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ON THE TORSION OF OPTIMAL ELLIPTIC CURVES OVER
FUNCTION FIELDS

Mihran Papikian

Abstract. For an optimal elliptic curve E over Fq(t) of conductor p·∞, where p
is prime, we show that E(F )tor is generated by the image of the cuspidal divisor

group. We also show that E(F )tor ∼= Z/nZ for some n, 1 ≤ n ≤ 3, and that n
divides (q − 1) and deg(p).

1. Introduction

Let Fq denote the finite field of q elements. We let p be the characteristic of
Fq (so q is a power of p). Let F = Fq(t) be the field of rational functions on P1

Fq
,

and let A = Fq[t] be the subring of F consisting of functions which are regular
away from ∞ := 1/t.

Let p be a fixed prime ideal of A. Denote by Y0(p) the coarse moduli scheme
of pairs (D,Z), where D is a rank-2 Drinfeld A-module of general characteristic,
and Z is a p-cyclic subgroup of D; for the definitions see, for example, [6]. The
scheme Y0(p) is a smooth affine geometrically irreducible curve defined over F .
Denote by X0(p) the unique smooth compactification of Y0(p) over F . Let J be
the Jacobian variety of X0(p). The complement of Y0(p) in X0(p) consists of
two F -rational points; these are called the cusps of X0(p). The divisor on X0(p)
which is the difference of the two cusps generates a finite cyclic subgroup C of
J(F ) called the cuspidal divisor group. It is known [4] that C has order N(p),
where N(p) = qd−1

q−1 , if d := deg(p) is odd, and N(p) = qd−1
q2−1 if d is even.

Let J be the Néron model of J over P1
Fq
. It is known that J has bad reduction

only at two places of P1
Fq
, namely at p and ∞. In other words, the v-fibre JFv

of
J is not an abelian variety over Fv only when v = p or v = ∞; here we denote
by Fv the residue field at the place v. Moreover, it is known that the reduction
of J at p and ∞ is toric, i.e., the connected component of the identity J 0

Fv
is

an algebraic torus over Fv when v = p,∞. We denote JFv/J 0
Fv

by ΦJ,v; this
is a finite abelian group called the group of connected components of J at v.
By what was said, the groups ΦJ,v are trivial if v is not p or ∞. Taking the
schematic closure of C in J and then specializing to the p-fibre, we get a natural
homomorphism C → ΦJ,p. Gekeler proved [4] that this is an isomorphism. More
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recently, Pál proved [10] that the inclusion C ⊂ J(F )tor is in fact an equality.
These results are the function field analogues of some of the results of Mazur in
his celebrated paper [8].

The aim of the present article is to show that for certain one-dimensional
quotients of J the F -rational torsion is again cuspidal, i.e., is generated by the
image of C. Let E be an elliptic curve over F . We say that E is optimal if there
is a homomorphism J → E with connected and smooth kernel (i.e., the kernel
is an abelian subvariety of J). An equivalent condition is that E is isomorphic
to an abelian subvariety of J . If E is optimal then it has conductor p · ∞ and
the reduction of E at p (resp. ∞) is multiplicative (resp. split multiplicative).
For E we adopt notation similar to that for J , so, for example, E will be the
Néron model of E over P1

Fq
and ΦE,v will be the v-fibre component group of E .

We denote by n(p) the greatest common divisor of N(p) and (q − 1). The main
result is the following:

Theorem 1.1. Let E be an optimal elliptic curve.

(1) The homomorphism J(F )tor → E(F )tor, induced from the quotient map
J → E, is surjective. In particular, E(F )tor is generated by the image
of the cuspidal divisor group C in E.

(2) The specialization map E(F )tor → ΦE,p is an isomorphism. In particu-
lar, Gal(Fp/Fp) acts trivially on ΦE,p.

(3) E(F )tor ∼= Z/nZ for some 1 ≤ n ≤ 3 dividing n(p).

Remark 1.2. According to part (1) of the theorem, E(F )tor has a natural gen-
erator, namely the image of the cuspidal divisor. In part (3), the condition that
n divides n(p), can be equivalently stated as follows: If n = 3, then 3 divides
(q − 1) and d; if n = 2 then q is odd and d is divisible by 4. This easily follows
from the formula for N(p).

This theorem is the function field analogue of a result over Q due to Mestre
and Oesterlé [9]. Emerton [3] generalized Mestre-Oesterlé theorem from elliptic
curves to arbitrary abelian subvarieties of the classical modular Jacobians. Both
[9] and [3] extensively use in their proofs the results of Mazur [8] and Ribet [13].
One feature which is significantly different in our proof is that we completely
avoid using any “level-lowering” results. From the Eisenstein ideal theory we
need the Gorensteinness property of the completion of the Hecke algebra at the
Eisenstein maximal ideals and the fact that C = J(F )tor, both proven by Pál in
[10].

Lemma 1.3. If we allow both q and p to vary then Theorem 1.1 (3) is the best
possible result, in the sense that there are optimal elliptic curves with E(F )tor ∼=
Z/2Z and there are also optimal elliptic curves with E(F )tor ∼= Z/3Z.

Proof. There is an example due to Gekeler, which shows that E(F )tor ∼= Z/3Z
occurs. Let F = F7(t), and E/F : y2 = x3 + ax+ b, where a = −3t(t3 + 2) and
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b = −2t6 +3t3 +1. Then E is an optimal elliptic curve of conductor (t3 −2) ·∞.
One easily shows that #E(F ) = #ΦE,p = 3.

Andreas Schweizer in his Ph.D. thesis considered the curve

E : y2 = x3 + (t2 + 1)x2 − x

over F3(t). This curve has conductor (t4−t2−1)·∞, split multiplicative reduction
at ∞, and E(F ) ∼= Z/2Z. It is not optimal according to Theorem 1.1, since ΦE,p

is trivial. Let E′ be the curve obtained from E by the isogeny having kernel
E(F ). By Theorem 4.1 and its proof, E′ must be optimal and ΦE′,p ∼= Z/2Z.
Again using Theorem 1.1, we get E′(F ) ∼= Z/2Z. �

Note that the proof of this lemma also shows that the requirement on E being
optimal in Theorem 1.1 is necessary. Another way to see this is to recall that
the rational torsion of elliptic curves over F is universally bounded, whereas
the orders of component groups can be made arbitrarily large by taking the
Frobenius conjugates of an elliptic curve.

Remark 1.4. One could ask whether Theorem 1.1 (3) is the best possible result
when we fix q and vary only p. For example, for any q not congruent to 1 modulo
3 the only possibility for E(F )tor is Z/2Z. This is similar to the situation over Q,
where one knows that aside from finitely many (explicitly known) examples of
optimal curves with prime conductor the only possibility for the rational torsion
of such curves is Z/2Z. Moreover, a curve with non-trivial 2-torsion must be a
Setzer-Neumann curve; see [9, §5]. It seems like an interesting problem to try
to give such a complete classification over function fields too. (The only q for
which our theorem gives such a complete answer is q = 2: the optimal curves
over F2(t) cannot have any rational torsion at all.)

In [11] we gave a formula for the variation of the orders of Tate-Shafarevich
groups X(E/K) of E over certain quadratic extensions K of F . One of the
factors which appears in that formula is the fraction #E(F )tor/#ΦE,p. By
Theorem 1.1 this fraction is always equal to 1, and hence can be omitted from
the formula for #X(E/K). This was our initial motivation for considering the
problem of the present article. Following the suggestion of the referee, we include
the statement of this result.

Let S := {x1, x2, . . . , xn} be the set of isomorphism classes of super-singular
Drinfeld modules over Fp. Let M denote the free Z-module on the set S, and
deg : M → Z denote the Z-linear map obtained by sending each xi ∈ S to
1 ∈ Z, and let M0 denote the kernel of deg. Define a symmetric, bilinear,
Z-valued pairing on M by the formula 〈xi, xj〉 = #Isom(xi, xj)/(q − 1). It is
known that the character group HomFp

(J 0
Fp

, Gm,Fp
) is canonically isomorphic to

M0, and the pairing 〈·, ·〉 restricted to M0 is Grothendieck’s monodromy pairing
discussed in [7]. From the optimal quotient map J → E one obtains a canonical
element HE ∈ M0 corresponding to E. Now let d be an irreducible polynomial
in A of odd degree. Let K = F (

√
d). Let O be the integral closure of A in K. If

we assume that the ideal (p) remains prime in O then the endomorphism rings of
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some super-singular Drinfeld modules xi contain O as a subring. There results
an action of Pic(O) on a subset of S, which produces an element HK ∈ M
depending only on K. Theorem 1.1 combined with [11, Thm. 1.2] give the
following formula:

Theorem 1.5. If 〈HE ,HK〉 �= 0 then

#X(E/K) =
(
〈HE ,HK〉 · q(deg Ω1

E |O−1)
)2

,

where Ω1
E |O is the pullback of Ω1

E along the relative zero section.

2. The kernel of the Eisenstein ideal

Aside from the notation used in the introduction, we will also use the following
notation and terminology: For a field L we will denote its algebraic closure by
L̄, and the separable closure by Lsep. By a finite flat group scheme over the
base scheme S we always mean a finite flat commutative S-group scheme. We
say that the finite flat group scheme G over P1

Fq
is constant if it is étale and the

action of Gal(F sep/F ) on GF (F ) is trivial. We say that G is μ-type if its Cartier
dual G∨ is constant. Given an abelian variety B, its dual abelian variety will
be denoted by B̂. As in [10], let E be the Eisenstein ideal of the Hecke algebra
T, i.e., the ideal generated by the elements Tq − qdeg(q) − 1, where q �= p is any
prime in A. We write J [E], respectively J [E, �], for the group of points in J(F ),
respectively in J(F )[�], which are killed by all elements of E. Denote F̃ := Fq(t).
This is the maximal unramified extension of F .

Before giving the proof of Theorem 1.1, we need few preliminary facts. The
purpose of this section is to describe the kernel of the Eisenstein ideal J [E] as a
Galois submodule of J . This result seems to be of independent interest. Some
of our arguments are motivated by [8] and [14].

Lemma 2.1. Let V be a Gal(F sep/F )-submodule of J(F ) of finite cardinality
coprime to p. If V is unramified at p, then it is everywhere unramified, i.e.,
V ⊂ J(F̃ ).

Proof. Since J has good reduction away from p and ∞, using the Néron-Ogg-
Shafarevich criterion, it is enough to show that V is unramified at ∞. It is
even enough to show that V is at most tamely ramified at ∞. Indeed, V is a
Gal(F sep/F )-module by assumption, and it is easy to see (for example, by using
Hurwitz genus formula) that F has no extensions ramified exactly at ∞ such
that the ramification is tame. We can assume #V = �n for some prime � �= p.
Choose an inertia group I∞ ⊂ Gal(F sep/F ) at ∞. The reduction of J at ∞ is
toric, in particular semi-abelian, so I∞ acts on J [�n] through its maximal pro-�
quotient, which is procyclic; see [7, Prop. 3.5]. In particular, I∞ acts on V
through its pro-� quotient, so V is at most tamely ramified at ∞. �

Proposition 2.2. There is an inclusion J(F̃ )tor ⊂ J [E].
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Proof. Let G = J(F̃ )tor. Since J is not isotrivial, G is finite. We claim that G

has order coprime to p. To see this, fix a prime P in Ã := Fq[t] over p. Let
k = Ã/P. Since F̃ /F is unramified at p, the Néron model J̃ of J̃ := J eF over
ÃP is isomorphic to the base change of J to the strict henselization of Ap. In
particular, ΦJ,p = Φ eJ,P. Suppose G has non-trivial p-torsion. Fix a subgroup

G′ ⊂ G of order p. By taking the schematic closure of G′ in J̃ eAP
, we get a

finite flat group scheme G′ extending G over ÃP. If J̃ 0
k ∩ G′

k is non-trivial, then
G′

k = μp (as J̃ 0
k is a torus). This is impossible, since otherwise (G′)∨ has étale

closed fibre but connected generic fibre (μp is connected in characteristic p).
Hence we get a natural injection G′ ↪→ ΦJ,p. This latter group is known to have
no p-torsion, and we get a contradiction.

Next, we claim that G is an extension of a constant group scheme by a μ-type
étale group scheme. Since G has order coprime to the characteristic of F (and
hence also coprime to the characteristics all residue fields) and is unramified at all
places, it extends to a finite étale group scheme G over P1

Fq
, cf. [7, §2]. It is easy to

see that G is the schematic closure of G in J . So we are reduced to studying the
Gal(F sep/F )-structure of G. The action of Gal(F sep/F ) on G factors through
Gal(Fq/Fq). By fixing a decomposition subgroup D∞ of Gal(F sep/F ) at ∞,
we get a canonical inclusion Gal(F∞/F∞) → Gal(Fq/Fq). This latter map is
an isomorphism as deg(∞) = 1. The specialization map G → GF∞ commutes
with the action of Gal(F∞/F∞), so we are reduced to showing that GF∞ is an
extension of a constant group scheme over F∞ by a μ-type étale group scheme.
On the one hand, Drinfeld modular curves are totally degenerate at infinity,
so J 0

F∞ is a split torus and by [7, §11] ΦJ,∞ is constant. On the other hand,
GF∞ ↪→ JF∞ . The claim follows.

Let S be the maximal μ-type étale subgroup of J . It is clear that S ⊂ G.
We claim that L := G/S is a constant group scheme. Indeed, by what we have
proved, we can write G as an extension of a constant group scheme by a μ-type
étale group scheme. Since S is the maximal μ-type étale subgroup scheme of J ,
the group L must be constant.

It is clear that S and G are T-modules, and they are also Gal(F sep/F )-
invariant. Hence L is equipped with a commuting actions of T and the absolute
Galois group, which satisfy the Eichler-Shimura congruence relations. We claim
that the extension of T-modules

0 → S → G → L → 0

in fact splits. The action of T uniquely extends by the universal property of
Néron models to J . Hence we get a natural map T → EndFp(JFp), which
is injective since J has toric reduction at p. Since the action of T on JFp is
continuous, it preserves J 0

Fp
. Thus, ΦJ,p is naturally a T-module. It is enough

to show that the specialization of G to the p-fibre splits. This specialization
provides a map G → ΦJ,p, and by restricting to S, a map S → ΦJ,p. This latter
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homomorphism is an isomorphism by Proposition 8.18 in [10], so the sequence
splits as we have produced a T-equivariant retraction G → S, cf. [8, p.142].

Now it is easy to see that G is annihilated by the Eisenstein ideal. Indeed,
as a T-module G = S ⊕ L, and both summands are killed by Tq − qdeg(q) − 1,
q �= p, according to the Eichler-Shimura congruence relations. �

Lemma 2.1 and Proposition 2.2, combined with the results in [10], are actually
sufficient for the proof of Theorem 1.1, but for the sake of completeness we show
that the inclusion in Proposition 2.2 is in fact an equality.

The maximal ideals of T which contain the Eisenstein ideal E will be called
Eisenstein maximal ideals. By Proposition 7.11 and the proof of Corollary 11.8
in [10] we have T/E = Z/N(p)Z. Hence for a maximal Eisenstein ideal M the
quotient field T/M has characteristic dividing N(p), in particular it is coprime
to p. For a maximal ideal M � T denote by TM the completion of T at M.

The character group X = HomFp
(J 0

Fp
, Gm,Fp

) is a free Z-module of rank

dim(J) which is equipped with compatible actions of T and Gal(Fp/Fp). More-
over, T acts faithfully on X .

Lemma 2.3. If the maximal ideal M � T is Eisenstein then XM = X ⊗T TM

is free of rank one over TM.

Proof. Let k = T/M, and let � be the characteristic of k. An argument similar
to the one in [14, Thm. 2.3] shows that there is an inclusion

Hom(X/MX , μ�) ↪→ J [M].

On the other hand, from [10, §§10-11] we know that dimF�
J [M] = 2 and the

image of J [M] in ΦJ,p is non-trivial. Since Hom(X/MX , μ�) ⊂ J 0
Fp
[M], we

conclude that dimk(X/MX ) ≤ 1. By Nakayama’s lemma XM is a cyclic TM-
module.

Using [16, Prop. 4.2], it is easy to see that TM ⊗Z�
Q� is a commutative

semi-simple algebra of the same dimension as XM⊗Z�
Q�. Since T acts faithfully

on X , we get that XM ⊗Z�
Q� is free of rank one over TM ⊗Z�

Q�. Combined
with the previous paragraph, this implies that XM is indeed a free rank one
TM-module. �

Proposition 2.4. There is an inclusion J [E] ⊂ J(F̃ ).

Proof. Let n = N(p). As we already mentioned, T/E = Z/nZ, so every element
of J [E] is killed by n. From [10, §§10-11] we also have dimF�

J [E, �] = 2, for any
prime � dividing n. Therefore, #J [E] ≤ n2.

Fix a decomposition group Dp ⊂ Gal(Fsep/F ) at p. Using the quotient map
Dp → Gal(Fp/Fp), we view X as a T[Dp]-module. For any natural number m
coprime to p, the finite multiplicative group J 0

Fp
[m] canonically lifts to a T[Dp]-

submodule of J [m](F p), cf. [7, §2]. Now J 0
Fp
[m] is the Cartier dual of X/mX .
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We thus obtain a T[Dp]-equivariant injection

Hom(X/mX , μm) ↪→ J [m](F p).

Taking m = n and applying HomT(T/E,−), we get a canonical injection

Hom(X/EX , μn) ↪→ J [E].

By combining this injection with the inclusion of C in J [E], we obtain a map of
Dp-modules

(2.1) C ⊕Hom(X/EX , μn) → J [E].

The sum is direct and the map is injective since C maps isomorphically onto
ΦJ,p, whereas Hom(X/EX , μn) lies in J 0

Fp
by construction. By Lemma 2.3,

X/EX = T/E = Z/nZ, and since C = Z/nZ, we get #J [E] ≥ n2. On the other
hand, we already showed #J [E] ≤ n2, so (2.1) is an isomorphism of Dp-modules.
The left hand-side of (2.1) is clearly unramified. Thus, J [E] is unramified at p,
and the inclusion J [E] ⊂ J(F̃ ) follows from Lemma 2.1. �

Theorem 2.5. There is an equality J [E] = J(F̃ )tor. Moreover, J [E] ⊂ J [n] and
there is a short exact sequence of group schemes

0 → μn → J [E] → Z/nZ → 0,

where n = N(p).

Proof. The first sentence is an immediate consequence of Proposition 2.2 and
Proposition 2.4. To see the second part, recall that in the proof of Proposition
2.2 we showed that J(F̃ )tor is an extension of a constant group scheme L by the
maximal μ-type étale subgroup S of J . According to [10], S = μn. On the other
hand, in the proof of Proposition 2.4 we showed that J [E] as an abelian group
is (Z/nZ)2. Thus, L = Z/nZ and the second claim follows. �

We conclude this section by giving a representation-theoretic description of
the Eisenstein maximal ideals. Note that Theorem 2.7 is the function field
analogue of Ribet’s “level-lowering theorem” [13, Thm. 1.1] in the special case
of prime level.

Proposition 2.6. Let M � T be a maximal ideal such that the characteristic of
T/M is different from p. There is a unique semi-simple representation

ρ
M

: Gal(F sep/F ) → GL2(T/M),

which is unramified away from p and ∞, and such that for all places v �= p,∞
the following relations hold:

Tr(ρ
M
(Frobv)) = Tv(mod M), det(ρ

M
(Frobv)) = qdeg(v)(mod M).

Proof. The proof of this proposition is very similar to the proof of the corre-
sponding fact over Q, as is given, for example, in [13, Prop. 5.1]. One only
needs to replace [13, (10)] by [5, Thm. 3.17], and needs to replace [1, Thm. 6.1]
by Drinfeld’s Theorem 2 in [2]. �
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In analogy with the terminology for residual representations of Gal(Q/Q), for
a place v of A we say that ρ

M
is finite at v if there is finite flat T/M-vector

space scheme H over Av for which the action of Gal(F sep/F ) on the T/M-vector
space H(F ) gives ρ

M
.

Theorem 2.7. The following three conditions are equivalent:
(1) The representation ρ

M
is reducible;

(2) The representation ρ
M

is finite at p;
(3) The maximal ideal M is Eisenstein.

Proof. That (1) and (3) are equivalent follows from the same argument as in [8,
Prop. 14.1]. To show that (2) and (3) are equivalent, first observe that since
� �= p the representation ρ

M
is finite at p if and only if it is unramified at p. Now

the claim easily follows from Lemma 2.1 and Theorem 2.5. �

3. Cuspidal torsion

Proof of parts (1) and (2) of Theorem 1.1. The dual of the optimal quotient
map π : J → E is the closed immersion π̂ : Ê ↪→ Ĵ , which, using the canonical
self-duality of E and J , can be identified with a closed immersion E ↪→ J . First,
we claim that the functorially-induced homomorphism on component groups
π̂Φ : ΦE,p → ΦJ,p is injective. It is enough to show that ΦE,p[�] → ΦJ,p[�] is
injective for any prime �. Moreover, by Theorem 6.1 in [12] ΦE,p[p] = 1, so we
can assume � �= p. Suppose ΦE,p[�] is non-trivial. Then by [7, §2] the �-torsion of
E is unramified at p. Indeed, according to loc. cit. E[�]Ip is isomorphic to EFp [�],
where Ip is the inertia group at p. Our assumption implies that dimF�

(EFp [�]) =
2, hence E[�]Ip = E[�] as dimF�

(E[�]) = 2. Since E is an abelian subvariety of
J defined over F , E[�] is a Galois submodule of J(F ), so E[�] is in everywhere
unramified by Lemma 2.1. Hence E[�] ⊂ J(F̃ ). Using Theorem 2.5, we get
E[�] = J [E, �]. There results a commutative functorial diagram

E[�] �� ΦE,p[�]

��
J [E, �] �� ΦJ,p[�].

Since C ∼−→ ΦJ,p, the image of J [E, �] in ΦJ,p[�] is isomorphic to Z/�Z. The
elliptic curve E has multiplicative reduction at p, so ΦE,p is cyclic. In particular,
ΦE,p[�] ∼= Z/�Z. Now it is easy to see from the above diagram that ΦE,p[�] →
ΦJ,p[�] must be injective, as we claimed.

Next, we claim that the functorially-induced homomorphism πΦ : ΦJ,p →
ΦE,p is surjective. For an abelian variety B over a local field Grothendieck
defined a bifunctorial pairing [7, §1.2]: ΦB ×ΦB̂ → Q/Z, which is perfect when
B is semi-stable; see [7, §11]. Applied to our situation, this pairing induces a
canonical isomorphism between coker(πΦ) and the Pontrjagin dual of ker(π̂Φ).
We showed that this latter group is trivial, so πΦ is indeed surjective.
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Consider the functorial commutative diagram arising from the immersion
E → J :

E(F )tor� �

��

�� ΦE,p

��
J(F )tor

∼ �� ΦJ,p.

The left vertical arrow is obviously injective, and we know that the lower hor-
izontal arrow is an isomorphism. Hence the homomorphism E(F )tor → ΦE,p

is injective. There is a similar commutative diagram arising from the quotient
map J → E:

J(F )tor

��

∼ �� ΦJ,p

����
E(F )tor �� ΦE,p.

We showed that the left vertical arrow is surjective. Hence E(F )tor → ΦE,p must
be surjective, and since it is also an injection, we get the isomorphism E(F )tor ∼=
ΦE,p of part (2). Now the same diagram also implies that J(F )tor → E(E)tor is
surjective. This proves (1). �

4. Rational isogenies

Theorem 4.1 (A. Schweizer). Let E be an elliptic curve over F with conductor
p ·∞. (E is not necessarily optimal and the multiplicative reduction at ∞ is not
necessarily split.) Then E has at most one prime-to-p isogeny over F , and this
isogeny (if it exists) is either a 2-isogeny or a 3-isogeny.

Proof. We can assume that E is not a Frobenius conjugate of another curve
over F , so jE is not a p-th power. Denote m := #ΦE,p and n := #ΦE,∞. By
Ogg’s formula md + n = c2, where c2 is the second Chern number of E. Let �
be a prime different from p, and let φ : E → E′ be a cyclic F -isogeny of degree
�. Such an isogeny changes n and m either by multiplying or dividing them
by �; this is easy to see by looking at the Tate curves corresponding to E. On
the other hand, c2 is invariant under prime-to-p isogenies; cf. [15]. By possibly
looking at the dual of φ, thus interchanging the roles of E and E′, we can assume
#ΦE′,∞ = n/� (note that φ∨ is also defined over F and is cyclic of order �).
Write n = �u. Then md+ �u = �md+ u. This implies u = md, so n = �md. We
get c2 = (� + 1)md. On the other hand, from the Pesenti-Szpiro inequality we
have c2 < 6d. Thus � ≤ 4.

Next, we claim that E can have at most one F -rational �-isogeny. Of the �+1
cyclic �-isogenies of E (over a suitable extension of the base field) exactly one
multiplies the order of a component group by �, and all the others divide that
order by �; this is again easy to see by looking at the local Tate model of E.
Suppose E has two F -rational �-isogenies. Then one of these isogenies divides n
by � and multiplies m by �, and the other acts in the opposite way. Repeating
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the argument in the first paragraph, we get (� + 1)�d ≤ c2 < 6d. This is a
contradiction.

Finally, E cannot have a F -rational cyclic �2-isogeny. Indeed, suppose E has
such an isogeny. Let E′′ be the image under this isogeny, and let E′ be the image
under the cyclic �-isogeny. Then E′ has two distinct F -rational �-isogenies - one
with image E and the other with image E′′. This we already ruled out. Combing
all the previous facts, the theorem follows. �

Proof of part (3) of Theorem 1.1. From Theorem 4.1 we know E(F )tor ∼= Z/nZ

for some n ≤ 3. It remains to show that n divides n(p). That n divides N(p)
follows from the injection E(F )tor ↪→ J(F )tor ∼= C. Denote T := E(F )tor. This
is a constant group subscheme of E. Consider the Zariski closure T of T in E .
We know that the specialization of T at p injects into ΦE,p. Thus, the isogeny
E → E/T divides the order of the component group at p by n; this is easy to see
by looking at the morphism induced on the closed fibres of Néron models at p.
Hence, by the invariance of c2 as in the proof of Theorem 4.1, the specialization
of T at ∞ must inject into E0

F∞(F∞). This last group has order q − 1, which
implies that n divides q − 1. �

Remark 4.2. A weaker result about the rational torsion of optimal curves can
be obtained from the following argument. Suppose E(F ) has an element of
order n. We know that n is coprime to p, and also E(F )[n] ∼= ΦE,p[n] ∼= Z/nZ.
The argument at the beginning of the proof of Theorem 1.1 (2) can be used
to show that E[n] is everywhere unramified, so E[n] ⊂ E(F̃ ). Thus E/F̃ is a
non-isotrivial elliptic curve over P1

Fq
with constant n-torsion. This implies that

there is a non-constant morphism P1
Fq

→ X(n)Fq
, where X(n) is the moduli

scheme of elliptic curves with full n-torsion. Since n is coprime to p, X(n)Fq
is

an irreducible smooth projective curve over Fq. We conclude that the genus of
X(n)Fq

must be 0. On the other hand, the genus of X(n)Fq
is equal to the genus

of X(n)C. Using the formula for the genus of X(n)C, we see that n ≤ 5.
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