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A COMBINATORIAL GENERALIZATION OF THE
BOSON-FERMION CORRESPONDENCE

Thomas Lam

Abstract. We attempt to explain the ubiquity of tableaux and of Pieri and Cauchy

formulae for combinatorially defined families of symmetric functions. We show that such

formulae are to be expected from symmetric functions arising from representations of
Heisenberg algebras. The resulting framework that we describe is a generalization of the

classical Boson-Fermion Correspondence, from which Schur functions arise. Our work
can be used to understand Hall-Littlewood polynomials, Macdonald polynomials and

Lascoux, Leclerc and Thibon’s ribbon functions, together with other new families of

symmetric functions.

1. Introduction

The classical Boson-Fermion Correspondence is an isomorphism between two rep-
resentations of the Heisenberg algebra H: the Bosonic Fock space K[H−] and the
Fermionic Fock space F (0). It identifies the Schur functions sλ(x1, x2, . . .) as the im-
ages of the basis of semi-infinite wedges vi1 ∧ vi2 ∧ · · · under this isomorphism. The
Boson-Fermion Correspondence is an important basic result in mathematical physics;
see for example [7, 8, 11].

The aim of this article is to replace the classical Fermionic Fock space in the Boson-
Fermion Correspondence by another representation of the Heisenberg algebra, and to
obtain other interesting families of symmetric functions instead of the Schur functions.
The symmetric functions that we obtain have a tableaux-like definition, and satisfy
both Pieri-like identities and a Cauchy-like identity, which we now explain.

Let {Fλ(x1, x2, . . .) ∈ ΛK : λ ∈ S} be a family of symmetric functions with coeffi-
cients in a field K (usually Q, Q(q) or Q(q, t)), where S is some indexing set. Many
important families of symmetric functions have the following trio of properties.

(1) They can be expressed as the generating functions for a set of “tableaux”,
which gives the monomial expansion of Fλ:

Fλ(x1, x2, . . .) =
∑
T

s(T )xwt(T ),

where the sum is over tableaux T with “shape” λ. The composition wt(T ) is
the weight of T and s(T ) ∈ K is some additional parameter associated to T .
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(2) Together with a closely related dual family {Gλ(x1, x2, . . .) : λ ∈ S} of sym-
metric functions, they satisfy a Cauchy identity:∑

λ∈S

Fλ(x1, x2, . . .)Gλ(y1, y2, . . .) =
∞∏

i,j=1

(
b0 + b1xiyj + b2(xiyj)2 + · · · ) ,

where the coefficients bi ∈ K.
(3) They satisfy a Pieri formula:

h̃k(x1, x2, . . .)Fλ(x1, x2, . . .) =
∑

μ⇀kλ

bλ,μFμ(x1, x2, . . .),

where k ∈ Z is a positive integer, h̃1, h̃2, . . . ∈ ΛK is a sequence of symmetric
functions and bλ,μ ∈ K are coefficients defined for each pair λ, μ satisfying
some condition μ ⇀k λ.

In all such cases that the author is aware of, the definition of a tableaux involves
the condition μ ⇀k λ in the Pieri formula. The simplest case is when K = Q and
Fλ = sλ, the family of Schur functions. The indexing set S = P is the set of partitions.
The tableaux are usual semi-standard Young tableaux T ; the statistic s(T ) is equal to
1 and wt(T ) is the usual weight associated to T . The dual family {Gλ = sλ} consists
of the Schur functions again and in the Cauchy formula, bi = 1 for all i. In the Pieri
formula, h̃k = hk are the homogeneous symmetric functions. The condition μ ⇀k λ
is that μ/λ is a horizontal strip of size k and bλ,μ = 1. Recall in particular that a
semi-standard Young tableaux is just a chain of nested partitions forming a sequence
of horizontal strips.

Understanding the ubiquity of these three properties in families of symmetric func-
tions was one of the main aims of our work. Our main result is as follows. Given a
representation V of a Heisenberg algebra H (see Definition 1) with a distinguished
basis {vs | s ∈ S}, together with a highest vector vb in V , we define a family
{FV

s (x1, x2, . . .) | s ∈ S} (and a dual family {GV
s | s ∈ S}) of symmetric func-

tions which satisfy a generalized Boson-Fermion Correspondence. The definition of
FV

s is tableaux-like: for example it gives the monomial expansion of FV
s . We show

in addition that the FV
s satisfy a Pieri rule and a Cauchy identity. Examples of sym-

metric functions that can be obtained in this way include the Schur functions, Schur
Q-functions, Hall-Littlewood functions and Macdonald polynomials.

The motivating example for us is the family Gλ(x1, x2, . . . ; q) of q-symmetric func-
tions defined by Lascoux, Leclerc and Thibon [16] both combinatorially, via ribbon
tableaux, and algebraically, using the action of the Heisenberg algebra on the Fock
space of the quantized affine algebra Uq(ŝln). In [14] we studied the Gλ in analogy
with Schur functions and discovered ribbon Cauchy and Pieri identities. The current
work is an attempt to understand the ribbon Cauchy and Pieri identities in a more
systematic and general framework. As an application, we now give natural general-
izations of the functions Gλ to Fock spaces of other types and also to higher level Fock
spaces. By our main result, these new symmetric functions satisfy Cauchy and Pieri
rules as well, and will be the subject of later work.

Our Pieri and Cauchy formulae depend heavily on a sequence ai of parameters
appearing in the defining relations of the Heisenberg algebra H = H[ai] (see (5)). On
the other hand, as an abstract algebra, the Heisenberg algebra does not depend on
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the choice of ai (as long as ai �= 0). Thus it is not clear immediately which sequences
ai would lead to an interesting theory of symmetric functions.

Our work is also closely related to more combinatorial work of Fomin [4, 5, 6] and
of Bergeron and Sottile [1]. Fomin was mostly concerned with Schensted correspon-
dences and Cauchy identities while Bergeron and Sottile’s work has led to relations
with non-commutative symmetric functions and Hopf algebras. It seems that an
interesting non-commutative version of our theory also exists, though we have not
attempted to make this precise in the present article.

It would be most interesting to investigate other families of symmetric functions
which arise using our correspondence from other representations of Heisenberg alge-
bras which occur naturally.

We now briefly describe the organization of the rest of the paper. In Section 2,
we review the theory of Schur functions and symmetric functions. In Section 3,
we describe the classical Boson-Fermion Correspondence. In Section 4, we explain
how to obtain symmetric functions from representations of Heisenberg algebras. In
Section 5, we prove our generalized Boson-Fermion Correspondence. In Section 6, we
prove Pieri and Cauchy formulae for our families of symmetric functions. In Section 7,
we prove a partial converse to the theorems of Sections 5 and 6. In Section 8, we
give a series of examples which include Schur functions and Macdonald polynomials.
We also discuss the behavior of our main construction with respect to taking direct
sums or tensor products of representations. In Section 9, we explain the example
of Lascoux, Leclerc and Thibon’s ribbon functions studied in [16, 14]. Finally, we
explain how to generalise ribbon functions to other types and higher levels, following
work of Kashiwara, Miwa, Petersen and Yung [12] and Takemura and Uglov [20].

2. Schur functions

We will follow mostly the notation of [18]. Let K be a field with characteristic
0. Let ΛK denote the ring of symmetric functions over K. The ring ΛK should be
thought of a subring of the ring of formal power series in countably many variables
x1, x2, . . ., of bounded degree. If the variable set is important then we write ΛK(X)
or ΛK(Y ). We will let h1, h2, . . . denote the homogeneous symmetric functions and
p1, p2, . . . denote the power sum symmetric functions. Each of these sets forms a set
of algebraically independent generators for ΛK .

Let P denote the set of partitions. Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λl > 0) ∈ P be a
partition. The size |λ| of λ is equal to λ1 + · · · + λl and we write λ � |λ|. We also
write l(λ) = l. We generally do not distinguish between a partition λ and its Young
diagram D(λ). If D(μ) ⊂ D(λ) then λ/μ is a skew shape with size |λ/μ| = |λ| − |μ|.

We let hλ := hλ1hλ2 · · ·hλl
and pλ := pλ1pλ2 · · · pλl

. The sets {hλ : λ ∈ P} and
{pλ : λ ∈ P} are bases of ΛK . The homogeneous symmetric functions and the power
sum symmetric functions are related by the formula

(1) hn =
∑
λ�n

z−1
λ pλ

where zλ = 1m1(λ)m1(λ)!2m2(λ)m2(λ)! · · · and mi(λ) = |{j | λj = i}|.
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The monomial symmetric functions are denoted mλ and the Schur functions are
denoted sλ. The Schur functions (and more generally skew Schur functions) are the
generating functions of Young tableaux:

(2) sλ(x1, x2, . . .) =
∑
T

xwt(T ),

where the sum is over all semistandard Young tableaux T of shape λ. Alternatively,
sλ =

∑
μ Kλμmμ where the Kostka number Kλμ is equal to the number of semistan-

dard Young tableaux of shape λ and weight μ. For the purposes of this paper, a Young
tableaux T of shape λ should be thought of as a chain of partitions T = (∅ = λ0 ⊂
λ1 ⊂ · · · ⊂ λl = λ) such that each skew shape λi/λi−1 is a horizontal strip. A horizon-
tal strip is a skew shape containing at most one box in each column. The weight of T
is then the composition wt(T ) = (|λ1/λ0|, |λ2/λ1|, . . . , |λl/λl−1|). Similarly a Young
tableaux of skew shape λ/μ is a chain of partitions (μ = λ0 ⊂ λ1 ⊂ · · · ⊂ λl = λ).

The Schur functions satisfy the following Pieri formula, which describes how to
write the product of a Schur function and a homogeneous symmetric function in
terms of Schur functions:

(3) hksλ =
∑

μ⇀kλ

sμ,

where here μ ⇀k λ means that the skew shape μ/λ is a horizontal strip of size k.
The Schur functions also satisfy the following Cauchy formula, which holds within

the ring ΛK(X)⊗̂KΛK(Y ), which is the completion of the tensor product of two copies
of the symmetric functions.

(4)
∏
i,j

1
1 − xiyj

=
∑

λ

sλ(x1, x2, . . .)sλ(y1, y2, . . .).

The ring of symmetric functions ΛK possesses a bilinear symmetric form 〈., .〉 :
ΛK×ΛK → K given by 〈sλ, sμ〉 = δλμ, or alternatively by 〈pλ, pμ〉 = δλμzλ. This inner
product is known as the Hall inner product. If f ∈ ΛK then f⊥ ∈ End(ΛK) denotes
the linear operator adjoint to multiplication by f . As a particular case p⊥k = k ∂

∂pk

where the differential operator acts on symmetric functions written as polynomials in
the power sum symmetric functions.

3. The classical Boson-Fermion correspondence

Let K be a field with characteristic 0.

Definition 1. The Heisenberg algebra H = H[ai] is the associative algebra over K
with 1 generated by {Bk : k ∈ Z\{0}} satisfying

(5) [Bk, Bl] = l · al · δk,−l,

for some non-zero parameters al ∈ K satisfying al = −a−l.

As an abstract algebra, H does not depend on the choice of the elements al, since
the generators Bk can be re-scaled to force al = 1. However, we shall be concerned
with representations of H, and some choices of the generators Bk will be more natural.
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Let K[H−] = K[B−1, B−2, . . .] denote the Bosonic Fock space representation of H.
The action of the Heisenberg algebra on K[B−1, B−2, . . .] is determined by letting Bk

act by multiplication for k < 0 and setting Bk · 1 = 0 for k > 0.
One can identify K[B−1, B−2, . . .] with the algebra ΛK of symmetric functions over

K by identifying B−k with akpk for k > 0. The action of H on ΛK is then given by

Bk 
−→
{

a−kp−k for k ≤ −1,
k ∂

∂pk
for k ≥ 1.

Let λ be a partition. We define Bλ ∈ H by Bλ := Bλ1Bλ2 · · ·Bλl(λ) . Let Dk :=∑
λ�k z−1

λ Bλ where zλ is as defined in Section 2. Thus Bλ and Dk are related in the
same way as pλ and hk (see (1)).

Similarly define B−λ := B−λ1B−λ2 · · ·B−λl(λ) and Uk :=
∑

λ�k z−1
λ B−λ. Also let

Sλ ∈ H be given by Sλ :=
∑

μ z−1
μ χλ

μB−μ where the coefficients χλ
μ are the characters

of the symmetric group given by sλ =
∑

μ z−1
μ χλ

μpμ. We will need the following
standard lemma later.

Lemma 2. Let k ≥ 1 be an integer and λ be a partition. Then

B−kBλ = kakmk(λ)Bμ + BλB−k,

where μ is λ with one less part equal to k. If mk(λ) = 0 then the first term is just 0.

If V is a representation of H, then a vector v ∈ V is called a highest weight vector
if Bk · v = 0 for k > 0. The following result is well known. See for example [11,
Proposition 2.1].

Proposition 3. Let V be an irreducible representation of H with non-zero highest
weight vector v ∈ V . Then there exists a unique isomorphism of H-modules φ :
V −̃→K[B−1, B−2, . . .] such that φ(v) = 1.

For the remainder of this section we assume that H = H[1] is given by the pa-
rameters al = 1 for l ≥ 1 and al = −1 for l ≤ −1. Let W = ⊕j∈ZKvj be an
infinite-dimensional vector space with basis {vj : j ∈ Z}. Let F (0) denote the vector
space with basis given by semi-infinite monomials of the form vi0 ∧ vi−1 ∧ · · · where
the indices satisfy:

(i) i0 > i−1 > i−2 > · · ·
(ii) ik = k for k sufficiently small.

We will call F (0) the Fermionic Fock space.

Remark 1. Usually F (0) is considered a subspace of a larger Fock space
F = ⊕m∈ZF (m). The spaces F (m) are defined as for F (0) with the condition (ii)
replaced by the condition (ii(m)): ik = k − m for k sufficiently small.

Define an action of H on F (0) by

(6) Bk · (vi0 ∧ vi−1 ∧ · · · ) =
∑
j≤0

vi0 ∧ vi−1 ∧ · · · ∧ vij−1 ∧ vij−k ∧ vij+1 ∧ · · · .

The monomials are to be reordered according to the usual exterior algebra commu-
tation rules so that vi0 ∧ · · · ∧ vij

∧ vij+1 ∧ · · · = −vi0 ∧ · · · ∧ vij+1 ∧ vij
∧ · · · . Thus the

sum on the right hand side of (6) is actually finite so the action is well defined. One
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can check that we indeed do obtain an action of H. It is also not hard to see that the
representation of H on F (0) is irreducible.

The vector v̄ = v0 ∧ v−1 ∧ · · · ∈ F (0) is a highest weight vector for this action of
H. By Proposition 3, there exists an isomorphism σ : F (0) → ΛK sending v̄ 
→ 1.
An algebraic version of the Boson-Fermion Correspondence identifies the image of
vi0 ∧ vi−1 ∧ · · · under the isomorphism σ.

Theorem 4 ([11, Lecture 6]). Let λk = i−k + k. Then σ(vi0 ∧ vi−1 ∧ · · · ) = sλ.

In [11], this is called the “second” part of the Boson-Fermion Correspondence.
The “first” part consists of identifying the image of certain vertex operators under σ.
The Boson-Fermion Correspondence is a basic result in quantum field theory. It is
important in the study of a family of non-linear differential equations known as the
Kadomtsev-Petviashvili (KP) Hierarchy and also in the representation theory of affine
algebras [8, 7]. The relationship between vertex operators and symmetric function
theory has been studied previously in [9, 10, 18].

Our aim will be to generalize Theorem 4 to representations of Heisenberg algebras
with arbitrary parameters ai ∈ K. We will see that the symmetric functions that one
obtains in this manner will always have a tableaux-like definition and satisfy Pieri
and Cauchy identities. In our approach, we have ignored the vertex operators, but it
would be interesting to see how they are related to our results.

4. Symmetric functions from representations of Heisenberg algebras

Let H = H[ai] be the Heisenberg algebra with parameters ai ∈ K. Let V be a
representation of H with distinguished basis {vs : s ∈ S} for some indexing set S.
For simplicity we will assume that both V and S are Z-graded so that vs ∈ V are
homogeneous elements and deg(vs) = deg(s), and that each graded component of V
is finite-dimensional. We will also assume that the action of H is graded in the sense
that deg(Bk) = −mk for some m ∈ Z\{0}. Define an inner product 〈., .〉 : V ×V → K
on V by requiring that {vs | s ∈ S} forms an orthonormal basis, so that 〈vs, v

′
s〉 = δss′ .

Let s, t ∈ S. Define the generating functions

(7) FV
s/t(x1, x2, . . .) = Fs/t(x1, x2, . . .) :=

∑
α

xα〈Uαl
Uαl−1 · · ·Uα1 · t, s〉,

where the sum is over all compositions α = (α1, α2, . . . , αl). Similarly define

GV
s/t(x1, x2, . . .) = Gs/t(x1, x2, . . .) =

∑
α

xα〈Dαl
Dαl−1 · · ·Dα1 · s, t〉.

Note that Fs/t and Gs/t are homogeneous with degree deg(s)−deg(t)
m . So in particular

if deg(s)−deg(t)
m is negative or non-integral then the generating functions are 0. For

convenience we let Uα := Uαl
Uαl−1 · · ·Uα1 and Dα := Dαl

Dαl−1 · · ·Dα1 .
The above definitions should be thought of as a tableaux-like definition, as the

following example explains.

Example 5 (Schur functions). Let H[ai] = H[1] and V = F (0). Set S = P and
vλ := vi0 ∧ vi−1 ∧ · · · , where λk = i−k + k. Then we have

Uk · vλ =
∑

μ⇀kλ

vμ,
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where the sum is over all horizontal strips μ/λ of size k. So the definition (7) of
Fs/t reduces to (2) – the combinatorial definition of skew Schur functions in terms of
Young tableaux.

The following Proposition is immediate from the definition, since Uk commutes
with Ul and Dk commutes with Dl for all k, l ∈ N.

Proposition 6. The generating functions Fs/t and Gs/t are symmetric functions.

As before, let K[H−] ⊂ H denote the subalgebra of H generated by {Bk | k < 0}
and similarly define K[H+] ⊂ H. The definitions of Fs/t and Gs/t can be rephrased
in terms of the Heisenberg-Cauchy elements Ω(H−, X) and Ω(H+, X) which lie in the
completed tensor products K[H−]⊗̂ΛK(X) and K[H+]⊗̂ΛK(X) respectively:

Ω(H−, X) :=
∑

λ

Uλ ⊗ mλ =
∑

λ

z−1
λ B−λ ⊗ pλ =

∑
λ

Sλ ⊗ sλ.

The last two equalities follow from the classical Cauchy identity. Also define
Ω(H+, X) ∈ K[H+]⊗̂ΛK(X) by Ω(H+, X) =

∑
λ Dλ ⊗ mλ.

Thus for example, one has

Fs/t(x1, x2, . . .) = 〈Ω(H−, X) · vt, vs〉
and

Gs/t(x1, x2, . . .) = 〈Ω(H+, X) · vs, vt〉.
One has in particular

(8) Gs/t(x1, x2, . . .) =
∑

λ

z−1
λ pλ〈Bλ · vs, vt〉.

Now let b ∈ S be such that vb is a highest weight vector for H. We will write
Fs := Fs/b and Gs := Gs/b. The element Ω(H−, X) · vb ∈ V ⊗̂ΛK(X) depends only
on the choice of vb. The symmetric functions Fs are the coefficients of Ω(H−, X) · vb

when it is written in the basis {vs | s ∈ S}:
Ω(H−, X) · vb =

∑
s

vs ⊗ Fs(x1, x2, . . .).

5. Generalization of Boson-Fermion correspondence

Let us suppose that b ∈ S has been picked so that vb ∈ V is a highest weight vector
for H. By Proposition 3, there is a canonical map of H-modules φ : H ·b → ΛK sending
vb 
→ 1. Our choice of inner product for V allows us to give a map Φ : V → ΛK .

Theorem 7 (Generalized Boson-Fermion Correspondence). The map Φ : V → ΛK

given by vs 
→ Gs(x1, x2, . . .) is a map of H-modules.

Recall that B−k acts on ΛK by multiplication by akpk and Bk acts as k ∂
∂pk

, for
k ≥ 1.

Proof. Let us calculate Bl ·Gs and compare with Φ(Bl · vs). Suppose first that l < 0
and let k = −l. Let λ be a partition and let μ be λ with one less part equal to k. If λ
has no part equal to k, then μ can be any partition in the following formulae. First
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write 〈BλBl · vs, vb〉 = kakmk(λ)〈Bμvs, vb〉, using a slight variation of Lemma 2 for
our H. Alternatively, one can also compute

BλBl · vs = Bλ

∑
c

〈Bl · vs, vc〉vc =
∑
c,d

〈Bl · vs, vc〉〈Bλ · vc, vd〉vd

so that taking the coefficient of vb we obtain

(9) kakmk(λ)〈Bμ · vs, vb〉 =
∑

c

〈Bl · vs, vc〉〈Bλ · vc, vb〉.

Now,

Bl · Gs = akpkGs

= ak

∑
μ

z−1
μ pkpμ〈Bμ · vs, vb〉 using (8),

=
∑

λ

z−1
λ pλ

(∑
c

〈Bl · vs, vc〉〈Bλ · vc, vb〉
)

using (9)

=
∑

c

〈Bl · vs, vc〉
(∑

λ

z−1
λ 〈Bλ · vc, vb〉

)
=

∑
c

〈Bl · vs, vc〉Gc.

This shows that Φ(Bl · vs) = Bl · Φ(vs) for l < 0.
Now suppose k > 0, and let λ and μ be related as before. Then

Bk · Gs = k
∑

λ

z−1
λ

∂

∂pk
pλ〈Bλ · vs, vb〉

= k
∑

λ

z−1
λ mk(λ)pμ〈BμBk · vs, vb〉

=
∑

μ

z−1
μ pμ〈Bμ ·

∑
c

〈Bk · vs, vc〉vc, vb〉

=
∑

c

〈Bk · vs, vc〉
(∑

μ

z−1
μ pμ〈Bμ · vc, vb〉

)
=

∑
c

〈Bk · vs, vc〉Gc.

This completes the proof. �

When V is irreducible, the map Φ does not depend on the choice of basis, but does
depend on vb. Since the degree deg(vb) part of V is one dimensional, the image of
v ∈ V is given by the coefficient of the degree deg(vb) part of Ω(H+, X) · v.

If V is not irreducible then the map depends on the inner product 〈., .〉 of V (or
equivalently, the choice of orthonormal basis).

Note that a different action of H on ΛK will allow us to replace the family Gs in
Theorem 7 by Fs. More precisely, one can define the adjoint action ϑ : H → End(V )
of H on V by letting the generators Bk act according to the formula 〈ϑ(Bk) ·vs′ , vs〉 =
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〈vs′ , B−k · vs〉. With this new representation of H on V , the roles of Gs and Fs are
reversed.

6. Pieri and Cauchy identities

Let hk[ai] denote the image θ(hk) of hk under the algebra homomorphism θ : Λ →
ΛK given by θ(pk) = akpk. Also let hk〈ai〉 denote the image κ(hk) of hk under the
map κ : ΛK → K given by κ(pk) = ak. Note that if all {ai | i ≥ 1} are positive
(rational) numbers then by (1) so are the numbers hk〈ai〉. Let h⊥

k be the linear
operator on ΛK which is adjoint to multiplication by hk with respect to the Hall
inner product.

Theorem 8 (Generalized Pieri Rule). Let k ≥ 1. The following identities hold in
ΛK :

hk[ai]Gs =
∑

t

〈Uk · s, t〉Gt

and
hk[ai]Fs =

∑
t

〈Dk · t, s〉Ft.

The dual identities are:
h⊥

k Gs =
∑

t

〈Dk · s, t〉Gt

and
h⊥

k Fs =
∑

t

〈Uk · t, s〉Ft.

Proof. Follows immediately from the definitions of Uk, Dk and hk[ai] together with
Theorem 7 and the comments immediately after it. �

Lemma 9. The following identity holds as elements of H[ai]:

(10) DbUa =
m∑

j=0

hj〈ai〉Ua−jDb−j ,

where m = min(a, b).

Proof. By definition we need to show that(∑
λ�b

z−1
λ Bλ

)(∑
λ�a

z−1
λ B−λ

)
=

m∑
j=0

hj〈ai〉
⎛⎝ ∑

λ�a−j

z−1
λ B−λ

⎞⎠ ⎛⎝ ∑
λ�b−j

z−1
λ Bλ

⎞⎠ .

Let μ and ν be partitions such that |μ| = a− j and |ν| = b− j. By (1), the coefficient
of B−μBν on the right hand side is equal to z−1

ν z−1
μ

∑
λ�j z−1

λ θ(pλ). Let ρ = λ ∪ μ

and π = λ ∪ ν. We claim that the summand z−1
ν z−1

μ z−1
λ θ(pλ) is the coefficient of

B−μBν when applying [Bk, Bl] = kakδk,−l repeatedly to z−1
π z−1

ρ BπB−ρ. This is a
straightforward computation, counting the number of ways of picking parts from ρ
and π to make the partition λ.

�
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In fact the relation (10), together with the relations [Uk, Ul] = [Dk, Dl] = 0 is
equivalent to the defining relations of the Heisenberg algebra H[ai]. This is because
the sets {Bk | k �= 0} and {Uk | k ≥ 1} ∪ {Dk | k ≥ 1} are both generators of H[ai].

Theorem 10 (Generalized Cauchy Identity). We have the following identity in the
completion of ΛK(X) ⊗ ΛK(Y ):∑

s

Fs(x1, x2, . . .)Gs(y1, y2, . . .) =
∏
j,k

(
1 + h1〈ai〉xjyk + h2〈ai〉(xjyk)2 + · · · ) .

More generally, let r, t ∈ S. Then we have∑
s

Fs/t(x1, x2, . . .)Gs/r(y1, y2, . . .) =∏
j,k

(
1 + h1〈ai〉xjyk + h2〈ai〉(xjyk)2 + · · · ) ∑

s

Fr/s(x1, . . .)Gt/s(y1, . . .).

Proof. Let U(x) := 1+
∑

i>0 Uix
i and similarly D(x) := 1+

∑
i>0 Dix

i. The identity
of Lemma 9 is equivalent to

D(y)U(x) = U(x)D(y)
(
1 + h1〈ai〉xy + h2〈ai〉(xy)2 + · · · ) .

Now notice that by definition we have Fs/t = 〈· · ·U(x3)U(x2)U(x1)·vt, vs〉 and Gs/t =
〈· · ·D(x3)D(x2)D(x1) ·vs, vt〉. The infinite products make sense since in most factors
we are picking the term equal to 1. Thus∑

s

Fs/t(x1, x2, . . .)Gs/r(y1, y2, . . .)

= 〈· · ·D(y3)D(y2)D(y1) · · ·U(x3)U(x2)U(x1) · vt, vr〉

=
∞∏

i,j≥1

(
1 + h1〈ai〉xiyj + h2〈ai〉(xiyj)2 + · · · )
〈· · ·U(x3)U(x2)U(x1) · · ·D(y3)D(y2)D(y1) · vt, vr〉

=
∞∏

i,j≥1

(
1 + h1〈ai〉xiyj + h2〈ai〉(xiyj)2 + · · · )
∑

s

Gt/s(y1, y2, . . .)Fr/s(x1, x2, . . .).

These manipulations of infinite generating functions make sense since they are well de-
fined when we restrict ourselves to a finite subset of the set of variables
{x1, x2, . . . , y1, y2, . . .}. �

Remark 2. It is not clear at this moment which sequences ai and which representations
of H[ai] would lead to interesting families of symmetric functions. However, the
following may be possible indications:

• Some kind of positivity for the coefficients hi〈ai〉; for example if K = Q(q)
then we may want hi〈ai〉 to have positive coefficients when expanded as a
power series in q.
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• A Pieri formula with very few non-zero or with positive coefficients. For
example, we may want the coefficients 〈Uk · s, t〉 and 〈Dk · t, s〉 to be positive
in some sense. This would imply that the definitions of Ft/s and Gt/s would
also have a positive monomial expansion.

The results of this Section are related to results of Fomin [4, 5, 6] and of Bergeron
and Sottile [1]. Fomin studies combinatorial operators on posets and recovers Cauchy
style identities similar to ours. His approach is more combinatorial and he focuses on
generalizing Schensted style algorithms to these more general situations. Bergeron
and Sottile have also made definitions similar to our Fs/t. Their interests have been
towards aspects related to Hopf algebras and non-commutative symmetric functions;
see also [2, 3].

Remark 3. An interesting non-commutative version of our theory may exist, where
the Heisenberg algebra is replaced with an algebra A = 〈Bk | k ∈ Z − {0}〉 with
relations

[Bk, Bl] = 0 if k and l have opposite sign and k �= −l,

[B−k, Bk] = kak.

In this case, the generating functions Fs/t and Gs/t will not be symmetric functions
but instead be quasi-symmetric functions.

7. A partial converse

A partial converse to Theorems 8 and 10 exists. In other words, if a family of
symmetric functions satisfies enough properties, then one can conclude that they
arise from a generalized Boson-Fermion Correspondence as in Theorem 7.

Let V be a K-vector space with a distinguished basis {vs : s ∈ S}. In this
section, suppose that {B′

k ∈ End(V ) : k ∈ Z\{0}} are linear operators acting on
V . Suppose further that Bk and Bl commute if k and l have the same sign. Let
D′

k :=
∑

λ�k z−1
λ B′

λ and U ′
k :=

∑
λ�k z−1

λ B′
−λ. Now we can define F ′

s/t(x1, x2, . . .) :=∑
α xα〈U ′

αl
U ′

αl−1
· · ·U ′

α1
· t, s〉 and similarly for G′

s/t.

Theorem 11. Let {ak ∈ K | k �= 0} be a sequence of non-zero parameters satisfying
ak = a−k and suppose that {G′

s | s ∈ S} are linearly independent. Then the following
are equivalent:

(1) The operators {B′
k} generate an action of the Heisenberg algebra H[ai] with

parameters ai.
(2) The family {G′

s} satisfies the conclusions of Theorem 8.
(3) The families {G′

s/t} and {F ′
s/t} satisfy the conclusions of Theorem 10.

Proof. That (1) implies (2) and (3) is Theorems 8 and 10.
Now suppose (2) holds. Since the family {G′

s} is linearly independent, the action
of {U ′

k, D′
k} on V is isomorphic to the action of {hk[ai], h⊥

k } on spanK{G′
s} under the

isomorphism vs 
→ G′
s. Thus the action of the operators B′

k on V is isomorphic to
the action of {θ(pk), p⊥k } on spanK{G′

s} and so generate an action of H[ai]. Thus (2)
⇒ (1).
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Now suppose (3) holds. Then by the argument in the proof of Theorem 10, we
must have

〈(D′(y)U ′(x) − U ′(x)D′(y)
(
1 + h1〈ai〉xy + h2〈ai〉(xy)2 + · · · )) · vt, vr〉 = 0

for every t, r ∈ S. This implies that

D′(y)U ′(x) = U ′(x)D′(y)
(
1 + h1〈ai〉xy + h2〈ai〉(xy)2 + · · · )

so that we have

D′
bU

′
a =

m∑
j=0

hj〈ai〉U ′
a−jD

′
b−j .

Now reversing the argument in the proof of Lemma 9, we deduce that [B′
k, B′

l] =
kakδk,−l. So (3) ⇒ (1).

�

8. Examples

8.1. Schur functions. If K = Q and V = F (0) and H = HSchur = H[1] acts as
in Section 3, then Theorem 7 is just Theorem 4, where the indexing set S can be
identified with the set of partitions P. In this case, the operators Bk and B−k are
adjoint with respect to 〈., .〉 and so Fλ = Gλ = sλ for every λ. The definition of
sλ/μ = Fλ/μ in terms of the operators Uk is exactly the usual combinatorial definition
of skew Schur functions in terms of semistandard Young tableaux. The symmetric
function hk[ai] = hk is the usual homogeneous symmetric function and the coefficients
〈Uk ·λ, μ〉 are equal to 1 if μ/λ is a horizontal strip of size k and equal to 0 otherwise.
The coefficients hi〈ai〉 are all equal to 1 and Theorem 10 reduces to the usual Cauchy
identity.

8.2. Direct sums. Let V1 and V2 be two representations of H with distinguished
bases {vs1 : s1 ∈ S1} and {vs2 : s2 ∈ S2} respectively. Then V = V1 ⊕ V2 is a
representation of H[ai] with distinguished basis {vs | s ∈ S1 � S2}. If s, t ∈ Si for
some i then FV

s/t = FVi

s/t otherwise if for example s ∈ S1 and t ∈ S2 we have FV
s/t = 0.

Thus the family of symmetric functions that we obtain from H[ai] acting on V is the
union of the families of symmetric functions we obtain from V1 and V2.

8.3. Tensor products. Let V1 and V2 be two representations of H[ai] with distin-
guished bases {vs1 : s1 ∈ S1} and {vs2 : s2 ∈ S2} respectively, as before. Then V1⊗V2

has a distinguished basis {vs1⊗vs2 | s1 ∈ S1 and s2 ∈ S2}. Let the Heisenberg algebra
H̃ := H[bi] with generators B̃k, where bi = 2ai, act on V1 ⊗ V2 by defining the action
of B̃k by

B̃k · v1 ⊗ v2 = (Bk · v1) ⊗ v2 + v1 · (Bk · v2).
This action is natural when one views ΛK as a Hopf algebra. The action of Ũk =∑

λ�k z−1
λ B̃−λ is given by

Ũk · v1 ⊗ v2 =
k∑

i=0

(Ui · v1) ⊗ (Uk−i · v2)

and similarly for D̃k. By definition, one sees that FV1⊗V2
s1⊗s2/t1⊗t2

= FV1
s1/t1

FV2
s2/t2

and
similarly for the G-functions. Thus the family of symmetric functions we obtain from
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V = V1 ⊗V2 are pairwise products of the symmetric functions we obtain from V1 and
V2.

More generally, the tensor products V1⊗· · ·⊗Vn lead to generating functions which
are products FV1

s1/t1
· · ·FVn

sn/tn
of n original generating functions. We will denote the

Heisenberg algebra acting on this tensor product by H(n) := H[a(n)
i ]. The parameters

are given by a
(n)
i = nai.

8.4. Macdonald polynomials. Let K = Q(q, t) and let Pλ(x1, x2, . . . ; q, t) and
Qλ(x1, x2, . . . ; q, t) be the Macdonald polynomials introduced in [18]. Let
λ = (λ1, λ2, . . .) be a partition and s = (i, j) ∈ λ be a square. Then the arm-
length of s is given by aλ(s) = λi− j and the leg-length of s is given by lλ(s) = λ′

j − i.
Now let s be any square. Define ([18, Chapter VI, (6.20)])

bλ(s) = bλ(s; q, t) =

{
1−qaλ(s)tlλ(s)+1

1−qaλ(s)+1tlλ(s) if s ∈ λ,

1 otherwise.

Now let λ/μ be a horizontal strip. Let Cλ/μ (respectively Rλ/μ) denote the union of
columns (respectively rows) that intersect λ − μ. Define ([18, Chapter VI, (6.24)])

φλ/μ =
∏

s∈Cλ/μ

bλ(s)
bμ(s)

and ψλ/μ =
∏

s∈Rλ/μ−Cλ/μ

bμ(s)
bλ(s)

.

Let VMac denote the vector space over K with distinguished basis labeled by par-
titions. Define operators {Uk, Dk : k ∈ Z>0} by:

Uk · λ =
∑

μ

φμ/λμ, Dk · λ =
∑

μ

ψλ/μμ,

where the sums are over horizontal strips of size |k|. Then Qλ/μ = Fλ/μ and Pλ/μ =
Gλ/μ, so in particular the operators {Uk | k ∈ Z>0} commute and so do the operators
{Dk | k ∈ Z>0}. Now we have ([18, Ex.7.6])∑

ρ

Qρ/λ(X; q, t)Pρ/μ(Y ; q, t) =

(
∑

σ

Qμ/σ(X; q, t)Pλ/σ(Y ; q, t))
∏
i,j

∞∏
r=0

1 − txiyjq
r

1 − xiyjqr
.

The product
∏∞

r=0
1−ytqr

1−yqr can be written as
∑

n≥0 gn(1, 0, 0, . . . ; q, t)yn where gn is
given by ([18, Chapter VI, (2.9)])

gn(x1, x2, . . . ; q, t) =
∑
λ�n

zλ(q, t)−1pλ(x1, x2, . . .),

where zλ(q, t) = zλ

∏l(λ)
i=1

1−qλi

1−tλi
. Using Theorem 11, we see that the operators

{Uk, Dk | k ∈ Z>0} generate a copy of a Heisenberg algebra HMac. A short cal-
culation shows that the parameters ak ∈ Q(q, t) of this Heisenberg algebra are given
by ak = 1−tk

1−qk . The parameters hk〈ai〉 are given by hk〈ai〉 = gn(1, 0, 0, . . . ; q, t) =
n

∑
λ�n zλ(q, t)−1.

In fact Theorem 11 shows that the Pieri (and dual Pieri) rule for Macdonald poly-
nomials is equivalent to the (generalized) Cauchy identity for Macdonald polynomials.
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Remark 4. To obtain the Hall-Littlewood functions, one can just specialize q = 0
in the set up of this section. However, to obtain the Schur P and Q-functions the
further specialization t = −1 actually causes some of the ai to be zero. In this case,
one should actually consider the subalgebra of the Heisenberg algebra generated by
the generators Bk where k is odd.

9. Ribbon functions

Let n ≥ 1 be a positive integer and K = Q(q). In [16], a family of symmetric func-
tions {G(n)

λ (x1, x2, . . . ; q)} defined in terms of ribbon tableaux, called ribbon functions
or LLT-polynomials, were introduced. We shall not give the precise definition here,
but refer the reader to [16, 14]. These symmetric functions arise as the polynomials
{FF

s (x1, x2, . . .)} for the action of a Heisenberg algebra H[ai] on the level one Fock
space F of Uq(ŝln). This Fock space F has a basis |λ〉 naturally labeled by partitions.
The parameters are given by ai = 1−q2nk

1−q2k and the action of H[ai], commuting with the

action of Uq(ŝln), was discovered in [13]. The actions of the generators B−k and Bk of
this Heisenberg algebra are adjoint with respect to the inner product 〈|λ〉, |μ〉〉 = δλμ,
and so the symmetric functions Fλ and Gλ for this representation of H[ai] coincide.
In [14], a ribbon Cauchy and Pieri formula for the functions G(n)

λ (X; q) was deduced
from the action of H[ai] and this is a special (in fact, motivating) case for Theorems 8
and 10.

At q = 1, the Fock space F for Uq(ŝln) should be thought of as a sum of tensor
products:

(11) F ∼=
⊕

n-cores

(F (0))⊗n

where F (0) is the classical Fermionic Fock space described in Section 3. Combinatori-
ally, the decomposition (11) is given by writing a partition in terms of its n-core and
its n-quotient; see [18]. As shown in subsection 8.3, the F -functions we obtain in this
way are products of n of the F -functions for F (0), that is, (skew) Schur functions. This
is simply the formula Gλ(x1, x2, . . . ; 1) = sλ(0)sλ(1) · · · sλ(n−1) observed in [16]. In fact,
the q = 1 specialization corresponds to action of the Heisenberg algebra commuting
with the action of ŝln on F.

It would be interesting to see whether ribbon functions and Macdonald polynomials
can be combined by finding a deformation of the action of (HMac)(n) on V ⊗n

Mac.

9.1. Ribbon functions for other types and other levels. Theorem 7 allows us
to define analogues of LLT’s ribbon functions G(n)(x1, x2, . . . ; q) for other (quantized)
Fock spaces.

Kashiwara, Miwa, Petersen and Yung [12] have defined (level one) q-deformed
Fock spaces for the affine algebras A

(1)
n , A

(2)
2n , B

(2)
n , A

(2)
2n−1, D

(1)
n and D

(2)
n+1, using a

sophisticated construction involving perfect crystals. Let Φ denote one of these root
systems and let Uq(g) be the corresponding quantum affine algebra. Let FΦ be the
corresponding q-deformed Fock space of [12], which is defined over K = Q(q). The
space FΦ is equipped with an action of a Heisenberg algebra H[aΦ

i ] commuting with
the action of Uq(g), where the parameters aΦ

i are calculated in [12]. The Fock space
FΦ also has a standard basis indexed by certain semi-infinite products b1⊗b2⊗· · · of
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elements from a perfect crystal B for Uq(g). We will call this indexing set SΦ. There
is a distinguished highest weight vector vb ∈ FΦ for some “bottom element” b ∈ SΦ.

Definition 12. Let s ∈ SΦ. The ribbon function of type Φ is given by GΦ
s = FFΦ

s/b ∈
ΛK .

When Φ = A
(1)
n−1, we recover LLT’s ribbon functions GΦ = G(n)(x1, x2, . . . ; q). The

functions G(n)(x1, x2, . . . ; q) have been found to be not only interesting combinatori-
ally (see [14, 16]) but also to be related to the global basis of the Fock space and to
Kazhdan-Lusztig polynomials (see [17]). One should expect the symmetric functions
GΦ

s to be interesting as well. Some work in this direction can be found in [15] and
will appear separately. Note that it is not known (but in some cases a conjecture)
that the action of the generators Bk and B−k of the Heisenberg algebra on FΦ are
adjoint. This would imply that FFΦ

s/b = GFΦ

s/b .

In another direction, Takemura and Uglov [20] have studied Fock spaces Fn,m

for the quantum affine algebra Uq(ŝln) of level m. These Fock spaces also possess
a standard basis indexed by partitions and an action of a Heisenberg algebra Hn,m

commuting with the action of Uq(ŝln).

Definition 13. Let λ ∈ P. The ribbon function of rank n and level m is given by
G(n,m)

λ = FFn,m

λ/∅ ∈ ΛK .

We have placed the parameters n and m together in the notation since as explained
in [20] there is a level-rank duality in this Fock space. The case m = 1 reduces to
LLT’s ribbon functions: G(n,1)

λ = G(n)
λ . One should expect the functions G(n,m)

λ to
be interesting as well. The parameters ai for Hn,m appear to have not yet been
established, though there are precise conjectures for their values.
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