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TOPOLOGICAL INVARIANCE OF GENERIC
NON-UNIFORMLY EXPANDING MULTIMODAL MAPS

Stefano Luzzatto and Lanyu Wang

Abstract. We introduce a Topological Slow Recurrence condition on the orbits of crit-

ical points of multimodal maps and show that this condition is equivalent to the si-

multaneous occurrence of metric Slow Recurrence and Collet-Eckmann conditions. In
particular, if f is non-uniformly expanding and the critical points are generic with re-

spect to the absolutely continuous invariant measures, then any map g topologically

conjugate to f is also non-uniformly expanding.

1. Statement of results

A main theme of this paper is the relation between the topological structure of
a dynamical system and its measure-theoretic and ergodic properties. Throughout
the paper we shall be concerned with the class S of C3 interval maps f : I → I
with negative Schwarzian derivative and a finite set C of non-flat critical points with
possibly different orders, we give the precise definitions in section 1.5 on page 346
below.

1.1. The Main Theorem. We say that f satisfies condition CE if all its critical
points satisfy the Collet-Eckmann [ColEck83] condition

(CE) lim inf
n→∞

1
n

n∑
i=1

log |Dffi(c)| > λ > 0

We say that f satisfies condition (SR) if all its critical points satisfy the slow recurrence
condition

(SR) lim
δ→0+

lim inf
n→+∞

1
n

∑
1≤i≤n

fi(c)∈Cδ

log d(f i(c)) = 0.

Here d(x) = d(x, C) = min{|x − c| : c ∈ C} and Cδ = {x : d(x, C) ≤ δ} is a
metric neighbourhood of the critical set. Our main result says that the simultaneous
occurrence of both conditions CE and SR is topologically invariant. We recall that
f, g are topologically conjugate (f ∼ g) if there exists a homeomorphism h such that
h ◦ f = g ◦ h.

Main Theorem. Suppose that f satisfies both CE and SR. Then every map g topo-
logically conjugate to f also satisfies both CE and SR.
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In the unimodal case, it was shown in [NowSan98, PrzRoh98, NowPrz98] that
CE itself is topologically invariant. This is false, however, in the multimodal case
[PrzRivSmi03]. Indeed, recent counterexamples show that several properties of uni-
modal Collet-Eckmann maps do not extend to the multimodal setting; perhaps these
counterexamples may be overcome by assuming the simultaneous occurrence of CE
and SR, as in the present paper.

1.2. Topological Slow Recurrence. Our strategy is to define a new condition
which we call Topological Slow Recurrence (TSR) condition, see (11) on page 349,
which depends only on the combinatorics of the critical orbits. In particular TSR
is invariant under topological conjugacy. We will then prove the following double
implication:

Main Technical Theorem. For any f ∈ S we have

(1) CE + SR ⇐⇒ TSR.

Our approach is therefore quite distinct from the proof in [NowPrz98] of the invari-
ance of the CE condition in the unimodal case. The present strategy is more direct
and in the spirit of [San95] in which, in the unimodal setting, a topological condition
is formulated in terms of the kneading sequence of the critical point and this condi-
tion is shown to imply the Collet-Eckmann condition. The relation between Sands’
topological condition and our Slow Recurrence condition (SR) was studied in [Wan01]
in the unimodal case, and a generalization of the topological condition given in the
bimodal case in [Wan96]. Here we push this whole approach significantly further by
giving a more general definition of this condition which in particular applies to the
multimodal setting.

1.3. Non-uniformly expanding maps. Classical results in one-dimensional dy-
namics imply that any map f satisfying CE is (non-uniformly) expanding in the
sense that there exists a finite number μ1, .., μq, q ≥ 1, of ergodic absolutely continu-
ous invariant probability measures with positive Lyapunov exponents:

(2) 0 <

∫
log |Df |dμ < ∞

for each μ = μi, i = 1, .., q. The converse however is not true: there are many exam-
ples of non-uniformly expanding maps which do not satisfy CE. A natural question
is whether the non-uniform expansivity itself may be topological invariant. A coun-
terexample of Bruin [Bru98a]shows that the answer is negative in general even in the
unimodal case. The first examples of (topological classes of) maps with an absolutely
continuous invariant measure which is preserved by topological conjugacy were con-
structed by Bruin [Bru94,Bru98b]. The topological invariance of CE in the unimodal
case and of CE+SR in the multimodal case gives some additional conditions which
ensure that the non-uniform expansivity property is not destroyed under a topological
change of coordinates.

We remark that CE and SR are “abundant” in the sense that they occur with
positive probability for quite general families of multimodal maps [Tsu93]. Moreover,
they are also both “generic” conditions within the class of non-uniformly expanding
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maps in the following sense. By Birkhoff’s Ergodic Theorem almost every point
satisfies

(3) lim
n→∞

1
n

n∑
i=1

log |Dffi(x)| =
∫

log |Df |dμ.

for one of the absolutely continuous invariant measures μ = μi. We say that the
critical points are generic if they satisfy (3) and it is easy to see that in this case
they satisfy both CE and SR. Indeed, CE is immediate, and SR follows by observing
that log |Dffi(x)| and log d(f i(x)) are uniformly comparable by the non-flatness of
the critical points (4) and therefore Birkhoff’s Ergodic Theorem and (3) imply

1
n

∑
fi(x)∈Cδ

1≤i≤n

log |Dffi(c)| →
∫
Cδ

log |Df |dμ

and thus integrability condition (2) implies that
∫
Cδ

log |Df |dμ → 0 as δ → 0. In
particular we have the following consequence of our results.

Corollary. Suppose that f is non-uniformly expanding, f ∼ g, and that all critical
points of f are generic. Then g is non-uniformly expanding.

We remark that this result does not imply that the conjugacy h is absolutely
continuous and thus preserves the absolute continuity of the measure. In general this
will not be true, although both f and g will have absolutely continuous invariant
probability measures, these are not mapped to each other by the conjugacy.

1.4. Overview of the paper. In section 2 we give all the details of the combi-
natorial structure and define condition TSR. We give a brief summary of the key
ideas here. The critical set C defines a partition P of I which allows us to define a
symbolic itinerary for all points which are not preimages of C and to define cylinder
sets made up of points which share the same itinerary up to some finite time. The
whole structure of cylinder sets is topological. There is then a natural topological
separation time: any point x near C shadows the orbit of the critical point for a time
defined by the number of iterates for which x and c have the same symbolic itinerary.
This shadowing time tends to ∞ as x tends to c. In particular the symbolic sequence
associated to any given point contains information about its pattern of recurrence to
the critical set: if it contains long finite blocks which coincide with long initial blocks
of the symbolic sequences of one of the critical point then it must have come quite
close to the critical set. This simple idea is used in a crucial way in the definition of
the condition TSR.

In the remaining three sections we proceed to prove the three steps required to
show (1). We first show that CE + SR implies TSR, then that TSR implies SR and
finally that TSR implies CE. A particular effort has been made here to make the
presentation as self-contained as possible and as much as possible independent of spe-
cialized technical notation and constructions familiar mainly to established specialists
in one-dimensional dynamics.
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1.5. S-multimodal maps with non-flat critical points. Before ending this sec-
tion we give the formal definition of the class S of maps under consideration and fix
some fairly standard notation and definitions. We shall consider S-multimodal maps
with non-flat critical points by which we mean maps f satisfying the following con-
ditions. Let f : I → I be a C3 map, where I ⊂ R is a closed interval. We shall
assume without loss of generality that I = [0, 1]. We call c ∈ I a critical point of f if
Df(c) = 0. Denote by C the set of all critical points. f has finite number (say q) of
non-flat critical points 0 < c1 < c2 < · · · < cq < 1 if there exist Li > 1, li > 1 and a
neighbourhood V (ci) of ci in which

(4) |x − ci|li−1/Li ≤ |Df(x)| ≤ Li|x − ci|li−1

for any x ∈ V (ci) and 1 ≤ i ≤ q. f has negative Schwarzian derivative, i.e. S(f)(x) =
(D3f(x)/Df(x)) − 3

2 (D2f(x)/Df(x))2 < 0 for x ∈ (0, 1)\C.
As part of the argument we shall need to obtain some derivative estimates about

the iterates of f along the forward orbit of the critical values. If these orbits map
to a periodic point then the estimates are easily obtained. Otherwise we need to
consider a two-sided neighbourhood of each critical value and the forward images of
this neighbourhood. We assume therefore that the forward orbits of all the critical
points are disjoint from the boundary of I or, if not, that the boundaries of I are
fixed points. This is not restrictive since, if it is not the case, we can extend f to a
map f̂ defined on neighbourhood Î of I such that the forward orbits of all the critical
points are disjoint from the boundary of Î and the dynamics on I is unaffected.

For simplicity we shall suppose moreover that all critical points are turning points,
i.e. points at which the map fails to be a local homeomorphism. Otherwise the same
conclusions hold as long as we assume that the topological conjugacy maps critical
points to critical points (this is not automatic in the presence of inflexion-type critical
points).

2. Combinatorial structure

In this section we describe in detail the combinatorial structure associated to any S-
multimodal map with non-flat critical points and having no neutral or attracting peri-
odic orbits. We emphasize that everything we describe here relies on no other assump-
tions. Some of the definitions are closely related to the so-called cutting/co-cutting
times used in [Hof80, HofKel90b, Bru95a, San95, NowSan98] for unimodal maps; we
give a generalization to the multimodal setting and, we believe, a simplification of the
way those concepts are introduced and applied.

We fix for the rest of the paper a constant

(5) δ0 > 0

sufficiently small so that the critical neighbourhood Cδ0 has precisely q disjoint con-
nected components; in particular any x ∈ Cδ for δ < δ0 is associated unambiguously
to one particular critical point. For any x we shall use the notation xi = f i(x),
especially, ci = f i(c) for a critical point c.

2.1. Symbolic dynamics. The critical points define a natural partition

I = {I0, . . . , Iq}
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of I into q + 1 subintervals. This allows us to associate a symbolic itinerary to any
point not in the preimage of a critical point by letting

a(x) = a0a1a2 . . . where ai = k if f i(x) ∈ Ik for all i ≥ 0.

For convenience we associate to each critical point two sequences which differ only in
the first term, so that we think of the partition elements as closed intervals and think
of each critical point as belonging to both of the adjacent intervals. We define the
symbolic separation time between two points as

s(x, y) = min{k ≥ 0 : ak(x) �= ak(y)}

as long as the itineraries a(x) and a(y) are both defined. If y = c is a critical point and
x is in one of the adjacent partition elements then we naturally consider the symbolic
itinerary for c for which s(x, y) = s(x, c) ≥ 1. In particular we define the time it takes
for a point x to “separate” from the critical set C by

s(x) = s(x, C) = max{s(x, c) : c ∈ C}.

Notice that s(x) → ∞ as d(x) → 0. We define topological neighbourhoods Cn of the
critical set C by

Cn = {x : s(x) ≥ n}.
We fix a constant N0 sufficiently large so that

(6) CN0 ⊂ Cδ0 ,

recall (5), and such that every point x with s(x) ≥ N0 is associated to some particular
critical point c and d(x) = d(x, c) ≤ δ0 and s(x) = s(x, c).

For any given finite sequence a0 . . . an with ai ∈ {0, . . . , q} we define the cylinder
set

Î(n)
a0..an

= {x : f i(x) ∈ Iai
, 0 ≤ i ≤ n}

Notice that such a cylinder set may be empty. For a given point x with a symbolic
itinerary a(x) we define the n’th order cylinder set of x as

Î(n)(x) = Î(n)
a0...an

.

This is always a two sided neighbourhood of x. We shall often write

Î
(n)
− (x) and Î

(n)
+ (x)

to denote the part of Î(n)(x) to the left and right respectively of the point x. Clearly
Î(n+1)(x) ⊆ Î(n)(x) for any n. Moreover, by the non-existence of wandering intervals
[Guc79,MelStr93] the preimages of the critical set are dense and therefore we have

|Î(n)(x)| → 0 as n → ∞ ∀ x ∈ I.

In particular the cylinder sets Î(n)(x) define a nested sequence of neighbourhoods of
the point x.
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2.2. Partitions. We now fix some arbitrary point x not contained in any preimage of
the critical set. We fix some notation related to the partition P(x) of a neighbourhood
of x defined naturally by the cylinder sets. More precisely, consider a generic cylinder
set Î(n−1) = Î(n−1)(x). By definition the images f j(Î(n−1)) all belong to the same
element of I for all j ≤ n − 1. Then there are two possibilities:

(1) fn(Î(n−1)) does not contain any critical points in its interior. In this case all
points continue to share the same combinatorics and we have Î(n) = Î(n−1),
and thus in particular

Î(n−1) \ Î(n) = ∅.
(2) fn(Î(n−1)) contains one or more critical points in its interior. In this case the

cylinder set Î(n) ⊂ Î(n−1) is given precisely by those points of Î(n−1) which
fall into the same element of I as fn(x) and

Î(n−1) \ Î(n) �= ∅.
In this case Î(n−1) \ Î(n) may have either one or two connected components.

We index the times at which case 2 above occurs by two sequences

N−
x = {n−

i }∞i=1 and N+
x = {n+

i }∞i=1

where

n−
i denotes a time for which Î

(n−
i −1)

− \ Î
(n−

i )
− �= ∅

and

n+
i denotes a time for which Î

(n+
i −1)

+ \ Î
(n+

i )
+ �= ∅.

For a general point x, the two sequences N−
x and N+

x are independent even though
there may well be one or more pairs i, j such that n−

i = n+
j . For the special case

of the partition P(c) associated to one of the critical points c, we actually have
N = N−

c = N+
c . For each such time n±

i we define the intervals

I(n±
i ) = Î

(n±
i −1)

± \ Î
(n±

i )
±

which define precisely the elements of the partition

P(x) =
{

I(n±
i ) : n±

i ∈ N±
x

}
of a neighbourhood of x.

2.3. Shadowing times. We call the elements of the sequences N−
x and N+

x respec-
tively the left and right shadowing times associated to x because every point in I(n±

i )

“shadows” the point x for n±
i iterations:

(7) s(y, x) = n±
i ⇐⇒ y ∈ I(n±

i )(x)

The partition P(x) (and in particular P(c) for some critical point c) can be thought
of as topological versions of the partitions defined by the binding periods of Benedicks
and Carleson [BenCar85]. Here we lose some good properties of binding periods such
as uniformly bounded distortion but gain in other ways, as shall become clear below.
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First we state three relatively straightforward but not immediately obvious properties
of this partition which will play an important role. First of all notice that

(8) fn±
i+1 is monotone on Î

(n±
i )

± .

Indeed, by construction the boundary points of each partition element I(n±
i ) are preim-

ages of some critical point, and one of the boundary points of each cylinder set Î
(n±

i )
±

is a preimage of some critical point of order n±
i . Moreover, there are no points in the

interior of Î
(n±

i )
± which map to a critical point before time n±

i+1. Thus (8) follows.
Secondly, for any y close to x we have

(9) |Îs(y,x)−1
± | ≥ d(y, x) ≥ |Îs(y,x)

± |.

Indeed, by construction we have Î
(m)
± = Î

(n±
i−1)

± for n±
i−1 ≤ m < n±

i , and so in

particular Î
(n±

i−1)

± = Î
(n±

i −1)
± . Therefore, for any y ∈ I(n±

i ) the relation (7) gives

y ∈ I(n±
i ) = Î

(n±
i−1)

± \ Î
(n±

i )
± = Î

(n±
i −1)

± \ Î
(n±

i )
± = Î

s(y,x)−1
± \ Î

s(y,x)
±

which implies (9).
Thirdly, for every i ≥ 1 such that n±

i+1 − n±
i ≥ N0 we have

(10) s(xn±
i ) = n±

i+1 − n±
i .

To see this consider the two intervals [y, x] := Î
(n±

i+1)

± ⊂ Î
(n±

i )
± =: [z, x]. By con-

struction we have fn±
i (z) = c̃ for some critical point c̃ ∈ C and thus fn±

i (Î(n±
i )

± ) =
fn±

i [z, x] = [c̃, xn±
i ] and fn±

i (y) ∈ (c̃, xn±
i ), i.e. the interval [c̃, xn±

i ] contains the

point fn±
i (y) in its interior. By (8), fn±

i+1 is monotone on Î
(n±

i )
± which implies in

particular that f j(Î(n±
i )

± ) cannot contain any critical point in its interior before time

n±
i+1, i.e. f j(Î(n±

i )
± ) ∩ C = ∅ for all j < n±

i+1. At this time we have fn±
i+1(y) =

fn±
i+1−n±

i (fn±
i (y)) = ĉ for some (other) critical point ĉ ∈ C. Therefore n±

i+1 − n±
i is

exactly the first time at which the iterates of c̃ and of xn±
i fall on different sides of some

critical point, and therefore is exactly the separation time: s(xn±
i , c̃) = n±

i+1 − n±
i . If

n±
i+1 − n±

i ≥ N0 this implies that s(xn±
i ) = s(xn±

i , c̃) as in (10).

2.4. Topological Slow Recurrence. We are now ready to formulate the Topolog-
ical Slow Recurrence condition for an arbitrary point x:

(11) lim
m→∞ lim sup

n→+∞
1
n

∑
1≤j≤n
xj∈Cm

s(xj) = 0.

Definition 1. We say that the map f satisfies condition TSR if all the critical points
satisfy (11)

Notice that this depends only on the orbit of the critical points with respect to the
partitions P(c) for c ∈ C. It is therefore invariant under topological conjugacy.
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3. CE + SR implies TSR

Lemma 1. Let f satisfy condition CE. Then there exists a constant κ̄ > 0 such that

(12) s(cj) ≤ κ̄ log d(cj)−1 ∀c ∈ C, ∀ j ≥ 1.

We shall use the following

Sublemma 1.1. [NowPrz98] There exists constants C, ξ̄ > 0 such that for all inter-
vals J and integers s ≥ 1 such that fs|J is monotone we have |J | ≤ Ce−sξ̄.

Proof of Lemma 1. We only need to prove the result for s(cj) ≥ N0 as the choice
of the constant κ̄ can take into account smaller values. Then there is a well-defined
critical point c̃ “closest” to cj i.e. s(cj) = s(cj , c̃), and d(cj) = d(cj , c̃) = |cj − c̃|.
The map fs(cj) is monotone on the interval [cj , c̃] and therefore Sublemma 1.1 implies
d(cj) = |cj − c̃| ≤ Ce−sξ̄. �
Corollary 1.1. Let f satisfy conditions CE and SR. Then it satisfies condition TSR.

Proof. By condition SR, for every ε > 0 there exist nε, δε > 0 such that
1
n

∑
1≤j≤n

fj(c)∈Cδε

log |d(f j(c)|−1 < ε ∀ c ∈ C, ∀ n ≥ nε.

Therefore, choosing Tε sufficiently large so that CTε ⊆ Cδε and using (12) we have
1
n

∑
1≤j≤n

fj(c)∈CTε

s(cj) ≤ κ̄

n

∑
1≤j≤n

fj(c)∈Cδ

log |d(cj)|−1 < κ̄ε.

Since ε is arbitrary, this implies TSR. �

4. TSR implies SR

Lemma 2. Let f satisfy condition TSR. Then there exists a constant κ > 0 such that

(13) s(cj) ≥ κ log d(cj)−1 ∀c ∈ C, ∀ j ≥ 1.

Arguing as in the proof of Corollary 1.1 we then get

Corollary 2.1. Let f satisfy condition TSR. Then it satisfies condition SR.

We first give two preliminary results which will be used in the proof.

Sublemma 2.1. There exists constants C, ξ > 0 such that for any interval J and any
positive integer n such that J is a one-side neighbourhood of a critical point c, fn(J)
contains a one-sided neighbourhood of the same critical point c and fn+1(J) ⊃ f(J),
we have |J | ≥ Ce−nξ (we do not assume that fn+1|J is monotone).

Proof. By the non-flatness of the critical points, there exists a constant θ > 0 de-
pending only on f such that in either case we have θ|J | ≤ |fn(J)|. Moreover, letting
D = maxx∈I |Df(x)|, the mean value theorem implies |fn(J)| ≤ Dn−1|f(J)|, and,
using the non-flatness of the critical points again, we have |f(J)| ≤ L|J |� for some
constants �, L depending only on f . Combining these estimates give θ|J | ≤ LDn−1|J |�
and therefore |J |�−1 ≥ θL−1D−n+1 or |J | ≥ (θL−1D)1/�−1D−n/(�−1). �
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Sublemma 2.2. Let f satisfy condition TSR. Then for any ε > 0 there exists Nε > 0
such that

(14) ni+1(c) − ni(c) ≤ εni(c) ∀ c ∈ C, ∀ ni ≥ Nε.

Proof. From TSR we have s(cj)/j → 0 as j → ∞. By (10) this immediately implies
the statement. �

Proof of Lemma 2. We first define in an iterative process which may stop according
to one of two possible stopping rules. We then show that in both cases the conclusions
of the Lemma are satisfied. We fix some ε ∈ (0, 1) and let Nε be the corresponding
integer from Sublemma 2.2.

Step 1. Let s0 = s(cj).
• If s0 < max{N0, Nε} go to step 3.

Otherwise we argue as follows. Since s0 ≥ N0, there is a well defined critical point
c(0) such that d(cj) = d(cj , c(0)) and s(cj) = s(cj , c(0)) . By (7) there exists some
ni0 ∈ Nc(0) with ni0 = s0 and

Îni0 ⊂ (cj , c(0)) ⊂ Îni0−1 .

Here we omit the subscripts ± not to overload the notation, and let Îni0 = Î
ni0
+ or

Î
ni0− according to the relative positions of cj and c(0). By construction

fs0(Îni0 ) = (cs0
(0), c(1))

for some critical point c(1).
•If c(1) = c(0) go to step 2.

Otherwise we repeat the algorithm with cs0
(0) playing exactly the role of cj above.

More precisely, we consider the separation time s1 = s(cs0
(0)). Since s0 > Nε, (10) and

(14) give
s1 = ni0+1 − ni0 ≤ εni0 = εs0.

• If s1 < max{N0, Nε} go to step 3.
Otherwise there exists some ni1 ∈ Nc(1) such that ni1 = s1 and

Îni1 ⊂ (cs0
(0), c(1)) ⊂ Îni1−1 .

Again, by construction
fs1(Îni1 ) = (cs1

(1), c(2))

for some critical point c(2).
•If c(2) equals either c(0) or c(1) go to step 2.

Otherwise we repeat the process again with c
s(1)

(1) playing the role of c
s(0)

(0) and continue
in this way until we go to either step 2 or step 3. In the general case we have
sj = s(csj−1

(j−1)) and

(15) sj = nij−1+1 − nij−1 ≤ εnij−1 ≤ εjs0.

•If sj < max{N0, Nε} go to step 3.
Otherwise there exists some nij ∈ Nc(j) with nij = sj such that

Înij ⊂ (csj−1

(j−1), c(j)) ⊂ Înij−1 and fsj (Înij ) = (csj

(j), c(j+1))
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for some critical point c(j+1).
•If c(j+1) equals any one of c(0), c(1), . . . , c(j) go to step 2.

The process has to stop in a maximum of q + 1 steps as by that time the above
condition is necessarily satisfied.

Step 2. We suppose here that the procedure described above gives constants 0 ≤
k < m ≤ q + 1 such that c(m) = c(k) and therefore we have one-sided neighbour-
hoods (csk−1

(k−1), c(k)) and (csm−1

(m−1), c(m)) = (csm−1

(m−1), c(k)) of the same critical point c(k).
Moreover, by construction we have that fsk+...+sm−1(csk−1

(k−1), c(k)) ⊃ (csm−1

(m−1), c(m)) =
(csm−1

(m−1), c(k)) and therefore we are in a position to apply the estimates of Sublemma
2.1 to the interval J = (csk−1

(k−1), c(k)) if we can show that

(16) f(csm−1

(m−1), c(k)) ⊃ f(csk−1

(k−1), c(k)).

To see that this is the case we recall that sj satisfies (15) for all 0 ≤ j < m (for
otherwise we would have gone straight to Step 3) and thus in particular the separa-
tion time s(csm−1

(m−1), c(k)) = s(csm−1

(m−1), c(m)) = sm is strictly less than s(csk−1

(k−1), c(k)) =
sk. This implies that the separation time s(f(csm−1

(m−1)), f(c(k))) is strictly less than
s(f(csk−1

(k−1)), f(c(k))) where both (f(csm−1

(m−1)), f(c(k))) and (f(csk−1

(k−1)), f(c(k))) are one-
sided neighbourhood (on the same side) of the critical value f(c(k)). Clearly this
implies that |f(csk−1

(k−1))−f(c(k))| < |f(csm−1

(m−1))−f(c(k))| which is precisely (16). There-
fore, by Sublemma 2.1 we have

(17) |(csk−1

(k−1), c(k))| ≥ Ce−ξ(sk+...+sm−1).

By construction we also have fs0+...+sk−1(cj , c(0)) ⊃ (csk−1

(k−1), c(k)) and therefore by
the mean value theorem we have

(18) |(cj , c(0))| ≥ D−(s0+...+sk−1)|(csk−1

(k−1), c(k))|.
Combining (17) and (18) we get that there exist constants C, η > 0 such that d(cj) =
|(cj , c(0))| ≥ Ce−η(s0+...+sm−1). Finally, from (15) we have that there exists a uniform
constant ν = 1 +

∑
εi such that s0 + . . . + sm−1 ≤ νs0 = νs(cj), which then gives

d(cj) = |(cj , c(0))| ≥ Ce−ηνs(cj). This completes the proof in this case.

Step 3. We now consider the situation in which the procedure described in Step 1
leads to the existence of some 0 ≤ j ≤ q + 1 such that sj < max{N0, Nε}. Since
sj = s(csj−1

(j−1), c(j)) we have that |csj−1

(j−1) − c(j)| ≥ δ where δ > 0 is some constant
depending only on f , N0 and Nε. Therefore a similar argument to that used in the
final part of Step 2 gives the result in this case also. �

5. Topological Slow Recurrence implies CE

We now show that for S-multimodal maps the Topological Slow Recurrence con-
dition implies the Collet-Eckmann condition. We shall be concentrating here on the
cylinder sets associated to the critical values rather than those associated to the crit-
ical points used in the arguments given in the previous section. Consider a critical

value c1 with shadowing times n±
i and corresponding intervals Î

(n±
i )

± and I(n±
i ) as in

section 2.
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Definition 2. For any (large) T > 0 we say that the gap n−
i − n−

i−1, respectively
n+

j −n+
j−1, between two left, respectively right, shadowing times is short if n−

i −n−
i−1 <

T , respectively n+
j − n+

j−1 < T . We say that a left short gap and a right short gap
are simultaneous if they are contained in an interval T = [t1, t2] of times of length
t2 − t1 < T .

In section 5.1 we show that there exist values of T for which there are many
intervals of simultaneous short shadowing times. In section 5.2 we show that each
such interval implies a uniform estimate on the exponential shrinking of the length
of intervals associated to some particular cylinder sets at the corresponding critical
value. Finally, in section 5.3 we combine these two results to obtain the Collet-
Eckmann property.

5.1. Positive density of simultaneous short shadowing times.

Lemma 3. For every small ε > 0 there exists T = Tε > 0, nε > 0 and η = ηε =
(1 − 2ε)/2Tε > 0 such that the number of disjoint simultaneous short (with respect
to T ) shadowing time intervals associated to any critical values, and occurring before
time n, is ≥ ηn for every n ≥ nε.

Proof. Suppose that a point x satisfies condition (11). Then for all ε > 0 sufficiently
small, there exist nε, Tε such that

(19)
∑

1≤n±
i ≤n

n±
i+1−n±

i >T

n±
i+1 − n±

i =
∑

1≤n±
i ≤n

s(xn
±
i )>T

s(xn±
i ) ≤

∑
1≤j≤n

s(xj)>T

s(xj) < εn

for all T > Tε and n > nε. Indeed, the equality follows by (10), the first inequality
follows simply because the summation on the left is over a subset of times of the sum-
mation on the right, and the final inequality follows directly from (11). In particular
we have ∑

1≤n±
i ≤n

n±
i+1−n±

i ≤T

n±
i+1 − n±

i ≥ (1 − ε)n.

The calculation holds for both left and right shadowing times independently and
therefore there exist at least (1 − 2ε)n iterates which belong to a small gap for both
the left and the right sequence of shadowing times simultaneously. Each such iterate
is therefore contained in an interval T of simultaneous short shadowing times and
thus it is possible to define at least (1 − 2ε)n/2Tε disjoint such intervals.

Finally, notice that if some point x satisfies condition (11) then any other point on
the orbit of x also satisfies (11). In particular these conclusions hold for all critical
values as required.

�

5.2. Exponential shrinking at simultaneous short shadowing times.

Lemma 4. For any integer T ≥ 1, there exists a constant 0 < γ = γ(T ) < 1 such
that for any critical value c1 and any associated pair [n−

i−1, n
−
i ] and [n+

j−1, n
+
j ] of
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simultaneous left and right short gaps we have

|Î(n−
i )

− |
|Î(n−

i−1)

− |
< γ and

|Î(n+
j )

+ |
|Î(n+

j−1)

+ |
< γ

Proof. Let T = [k, k̃] be the interval containing [n−
i−1, n

−
i ] and [n+

j−1, n
+
j ] and satis-

fying k̃ − k < T . We claim first of all that there exists a δ = δ(T ) > 0 such that

|fk(Î
(n−

i−1)

− \ Î
(n−

i )
− )| ≥ δ, |fk(Î

(n+
j−1)

+ \ Î
(n+

j )

+ )| ≥ δ.

To see this, let C(T ) = {f i(C)}T
i=−T denote the set of all images and preimages of

the critical set between time −T and +T and define δ > 0 to be the minimum
distance between any two points in this set. Now let [x, y] = Î

(n−
i−1)

− \ Î
(n−

i )
− and

[z, w] = Î
(n+

j−1)

+ \ Î
(n+

j )

+ . Then, by construction we have

{fn−
i−1(x), fn−

i (y), fn+
j−1(w), fn+

j (z)} ⊂ C
and therefore, since n−

i−1, n
−
i , n+

j−1, n
+
j are all within T iterates of k we have

{fk(x), fk(y), fk(z), fk(w)} ⊂ C(T ).

These are the endpoints of the intervals fk(Î
(n−

i−1)

− \ Î
(n−

i )
− ) and fk(Î

(n+
j−1)

+ \ Î
(n+

j )

+ ) and
thus the claim follows.

We now choose two points x′ ∈ (x, y) and w′ ∈ (z, w) such that |fk[x, x′]| =
|fk[x′, y]| ≥ δ/2 and |fk[z, w′]| = |fk[w′, w]| ≥ δ/2.

By (8) we observe that the map fk is monotone on [x, w] and therefore the two
extreme intervals [x, x′] and [w′, w] form the Koebe space which guarantees uniformly
bounded distortion in [x′, w′] (see [MelStr93]). In particular the proportion between
the lengths of [x′, y] and [y, c1] is uniformly comparable to the proportion between
the length of fk[x′, y] and fk[y, c1] and therefore we have

|Î(n−
i−1)

− |
|Î(n−

i )
− |

=
|[x, c1]|
|[y, c1]| ≥

|[x′, c1]|
|[y, c1]|

≥ 1 +
|[x′, y]|
|[y, c1]| ≥ 1 + Γ

|fk[x′, y]|
|fk[y, c1]| ≥ 1 +

Γδ

2|I|
for a distortion constant Γ which depends only on δ. This proves the first inequality
in the statement of the Lemma with γ = (1 + Γδ

2|I| )
−1. Exactly the same argument

gives the second inequality. �

5.3. Collet-Eckmann. We are now ready to show that all critical values admit
exponentially growing derivative along their orbits. More specifically we shall prove
the following

Lemma 5. Suppose that every critical value satisfies (TSR). Then there exist con-
stants K, λ > 0 such that for every critical value and every n ≥ 1 we have

rn := min

{
|fn(Î(n)

− )|
|Î(n)

− |
,
|fn(Î(n)

+ )|
|Î(n)

+ |

}
≥ Keλn.
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The exponential growth of the derivative then follows from the so-called minimum
principle for maps with negative Schwarzian derivative:

Minimum Principle. [MelStr93] Let f be an S-multimodal map and [a, b] ⊂ I be a
subinterval. For i ≥ 1, if f i|[a,b] is a diffeomorphism, then

|Df i(x)| ≥ min
{ |f i(b) − f i(x)|

|b − x| ,
|f i(x) − f i(a)|

|x − a|

}

for any x ∈ (a, b).

We therefore get the following

Corollary 5.1. Suppose that every critical value satisfies (TSR). Then there exist
constants K, λ > 0 such that for every critical value c1 and every n ≥ 1 we have

|Dfn(c1)| ≥ Keλn.

We begin with a sublemma which follow easily from the estimates obtained above.

Sublemma 5.1. For all n ≥ 1 we have

|Î(n)
± | ≤ e−ηγn.

Proof. Follows from Lemmas 3 and 4. �

Proof of Lemma 5. We start by considering a (left or right) shadowing time n±
i . Let

Î
(n±

i )
± = [x, c1] and recall that then fn±

i (Î(n±
i )

± ) = (ĉ, cn±
i +1) for some critical point ĉ.

By lemma 2 we have
d(cj) ≥ e−s(cj)/κ.

Therefore

(20) |fn±
i (Î(n±

i )
± )| = |cn±

i +1 − ĉ| ≥ e−s(cn
±
i

+1)/κ

for every critical value and every shadowing time n±
i ≥ 1.

We now let n±
i be the smallest (left or right) shadowing time larger than n. Then

n±
i−1 ≤ n < n±

i and so Î
(n±

i )
± ⊂ Î

(n)
± = Î

(n±
i−1)

± . By (8) we know that fn±
i |

Î
(n

±
i−1)

±
is

monotone, so we have by (20),

|fn(Î(n)
± )| ≥ D−(n±

i −n)|fn±
i (Î(n)

± )| = D−(n±
i −n)|fn±

i (Î
(n±

i−1)

± )|

≥ D−(n±
i −n)|fn±

i (Î(n±
i )

± )|.
(21)

Then, by (20) and sublemma 5.1, we obtain

|fn(Î(n)
± )| ≥ D−(n±

i −n)e−s(cn
±
i

+1)/κ ≥ D−(n±
i −n)e−s(cn

±
i

+1)/κeηγn|Î(n)
± |

= D−(n±
i −n)e−s(cn

±
i

+1)/κ+ηγn|Î(n)
± |.

(22)

It is therefore sufficient to show that we can choose constants K, λ > 0 so that

rn ≥ D−(n±
i −n)e−s(cn

±
i

+1)/κ+ηγn ≥ Keλn.
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Since limn→+∞ s(cn)/n = 0, we can choose N sufficiently large such that
s(cn±

i +1)/κ < ηγ(n±
i + 1)/2 when n±

i ≥ N . So

rn ≥ D−(n±
i −n)eηγn−ηγ(n±

i +1)/2.

We start by taking λ̃ = ηγ/2, fixing some arbitrary λ̃ > λ > 0 and writing λ̃ =
λ + (λ̃− λ) and n±

i = (n±
i − n) + n. Then we have eλ̃n±

i = eλne(λ̃−λ)ne−λ̃(n−n±
i ) and

therefore

rn ≥ D−(n±
i −n)eηγn−ηγ(n±

i +1)/2 = D−(n±
i −n)e−λ̃(n±

i −n)e−λ̃e(λ̃−λ)neλn.

It remains to show that

(23) (Deλ̃)−(n±
i −n)e−λ̃e(λ̃−λ)n ≥ K

This follows by the crucial facts that n±
i − n±

i−1 > n − n±
i−1 and

(24) lim
n±

i−1→+∞
s(cn±

i−1)
n±

i−1

= lim
n±

i−1→+∞

n±
i − n±

i−1

n±
i−1

= 0

by TSR and (10). Indeed, We use (24) which implies that the left side of (23) is
bigger than 1 for all n±

i ≥ Ñ for some sufficiently large Ñ depending only on the
map and the constants λ and λ̃ and thus, again using (24), for all n ≥ N for some
sufficiently large N also depending only on the same quantities as Ñ . To take care
of smaller values of n it is sufficient to choose K sufficiently small depending only on
the value of rn for n ≤ N . This completes the proof.

�
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