we have

χ = χa2p2 = χa2d−6 = χa−4,

which implies that we have a4 = 1. By Lemma 3.2 the coefficient of wz3 in g is also
nonzero. Comparing this to the coefficient of wz3 in g′ we now find 1 = d−9a−3 =
d−1a, so a = d. After dividing A by a we may assume 1 = a = d = p = s.
By comparing the coefficient of xyz2 in g and g′ we then get 2χb = 0, so 2b = 0.
Together with 3b = 0 this gives b = 0 and we find that σ is the identity. As this holds
for every σ ∈ Aut X we find AutX = {1}. �

Remark 3.3. The main idea of the proof of Proposition 3.1 is that the line L given
by z = w = 0 is fixed by any automorphism. This implies that any automorphism
permutes the fibers of π. We picked some extra conditions to ensure that some of
these fibers have to be fixed, which yields enough information to deduce that every
automorphism is trivial. These conditions are by no means general. They are carefully
chosen such that on one hand they are easy enough to verify the proof without a
computer, while on the other hand it leaves ample examples among which to search
for surfaces with the right Picard number.

Before we give an explicit example that satisfies all conditions of Proposition 3.1,
we will sketch the odds we had to beat to find one. Based on Lemma 3.2, the least
number of monomials of an equation as in Proposition 3.1 that satisfies all conditions
of the proposition is 7. This minimum is achieved if and only if there are α, β, γ, δ ∈ k∗,
such that the quartic surface X is given by

w(x3 + xy2 + αwy2) + z(y3 + βzx2) + zw(γz2 + δw2) = 0.(3)

The map [x : y : z : w] 	→ [−x : −y : z : w] gives an isomorphism between the
surfaces corresponding to (α, β, γ, δ) and (−α,−β,−γ,−δ), while the map [x : y : z :
w] 	→ [x : −y : −z : w] gives an isomorphism between the surfaces corresponding to
(α, β, γ, δ) and (α, β,−γ,−δ). For k = F3 this gives four quadruples of isomorphic
surfaces. The four nonisomorphic surfaces are all smooth. For one of them the
fibration π has reducible components, so its Picard number is at least 3 by Lemma
2.9. For the remaining three surfaces X we computed the characteristic polynomial
of Frobenius on H2

ét(X, Ql)(1). The sign of the functional equation of one of them is
negative, which gives a bound for the Picard number larger than 2 by Lemma 3.2.
Unfortunately, Proposition 2.6 gives an upper bound of at least 4 for the remaining
two Picard numbers as well.

We therefore look at surfaces given by (3) with an extra term εyz2w for some ε ∈ F∗
3.

In this case we get eight nonisomorphic smooth surfaces, one of which has a hyper-
plane section that contains three components. For only one of the remaining seven
surfaces the sign of the corresponding functional equation is positive. We computed
the characteristic polynomial of Frobenius in that case and found from Proposition
2.6 that the Picard number is at most 2. This yields the following corollary.

Corollary 3.4. Let k be any field of characteristic 0 or 3. Let X in P3 over k be

given by

x3w − x2z2 + xy2w + y3z + y2w2 + yz2w − z3w + zw3 = 0
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Then we have Aut X = {1}.

Proof. Let g denote the polynomial in the given equation. Note that the equation is
of the form used in Proposition 3.1 with f1 = y2, f2 = −x2, and f3 = yz − z2 + w2.
Although without a computer algebra package it is a bit of work to show that X
is smooth, with such a package one easily checks that this is the case. Let X0 and
X3 denote the surfaces defined by g = 0 over Q and F3 respectively. We will show
rankNS(X3) ≤ 2. Each of the nonsingular fibers of the fibration π as in Proposition
3.1 can be given the structure of an elliptic curve by searching for a rational point
on it. There are fast algorithms to compute the number of points on elliptic curves,
implemented in for instance magma. Summing over all fibers, we find the number of
points on X3 over F3n for n ∈ {1, . . . , 10}. These numbers are

17, 101, 812, 6545, 58502, 531902, 4788164, 43074713, 387494444, 3486985076.

As in [14], Prop. 7.1, and [15], Thm. 3.1, we can use the Lefschetz formula to
find the characteristic polynomial of Frobenius acting on H2

ét(X3, Ql)(1) from these
numbers. Here we use the fact that we already know a Galois invariant subspace
of H2

ét(X3, Ql)(1), generated by a hyperplane section and the line L. In Q[t] the
characteristic polynomial factors into irreducible factors as

1

3
(t − 1)2(3t20 − t19 − t17 + 2t16 + 2t15 − t13 − t12 + t11

+ t10 + t9 − t8 − t7 + 2t5 + 2t4 − t3 − t + 3).

The roots of the irreducible factor of degree 20 are not integral, so they are not roots
of unity. By Proposition 2.6 we find rankNS(X3) ≤ 2. From Proposition 2.5 we also
find rankNS(X0) ≤ 2. Depending on the characteristic we have either X = X3×k or
X = X0 × k. As the Néron-Severi group is algebraic, we conclude NS(X) = NS(X3)
or NS(X) = NS(X0). In both cases we conclude rankNS(X) ≤ 2. The fibers of π
above [0 : 1] and [1 : 0] have a cusp at the points [0 : 0 : 0 : 1] and [0 : 0 : 1 : 0]
respectively. In characteristic 0 there are 20 more singular fibers. By Lemma 2.9
these fibers are all nodal curves. In characteristic 3 there are 14 more singular fibers.
A tedious calculation shows that again none of the corresponding fibers has a cusp.
From Proposition 3.1 we deduce AutX = {1}. �

4. Explicit examples containing a conic

Proposition 4.1. Let k be any field with elements α, β satisfying α3β �= αβ3. Let

f ∈ k[x, y, z, w] be a homogeneous polynomial of degree 3, such that the coefficients

of y3 and z3 in f are different, or the coefficients of x2y and x2z in f are different.

Suppose that the surface X in P3 given by

wf = (xy + xz + αyz)(xy + xz + βyz)

is smooth with Picard number at most 2. Then we have Aut X = {1}.

As in the previous section, the following lemma will be useful both for the proof
of this proposition and for constructing examples that satisfy all conditions.

Lemma 4.2. Let f be as in Proposition 4.1. Then the following conditions hold.

(a) The coefficients of x3, y3, and z3 in f are nonzero.
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(b) If k is finite, say #k = q, and F is the q-th power Frobenius acting on

H2
ét(X, Ql)(1), and Tate’s conjecture is true, then the sign of the functional

equation for the characteristic polynomial of F is positive.

(c) Suppose k′ is a finite quadratic subfield of k, say #k′ = q, the elements α and

β are conjugate over k′, and f ∈ k′[x, y, z, w]. Then X is defined over k′. If

F is the q-th power Frobenius acting on H2
ét(X, Ql)(1), and Tate’s conjecture is

true, then the sign of the functional equation for the characteristic polynomial

of F is negative.

Proof. Note that X contains the points P1 = [1 : 0 : 0 : 0], P2 = [0 : 1 : 0 : 0], and
P3 = [0 : 0 : 1 : 0]. One easily checks that for i = 1, 2, 3, the surface X is smooth at
Pi if and only if we have f(Pi) �= 0. This implies (a). For (b) and (c), note that by
Lemma 2.4 the Néron-Severi group NS(X) is generated by the class H of hyperplane
sections and the divisor class of the conic C given by w = xy +xz + αyz = 0. In case
(b), F acts trivially on these classes, and the proof proceeds as the proof of (f) of
Lemma 3.2. In case (c), F acts trivially on H , and by a nontrivial quadratic character
on the class 2[C] − H . By Proposition 2.6 and Remark 2.7 this implies that counted
with multiplicity, there are exactly two eigenvalues of F that are roots of unity, equal
to 1 and −1 respectively. In particular, the multiplicity of the eigenvalue 1 is odd,
which implies that the sign of the functional equation is negative by Lemma 2.10. �

Proof of Proposition 4.1. Let C and C̃ denote the conics given by w = xy +
xz + αyz = 0 and w = xy + xz + βyz = 0 respectively. As both are contained
in X , we find from Lemma 2.4 that NS(X) is generated by the class of hyperplane
sections and the class [C]. Let σ be a k-automorphism of X . From Proposition 2.3
we conclude that we have σ ∈ LinX and that σ fixes the plane containing C, which
also contains C̃. It follows that σ permutes the intersection points of C and C̃. These
are Px = [1 : 0 : 0 : 0], Py = [0 : 1 : 0 : 0], and Pz = [0 : 0 : 1 : 0], where the first
has multiplicity 2 and the others have multiplicity 1. This implies that σ fixes Px

and either it also fixes Py and Pz, or it switches these two. Therefore σ is given by
[x : y : z : w] 	→ [x′ : y′ : z′ : w′] with (x′ y′ z′ w′)t = A(x y z w)t for a matrix A of
the form ⎛

⎜⎜⎝
p 0 0 λ
0 q 0 μ
0 0 r ν
0 0 0 s

⎞
⎟⎟⎠ , or

⎛
⎜⎜⎝

p 0 0 λ
0 0 r μ
0 q 0 ν
0 0 0 s

⎞
⎟⎟⎠ ,

with p, q, r, s ∈ k
∗

and λ, μ, ν ∈ k. Let g denote the polynomial wf − (xy + xz +
αyz)(xy + xz + βyz).

Suppose we are in the first (diagonal) case. Then with x′ = px+λw, y′ = qy+μw,
z′ = rz + νw, and w′ = sw the polynomial g′ = g(x′, y′, z′, w′) in terms of the
variables x, y, z, and w also defines X , so it is a constant multiple of the polynomial
g. After scaling A we may assume g′ = g. For any monomial M , let cM and c′M
denote the coefficients of M in g and g′ respectively. Then for every monomial M
we have cM = c′M . From the assumption α3β �= αβ3 we find α + β �= 0, so cM �= 0
for M ∈ S1 = {xy2z, xyz2, x2y2}. As the coefficient of x3 in f is nonzero by Lemma
4.2, we also conclude cwx3 �= 0. Note that the terms (xy + xz + αyz)(xy + xz + βyz)
and (x′y′ + x′z′ + αy′z′)(x′y′ + x′z′ + βy′z′) do not contribute to cM and c′M for
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M = wx3. Therefore the equations c′M = cM for M ∈ S1 ∪ {wx3} give sp3 = pq2r =
pqr2 = p2q2 = 1, which implies p = q = r = s. After scaling A we may assume
p = q = r = s = 1. Then for M ∈ {xy2w, xz2w, yz2w} the equations cM = c′M give

−2λ − (α + β)ν + cxy2w = cxy2w,

−2λ − (α + β)μ + cxz2w = cxz2w,

−(α + β)λ − 2αβμ + cyz2w = cyz2w.

By hypothesis we have α2 �= β2. One easily checks that this implies that this system
of linear equations has no nontrivial solutions in λ, μ, and ν, so we have λ = μ = ν = 0
and σ is the identity.

Suppose we are in the second (nondiagonal) case. Now we have x′ = px + λw,
y′ = rz + μw, z′ = qy + νw, and w′ = sw. As before we may assume that g′ =
g(x′, y′, z′, w′) equals g, and we can again compare the coefficients cM and c′M of the
monomials M in g and g′ respectively. As in the first case we find p = q = r = s, so
we can scale A to get p = q = r = s = 1. This gives c′wz3 = cwy3 . From c′wz3 = cwz3

we then deduce cwy3 = cwz3 , so the coefficients of y3 and z3 in f are equal. For
M ∈ {x2yw, x2zw} the equations cM = c′M give

−2μ − 2ν + cx2zw = cx2yw,

−2μ − 2ν + cx2yw = cx2zw,

which has no solution in any characteristic unless cx2yw = cx2zw. This implies that
also the coefficients of x2z and x2y in f are equal, which contradicts our assumptions.
We conclude that this case does not occur, so σ is the identity. As this holds for every
σ ∈ AutX we find Aut X = {1}. �

Remark 4.3. As for Proposition 3.1, the conditions in Proposition 4.1 are by no means
general.

Remark 4.4. We will give examples of quartic surfaces X for which Proposition 4.1
immediately tells us that we have AutX = {1}. To do this over a field k we need
α, β ∈ k, such that αβ(β − α)(β + α) �= 0 and the right-hand side of the equation in
Proposition 4.1 is defined over k. If k has at least 4 elements than the existence of such
α and β follows from the fact that for any nonzero α the polynomial αX(X2 − α2)
has at most 3 roots. For k = F2 we can take (α, β) = (ζ, ζ + 1) for some ζ ∈ F4 with
ζ2 + ζ + 1 = 0. For k = F3 we can take (α, β) = (1 + i, 1− i) for some element i ∈ F9

with i2 = −1.

Corollary 4.5. Let k be any field of characteristic 0 or 2 and let X ⊂ P3 over k be

given by

w(x3 + y3 + z3 + x2z + xw2) = x2y2 + 2x2yz + x2z2 − xy2z − xyz2 + y2z2.

Then we have Aut X = {1}.

Proof. Let X0 and X2 be the surfaces defined by the given equation over Q and F2

respectively. Although it is tedious work without a computer algebra package, one
easily checks that X0 and X2 are smooth. That means that p = 2 is a prime of good
reduction for X0. In [15], Rem. 6, it was shown that we have rankNS(X2) ≤ 2. From
Proposition 2.5 we also find rankNS(X0) ≤ 2. Because the Néron-Severi group is
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algebraic, we find as in the proof of Corollary 3.4 that we have rankNS(X) ≤ 2. Let
ζ be an element (possibly in a quadratic extension of k) that satisfies ζ2 + ζ + 1 = 0.
Then the equation for X is of the form given in Proposition 4.1 with

(α, β, f) = (ζ, ζ2, x3 + y3 + z3 + x2z + xw2).

From Proposition 4.1 we find AutX = {1}. �

5. Proof of the main theorems

For characteristics 0, 2, and 3 we have seen examples of quartic surfaces with trivial
automorphism group in Corollary 3.4 and 4.5. Kiran Kedlaya has also found examples
of triples (α, β, f) in characteristics 5, . . . , 19 that satisfy all conditions of Proposition
4.1.

Proposition 5.1. Take α = 1, β = 3, and (p, f) one of the following pairs.

p f
5 3x3 + 3xy2 − xyw + 3xzw − xw2 + y3 − y2w + 2z3 + w3

7 −2x3 + 2x2y + 2x2w + y3 + 3y2w + yzw − yw2 + 2z3

11 −5x3 − 2x2y − 5xy2 − 2xz2 + y3 − yz2 + 2z3 − 4w3

13 3x3 − 6x2z + y3 − 6yw2 + 2z3

17 −x3 + 8x2y − xyw + y3 − y2w + 2z3 + 5z2w − 5zw2

19 6x3 + 3x2z + 7xyw − 7xz2 + 8xzw − 9xw2 + y3+
−y2w − 5yz2 + 5yw2 + 2z3 − 4z2w − 2zw2

Then for every field k of characteristic p, all conditions of Proposition 4.1 are satisfied

for the triple (α, β, f).

Proof. The bound of the Picard number is the only condition that is not trivial to
check, see [7]. �

Proof of Theorem 1.5. Corollary 4.5 gives an explicit example in characteristics 0
and 2. For characteristic 3 an example is given by Corollary 3.4. For characteristics
5, . . . , 19 we use Proposition 4.1 with α = 1, β = 3, and (p, f) as in Proposition
5.1. �

Proof of Theorem 1.6. Let f denote the polynomial in the given equation and set
f1 = 1

2
(x + y)2, f2 = x2 + 3xy + 3y2, and f3 = x2 + 1

2
xz + 5yz + 1

2
z2 + 7

2
zw − 2w2.

Then we have 1
2
f = w(x3 +xy2 +wf1)+z(y3 +zf2)+zwf3, so X is as in Proposition

3.1. One easily checks that X is smooth with good reduction at 3. Let X3 denote the
reduction at 3. For n = 1, . . . , 10, we compute the number of points on X3 over F3n .
These numbers are

15, 107, 639, 6935, 59790, 533729, 4790661, 43039079, 387592263, 3486831422.

As in the proof of Corollary 3.4, and as in [14], Prop. 7.1, and [15], Thm. 3.1, we can
find the characteristic polynomial of Frobenius acting on H2

ét(X3, Ql)(1) from these
numbers. In Q[x] the characteristic polynomial factors into irreducible factors as

1

3
(x − 1)2(3x20 + x19 − x18 + 5x17 − 3x15 + 4x14 − 2x13 − 2x12 + x11

− 3x10 + x9 − 2x8 − 2x7 + 4x6 − 3x5 + 5x3 − x2 + x + 3).
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As the roots of the factor of degree 20 are not integral, we find rankNS(X3) ≤ 2 from
Proposition 2.6. Then from Proposition 2.5 we also find rankNS(X) ≤ 2. As before,
let π denote the elliptic fibration given by [x : y : z : w] 	→ [z : w]. The fiber F∞

above [1 : 0] has a node at [0 : 0 : 1 : 0]. The fiber F0 above [0 : 1] has a cusp at
[0 : 0 : 0 : 1]. There are 21 more singular fibers, all conjugate over Q. By Lemma
2.9 these are all nodal curves. We conclude that all conditions of Proposition 3.1 are
fulfilled, so we find AutX = {1}.

Consider the curve C = X ∩ H , where H is the hyperplane given by w + x = z.
Note that C can be parametrized by τ : P1 → C, [s : 1] 	→ [z − w : y : z : w] with

y = −8s4 − 4s3 + 6s2 − 1, z = 2s2(4s2 + 2s − 1), w = 2s.

The curve C intersects each fiber F of π with multiplicity deg F = 3, so the restriction
of π to C has degree 3. Identify the function field k(C) of C with k(s) through τ .
Identify the function field of the base curve P1 of π with k(t). The composition πτ is
given by [s : 1] 	→ [s(4s2 + 2s − 1) : 1], so the corresponding field extension k(s)/k(t)
of degree 3 is given by t = s(4s2 + 2s − 1). The map τ corresponds to a point O,
defined over k(s), on the generic fiber E of π, giving E the structure of an elliptic

curve over k(s). The sum S of the two conjugates of O, both defined over k(t), is also
defined over k(s). The map πτ : P1(s) → P1(t) is ramified at s0 = 1

6
above t0 = − 5

54
,

where by abuse of notation we denote the point [α : β] by αβ−1. The third point
above t0 is s1 = − 5

6
. Specializing at s = s1 we find that E specializes to the elliptic

fiber Ft0 above t0, the point O specializes to Os1
= τ(s1) = [295 : 263 : 25 : −270],

and the point S specializes to Ss1
= 2Q for Q = τ(s0) = [59 : 139 : 5 : −54]. With

these explicit equations, a standard computation shows that Q, and therefore Ss1
,

has infinite order on the elliptic curve Ft0 with Os1
as origin. This implies that S has

infinite order on the generic fiber E. The infinitely many multiples of S correspond to
infinitely many rational curves on X , all with infinitely many rational points, obtained
from specializing s. This shows that the set X(Q) of rational points is Zariski dense
in X . �

Remark 5.2. In the notation of [1], the curve C in the proof of Theorem 1.6 is a
rational nt-multisection of π. This follows from the proof. A highbrow argument for
this fact is that C is saliently ramified, because the restriction of π to C ramifies in
the smooth fiber above t = − 5

54
, see [1], Prop. 4.4.

To find a surface with such a multisection, we fixed a hyperplane H , three points
P1, P2, and P3, and searched for f1, f2, and f3 such that for X as in Proposition
3.1 the intersection C = X ∩ H is singular at the points P1, P2, and P3. As the
arithmetic genus of any hyperplane section is 1

2
(4 − 1)(4 − 2) = 3, this ensures that

C has geometric genus 0, see [5], Exm. V.3.9.2. Since C intersects the line L given
by w = z = 0 in a smooth point, we can parametrize C. Per point Pi we get three
equations for the indeterminate coefficients of the fj. If the Pi are collinear, then
X ∩ H will be the union of a line and a cubic curve, which means that the Picard
number of X will be more than 2. We therefore pick the Pi such that modulo 3 they
are not collinear. Setting f1 = a(y + bx)2, f2 = cx2 + dxy + ey2 and f3 =

∑
M cMM ,

where M runs over all 10 monomials of degree 2 in the variables x, y, z, w, we find 9
equations in 15 variables. Choosing H to be given by w + x = z, and [1 : 1 : 0 : −1],
[−1 : −1 : 1 : 2], and [1 : −1 : 1 : 0] for the Pi, the equations reduce to 9 linearly
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independent linear equations, so modulo 3 we find 315−9 = 729 candidate surfaces.
Out of all these surfaces, only 157 are nonsingular. For 64 of these, the morphism π
has a reducible fiber, making the Picard number more than 2. Out of the remaining
93 surfaces, 70 have a reducible hyperplane section defined over F9 that does not
contain L, which also implies larger Picard number than 2. For the last 23 surfaces
we computed the first 10 traces of powers of Frobenius. For ten of these surfaces the
sign of the functional equation could be determined to be negative, so the bound for
the Picard number is larger than 2 by Lemma 3.2. For eight surfaces the sign could
not be determined yet. For four of these, either sign would give an upper bound of at
least 4. Determining the sign for the other four requires substantial extra computing
time. For the last five surfaces we could determine the sign to be positive. For only
one of these, the upper bound for the Picard number is 2. This is the surface of
Theorem 1.6.

Proof of Theorem 1.7. The given surface reduces modulo 5 to the surface of
Proposition 4.1 for α = 1, β = 3, and f as in Proposition 5.1 for p = 5. From
that proposition we find that X has good reduction at 5 and since the reduction has
Picard number 2, we also find rankNS(X) ≤ 2 from Proposition 2.5. All conditions of
Proposition 4.1 are fulfilled, so we find AutX = {1}. By Proposition 2.4 the Néron-
Severi group is generated by the class H of hyperplane sections and the class of the
conic C given by w = xy + xz + yz = 0, with H2 = 4, C2 = −2, and H · C = 2. For
any nonzero class D = aH + b[C] we find D2 = (2a + b)2 − 3b2, so D2 �= 0. Because
a fiber of any fibration of X has self intersection 0, we conclude that there is no such
fibration. The conic C has a point [1 : 0 : 0 : 0], so it contains infinitely many rational
points. �
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