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ON ČEBOTAREV SETS

Kay Wingberg

The aim of this paper is to define a topology with good properties on the set
PK of prime ideals of a number field K. The idea is, roughly speaking, that
open sets are given by so-called Čebotarev sets, i.e. sets of the form

PL|K(σ) = {p ∈ PK | p is unramified in L, σ =
(L|K

P

)
, P|p},

where L|K is a finite Galois extension with Galois group G(L|K), σ ∈ G(L|K)
and

(
L|K
P

)
denotes the Frobenius automorphism with respect to P, P an arbi-

trary extension of p to L. The precise definition of the topology TK of PK is
slightly more complicated (see §2) since we want that the natural map

ϕK′|K : (PK′ , TK′)−→(PK , TK), P �→ P ∩ K,

is continuous if K ′|K is a finite extension. We will show that (PK , TK) is a
strongly zero-dimensional (and so totally disconnected) Hausdorff space with
countable base, and so metrizable, hence normal and completely regular (and not
discrete). In particular, every point of (PK , TK) has a base of neighbourhoods
consisting of both open and closed sets. Furthermore we will prove the following
theorem (2.8)

Theorem: Let K be a number field, then
(a) the isolated points of (PK , TK) are prime ideals whose underlying prime

numbers ramify in the extension K|Q (and so the set of isolated points is
finite),

(b) every open neighbourhood of a prime ideal whose underlying prime number
is completely decomposed in K|Q has positive density.

In section 3 we consider uniform structures on PK inducing the topology TK .
If UK is the uniformity defined by finite partitions of PK given by both open
and closed sets, then the completion (P̂K , ÛK) of (PK ,UK) is a profinite space,
i.e. compact and totally disconnected. Finally we define in section 4 a metric on
PK (in the case K = Q) inducing the topology TK .
The good properties of this topology are consequences of deep theorems in

algebraic number theory. The Hausdorff property may illustrate this: it follows
easily by considering certain number fields with suitable local behaviour. But
the existence of these fields is a consequence of the theorem of Grunwald/Wang.
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1. Čebotarev Sets

Let K be a number field and let PK be the set of all prime ideals p �= (0) of
K. For a finite Galois extension L|K with Galois group G(L|K) we denote by

U(L|K) the set of prime ideals of K which are unramified in L,
D(L|K) the set of prime ideals of K which are completely decomposed in L,
R(L|K) the set of prime ideals of K ramifying in L.

For an element σ ∈ G(L|K) let

PL|K(σ) = {p ∈ U(L|K) |σ =
(L|K

P

)
for a prime ideal P|p of L},

where
(

L|K
P

)
denotes the Frobenius automorphism with respect to P. Obvi-

ously, this set depends only on the conjugacy class 〈〈σ〉〉 = {τστ−1 | τ ∈ G(L|K)}
of σ. We have PL|K(σ)∩PL|K(τ) = ∅ if 〈〈σ〉〉 �= 〈〈τ〉〉 and PL|K(1) = D(L|K). If
δ(S) = δK(S) denotes the Dirichlet density of a set S of primes of K, then by
Čebotarev’s density theorem

δ(PL|K(σ)) =
#〈〈σ〉〉

#G(L|K) .

Observe that for a finite Galois extension L|K and a set S(K) of primes of K
we have

δL(S(L)) = δK(S(K) ∩ D(L|K))) · [L : K],
where S(L) denotes the set of all extensions of S(K) to L. For sets S1 and S2

of primes we use the notation

S1 ⊂∼ S2 :⇐⇒ δ(S1\S2) = 0,

i.e. S1 is contained in S2 up to a set of primes of density zero, and

S1 =∼ S2 :⇐⇒ S1 ⊂∼ S2 and S2 ⊂∼ S1.

Definition 1.1. A set S of prime ideals of K is called Čebotarev set if there
exist a finite Galois extension L of K and an element σ ∈ G(L|K) such that

S = PL|K(σ).

We set CK = {S ⊆ PK is a Čebotarev set}.

For a finite extension K ′|K let

ϕK′|K : PK′ −→PK , P �→ p = P ∩ K,
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and we also denote the corresponding map on the set of all subsets of PK′ by
ϕK′|K . For a subfield E ⊆ K, a finite Galois extension F |E

K F

Galois��
��

��
�

E

and σ ∈ G(F |E), let UK(F |E) = ϕ−1
K|EU(F |E), RK(F |E) = ϕ−1

K|ER(F |E) and

PK
F |E(σ) = ϕ−1

K|EPF |E(σ).

In the next section we will consider the topology TK on PK defined by the
subbase which consists of all sets of the form PK

F |E(σ). But first we have to prove
some properties of the Čebotarev sets.

Proposition 1.2. Let N |K and L|K be finite Galois extensions with L ⊆ N ,
and let H = G(N |L) and σ̄ ∈ G(L|K). Then

U(N |K) ∩ PL|K(σ̄) =
⋃.

〈〈τ〉〉∩σH �=∅

PN |K(τ) ,

where σ is a lifting of σ̄ to G(N |K); in particular
U(N |K) ∩ D(L|K) =

⋃.
〈〈τ〉〉∩H �=∅

PN |K(τ) .

Proof: Let p be a prime ideal of K which is unramified in N |K. Then p ∈
PL|K(σ̄) if and only if there exists a prime P|p of L such that σ̄ =

(
L|K
P

)
, i.e. if

there exists a primeP|p ofN such that σH =
(

N |K
P

)
H. This is equivalent to the

assertion that there exists an element in σH which is contained in the conjugacy
class 〈〈τ〉〉 of τ =

(
N |K

P

)
for some prime ideal P|p of N , i.e. if p ∈ PN |K(τ) for

some τ ∈ G(N |K) with 〈〈τ〉〉 ∩ σH �= ∅. �

Since U(L1|K) ∩ U(L2|K) = U(L1L2|K), we obtain

Corollary 1.3. Let L1|K and L2|K be finite Galois extensions, Hi=G(L1L2|Li)
and σ̄i ∈ G(Li|K), i = 1, 2. Then

(i) PL1|K(σ̄1) ∩ PL2|K(σ̄2) =
⋃.

〈〈τ〉〉 ∩ σ1H1 �= ∅

〈〈τ〉〉 ∩ σ2H2 �= ∅

PL1L2|K(τ) ,



182 KAY WINGBERG

(ii) PL1|K(σ̄1) ∩ PL2|K(σ̄2) �= ∅ if and only if (σ1)−1(σ2)ρ ∈ G(L1L2|L1 ∩
L2) for some ρ ∈ G(L1L2|K) (here σi is an arbitrary lifting of σ̄i to
G(L1L2|K)).

If σ̄1 = 1 = σ̄2, then the corollary above is just the assertion D(L1L2|K) =
D(L1|K) ∩ D(L2|K). From part (ii) of the proposition above it follows that all
sets PL1|K(σ̄1) and PL2|K(σ̄2) have a non-trivial intersection, if L1 and L2 are
linearly disjoint over K. For an element τ of a finite group G we denote the
stabilizer of τ under conjugation by StG(τ).

Proposition 1.4. Let L1 and L2 be finite Galois extensions of K. For an
element σi ∈ G(Li|K) we denote its restriction to L1 ∩ L2 by σi, i = 1, 2. Then
the following assertions are equivalent:
(i) PL1|K(σ1) ⊂∼ PL2|K(σ2),

(ii) 〈〈σ1〉〉 = 〈〈σ2〉〉 and #StG(L2|K)(σ2) = #StG(L1∩L2|K)(σ2).

In particular, PL1|K(σ1) =∼ PL2|K(σ2) if and only if 〈〈σ1〉〉 = 〈〈σ2〉〉 and
#StG(L1|K)(σ1) = #StG(L1∩L2|K)(σ1) = #StG(L2|K)(σ2).

Proof: Let N = L1L2, Hi = G(N |Li), i = 1, 2, and H = G(L2|L1 ∩L2) ∼= H1.
We lift σi to G(N |K) and denote it again by σi. Assume that (i) holds, i.e.

PL1|K(σ1) =∼

⋃.
〈〈τ〉〉∩σ1H1 �=∅

PN |K(τ) ⊂∼
⋃.

〈〈τ〉〉∩σ2H2 �=∅

PN |K(τ) =∼ PL2|K(σ2).

Since the sets PN |K(τ) have positive density, it follows that for every h1 ∈ H1

there exist h2 ∈ H2 and ρ ∈ G(N |K) such that σ1h1 = (σ2)ρh2, and so 〈〈σ1〉〉 =
〈〈σ2〉〉.
If h ∈ H is a fixed element and h̃ a lifting of h to G(N |K), then it follows

that for every h1 ∈ H1 there exist h2 ∈ H2 and ρ ∈ G(N |K) such that σ1h1 =
(σ2h̃)ρh2, and therefore⋃.

〈〈τ〉〉∩σ1H1 �=∅

PN |K(τ) ⊂∼
⋃.

〈〈τ〉〉∩(σ2h̃)H2 �=∅

PN |K(τ).

We obtain PL1|K(σ1) ⊂∼ PL2|K(σ2h) for h ∈ H, hence

PL1|K(σ1) ⊂∼
⋂

h∈H

PL2|K(σ2h).

Since
PL2|K(σ2) ∩ PL2|K(σ2h) �= ∅ if and only if 〈〈σ2〉〉 = 〈〈σ2h〉〉,

it follows that

PL1∩L2|K(σ2H) =∼

⋃.
〈〈σ2h〉〉,h∈H

PL2|K(σ2h) = PL2|K(σ2),
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and therefore
#〈〈σ2H〉〉G(L1∩L2|K)

#G(L1 ∩ L2|K)
=
#〈〈σ2〉〉G(L2|K)

#G(L2|K)
.

From this equation we get

#StG(L2|K)(σ2) = #StG(L1∩L2|K)(σ2H).

Conversely, using the arguments above in the other direction, we obtain from
the assertion (ii) that PL1∩L2|K(σ2H) =∼ PL2|K(σ2). Since 〈〈σ1〉〉 = 〈〈σ2〉〉, we get
PL1|K(σ1) ⊂∼ PL1∩L2|K(σ2H) and so (i). This finishes the proof of the proposi-
tion. �

Corollary 1.5. Let L1 and L2 be finite Galois extensions of K and let σi be
an element of G(Li|K), i = 1, 2. Assume that σ2 lies in the center of G(L2|K).
Then the following assertions are equivalent:

(i) PL1|K(σ1) ⊂∼ PL2|K(σ2),

(ii) L2 ⊆ L1 and 〈〈σ2〉〉 = 〈〈σ1modG(L1|L2)〉〉.
In particular, if σi lies in the center of G(Li|K), i = 1, 2, then

PL1|K(σ1) =∼ PL2|K(σ2) if and only if L1 = L2 and 〈〈σ1〉〉 = 〈〈σ2〉〉.

Proof: By assumption σ2 lies in the center of G(L2|K), and so

#StG(L2|K)(σ2) = #StG(L1∩L2|K)(σ2)

if and only if G(L2|L1 ∩ L2) = 1, i.e. L2 ⊆ L1. Now the corollary follows from
proposition 1.4. �

Taking σ1 = 1 = σ2 it follows thatD(L1|K) =∼ D(L2|K) if and only if L1 = L2.
Thus the corollary above is a generalization of a theorem of M.Bauer (see [3],
theorem (13.9)).
In the next section we will need the following two lemmas.

Lemma 1.6. Let K|Q be a finite Galois extension and for i = 1, . . . , n let
Ei ⊆ K be subfields of K, Fi|Ei finite Galois extensions and σi ∈ G(Fi|Ei).
Then

PK
K|Q(1) ∩

n⋂
i=1

PK
Fi|Ei

(σi)

is empty or has positive density.
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Proof: Let F |E be one of the extensions Fi|Ei. Then

ϕ−1
K|QPK|Q(1) ∩ ϕ−1

K|EPF |E(σ) = ϕ−1
K|QPK|Q(1) ∩

⋃.
〈〈τ〉〉∩σH �=∅

PFK|K(τ),

where H = G(FK|F ). Indeed, let PK ∈ ϕ−1
K|QPK|Q(1) ⊆ PK and let PF be

an extension of p = PK ∩ E to F and PFK an extension of PF to FK. Then
P′

K = PFK ∩K is conjugated to PK . Since PFK is unramified over K and the

residue degree f(P′
K |p) = 1, we have

(
FK|K
PF K

)
|F
=

(
F |E
PF

)
. Now the equality

stated above follows easily. Thus we obtain

PK
K|Q(1) ∩

n⋂
i=1

PK
Fi|Ei

(σi) =

ϕ−1
K|QPK|Q(1) ∩

n⋂
i=1

⋃.
〈〈τi〉〉∩σiHi �=∅

PFiK|K(τi) =

ϕ−1
K|QPK|Q(1) ∩

⋃.
〈〈τ1〉〉∩σ1H1 �=∅

· · ·
⋃.

〈〈τn〉〉∩σnHn �=∅

(
PF1K|K(τ1) ∩ · · · ∩ PFnK|K(τn)

)
.

From corollary 1.3 (i) it follows that the sets PF1K|K(τ1) ∩ · · · ∩ PFnK|K(τn)
are empty or have positive density. Since the density of ϕ−1

K|QPK|Q(1) is equal
to 1, we proved the lemma. �

Lemma 1.7. Let K be a number field and for i = 1, . . . , n let Ei ⊆ K be
subfields of K, Fi|Ei finite Galois extensions, E =

⋂
i Ei and σi ∈ G(Fi|Ei).

Then the set

S = ϕ−1
K|EU(K|E) ∩

n⋂
i=1

PK
Fi|Ei

(σi)

is empty or infinite.

Proof: Considering the normal closure of KF1 · · ·Fn over E we may assume
that K = F1 = · · · = Fn and that K|E is a Galois extension. For a set T
of primes of K let (T )G(K|E) be the closure under conjugation by G(K|E).
Obviously, it is sufficient to show that (S)G(K|E) is empty or infinite.
Suppose that P ∈ S and let p = P∩E. Then PEi

= P∩Ei ∈ PK|Ei
(σi), i.e.

there exists an extension PK of PEi
in K such that σi =

(
K|Ei

PK

)
. Since P and

PK are conjugated over Ei, it follows that there is an element ρi ∈ G(K|Ei)
such that σρi

i =
(

K|Ei

P

)
and we may assume that σi =

(
K|Ei

P

)
. Since P ∈
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ϕ−1
K|EU(K|E), we have the element σ =

(
K|E
P

)
∈ G(K|E) and it follows that

σi =
(K|Ei

P

)
=

(K|E
P

)f(PEi
|p)

= σf(PEi
|p),

where f(PEi |p) is the inertia degree of PEi over E. We claim that

ϕ−1
K|EPK|E(σ) ⊆ (S)G(K|E).

Indeed, let P′ ∈ ϕ−1
K|EPK|E(

(
K|E
P

)
). Then there exists a prime P′′ of K which

is conjugated to P′ over E such that
(

K|E
P

)
=

(
K|E
P′′

)
. Let f(P′′

Ei
|p) be the

inertia degree of P′′
Ei
over E. Since G(K|Ei)∩GP′′(K|E) = GP′′(K|Ei), we get(K|E

P′′
)f(PEi

|p)

=
(K|E

P

)f(PEi
|p)

=
(K|Ei

P

)
∈ GP′′(K|Ei).

Since GP′′(K|Ei) is generated by the element
(

K|Ei

P′′

)
=

(
K|E
P′′

)f(P′′
Ei

|p)

,
f(P′′

Ei
|p) divides f(PEi

|p). Analogously,
(K|E

P

)f(P′′
Ei

|p)

=
(K|E

P′′
)f(P′′

Ei
|p)

=
(K|Ei

P′′
)
∈ GP(K|Ei),

and so f(PEi
|p) divides f(P′′

Ei
|p). Therefore we obtain

(K|Ei

P′′
)
=

(K|E
P′′

)f(P′′
Ei

|p)

=
(K|E

P

)f(PEi
|p)

=
(K|Ei

P

)
= σi.

It follows that P′′ ∈ ϕ−1
K|Ei

PK|Ei
(σi) for all i = 1, . . . , n, i.e. P′′ ∈ S, and so

P′ ∈ (S)G(K|E). This proves the claim. Since ϕ−1
K|EPK|E(σ) is an infinite set,

we proved the lemma. �

We finish this section with a slightly more general version of the theorem of
Grunwald/Wang (see also [4], theorem (9.2.2)).
Let p be a prime number, K a number field and S ⊇ T sets of primes of K,

where S contains the set Sp ∪ S∞ of archimedean primes and primes above p.
Let KS be the maximal extension of K which is unramified outside S. By μp

we denote the group of all p-th roots of unity.

Theorem 1.8. Let K be a number field and let S ⊇ T be sets of primes of K,
where S ⊇ Sp ∪ S∞, T is finite and

δ(S ∩ D(K(μp)|K)) >
1

p [K(μp) : K]
.

Then the canonical homomorphism

H1(KS |K, Z/pZ)−→
⊕
p∈T

H1(Kp, Z/pZ)

is surjective.
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Proof: Using [4], lemma (9.2.1), it is enough to show that the canonical map

H1(KS |K, μp)−→
∏

p∈(S\T )(K)

H1(Kp, μp)

is injective. Since [K(μp) : K] is prime to p, it is sufficient to show the injectivity
of the homomorphism

H1(KS |K(μp), μp)−→
∏

P∈(S\T )(K(μp))

H1(K(μp)P, μp).

An element of the kernel corresponds to a Galois extension L|K(μp) of de-
gree p which is unramified outside S(K(μp)) and completely decomposed at
(S\T )(K(μp)). Since

δK(μp)((S\T )(K(μp))) = δK(μp)(S(K(μp))

= δK(S(K) ∩ D(K(μp)|K)) · [K(μp) : K] > 1
p ,

such an extension has to be trivial. �

2. Topology

In this section we define a topology on the set PK of non-trivial prime ideals
of a number field K.

Definition 2.1. For a number field K let

BK={PK
F |E(σ) |E ⊆ K, F |E a finite Galois extension , σ ∈ G(F |E)},

and let TK be the topology on PK having BK as a subbase. Obviously, the topology
TK has a countable base.

Remarks: 1. From corollary 1.3 (i) it follows that CQ ∪ {∅} is a base of TQ.
2. If K ′|K is a finite extension, then by definition of the topologies TK and TK′

the map
ϕK′|K : (PK′ , TK′)−→(PK , TK), P �→ P ∩ K,

is continuous.
3. Not quite obvious is that TK is not the discrete topology on PK . In order
to see this, suppose that TK is discrete. Then for every point p ∈ PK the set
{p} is open and therefore there exist finite Galois extensions Fi|Ei, Ei ⊆ K, and
σi ∈ G(Fi|Ei), i = 1, . . . , n, such that

{p} =
n⋂

i=1

PK
Fi|Ei

(σi).

But if p is contained in UK(K|Q), then this equality contradicts lemma 1.7.

For a subset W of PK we denote the closure of W by W .
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Proposition 2.2.
(i) Let PK

F |E(σ) ∈ BK . Then

PK\
(
PK

F |E(σ) ∪ RK(F |E)
)
=

⋃.
〈〈τ〉〉�=〈〈σ〉〉

PK
F |E(τ),

and so PK
F |E(σ)∪RK(F |E) is a closed set. In particular, PK

F |E(σ)\PK
F |E(σ)

is a finite set.

(ii) Let F |Q be a Galois extension of prime degree and let σ ∈ G(F |Q). Then
PF |Q(σ) ∪ R(F |Q) is the closure of PF |Q(σ).

Proof: Assertion (i) follows from the equation

PK =
⋃.
〈〈τ〉〉

ϕ−1
K|EPF |E(τ)∪. ϕ−1

K|ER(F |E).

In order to prove (ii), suppose the contrary is true. Then there exists a prime
number p ∈ R(F |Q) and an open neighbourhood U = PL|Q(τ) of p, L|Q a finite
Galois extension, such that U does not meet PF |Q(σ). From corollary 1.3 (ii) it
follows that F and L are not linearly disjoint over Q, and so F ⊆ L. But p is
unramified in L and ramifies in F . This contradiction shows assertion (ii).

�

Remark: In general the set PK
F |E(σ)∪RK(F |E) is not necessarily the closure of

PK
F |E(σ), since there may be isolated points in the set RK(F |E), see proposition
2.6, or there may exist subextensions of F |E in which elements of RK(F |E) are
unramified.

Proposition 2.3.
(i) For every two different points p1 and p2 of (PK , TK) there exists a both

open and closed neighbourhood W of p1 such that p2 /∈ W .
(ii) Let p1, . . . , pn be pairwise different points of (PK , TK). Then there exist

both open and closed neighbourhoods U(pi) of pi such that

U(pi) ∩ U(pj) = ∅ for i �= j.

Proof: In order to prove (i) let L|K be a cyclic extension of degree m > 2
such that p1 is unramified in L|K and let σ ∈ G(L|K) with p1 ∈ PL|K(σ). We
denote the open neighbourhood PL|K(σ) of p1 by U .
Let N |K be a quadratic extension of K which is unramified at all primes of

U , completely decomposed at R(L|K) ∪ {p2} and inert at p1; if V = PN |K(τ),
where τ is the non-trivial element of G(N |K), then p1 ∈ V and p2 /∈ V . Such
an extension exists. Indeed, let
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T = S2 ∪ S∞ ∪ R(L|K) ∪ {p1, p2} and S = (PK\U) ∪ T,

then

δK(S) = 1−
1
m

>
1
2
,

and so we can apply theorem 1.8: there exists an element ϕ ∈ H1(KS |K, Z/2Z)
such that

resp(ϕ) = 0 ∈ H1(Kp, Z/2Z)) for p ∈ T\{p1}
and

0 �= resp1(ϕ) ∈ H1
nr(Kp1 , Z/2Z) ⊂ H1(Kp1 , Z/2Z).

If kerϕ = G(KS |N), then N is a quadratic extension of K with the desired
properties.
Now W = U ∩ V is an open neighbourhood of p1 and p2 /∈ W . It remains to

show that W is closed. Let W be the closure of W . Using proposition 2.2(i), we
get

U ∩ V ⊆ U ∩ V ⊆ (U ∪ R(L|K)) ∩ (V ∪ R(N |K)) = U ∩ V,

and so W =W . This finishes the proof of (i).
In order to prove (ii) we use induction with respect to n. Assume that we

have found open and closed neighbourhoods W (pi) of pi, i = 1, . . . , n− 1, which
are pairwise disjoint. By (i) it follows that for every i ∈ {1, . . . , n − 1} there
exists an open and closed neighbourhood Wi(pn) of pn such that pi /∈ Wi(pn).
Then

U(pn) =
n−1⋂
i=1

Wi(pn)

is an open and closed neighbourhood of pn such that pi /∈ U(pn) for all i =
1, . . . , n − 1. Now the open and closed neighbourhoods U(pi) = W (pi)\U(pn),
i = 1, . . . , n − 1, and U(pn) have the desired property. �

Recall that a Hausdorff space X is called zero-dimensional if every point of X
has a fundamental system of neighbourhoods which are both open and closed,
and X is called strongly zero-dimensional if for every closed subset A of X and
each neighbourhood U of A there is an open and closed neighbourhood of A
contained in U .

Proposition 2.4. The space (PK , TK) has the following properties: it is
(i) a Hausdorff space,
(ii) strongly zero-dimensional (and so totally disconnected),
(iii) metrizable (and so normal and completely regular),
(iv) every point of (PK , TK) has a base of neighbourhoods consisting of both

open and closed sets.
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Proof: By proposition 2.3(i) there exists for every two different points x and
y of PK an open and closed neighbourhood W of x such that y /∈ W . It follows
that PK\W is an open neighbourhood of y being disjoint to W . Therefore PK

is a Hausdorff space.
Now we prove (iv). Let p ∈ (PK , TK) and let U =

⋂n
i=1 PK

Fi|Ei
(σi) be an

open neighbourhood of p. We have to find and open and closed neighbourhood
of p being contained in U . Obviously we may assume that U = PK

F |E(σ). By
proposition 2.3(ii) there exist open und closed, pairwise disjoint neighbourhoods
U(pi) of pi i = 0, . . . , n, where {p1 . . . , pn} = RK(F |E) and p0 = p. Then

UR =
n⋃.

i=1

U(pi)

is an open and closed neighbourhood of RK(F |E) not containing p. Let V =
PK

F |E(σ)\UR, then V is open and contains p. But V is also closed, since we get
for the closure V of V , using proposition 2.2(i),

PK
F |E(σ)\UR = PK

F |E(σ) ∩ (PK\UR)

⊆ PK
F |E(σ) ∩ (PK\UR)

⊆ (PK
F |E(σ) ∪ RK(F |E)) ∩ (PK\UR)

= PK
F |E(σ)\UR.

This finishes the proof of (iv). The other assertions follow from [2] IX.6 exercise
2(b) since the considered space has a countable base. �

Proposition 2.5.
(i) Let p ∈ (PK , TK) be a prime ideal of K such that p = p ∩ Q is completely

decomposed in K. Then every open neighbourhood of p has positive density.

(ii) Let p ∈ (PK , TK) be a prime ideal of K such that p = p ∩ Q is unramified
in K. Then every open neighbourhood of p has infinitely many points.

Proof: Let p ∈ (PK , TK) such that p = p ∩ Q is completely decomposed in K
and let U be an open neighbourhood of p. The prime number p is also completely
decomposed in the normal closure N of K|Q. If P is an extension of p to N , then
V = ϕ−1

N |K(U) is an open neighbourhood of P. Since every open neighbourhood
of a point of (PN , TN ) contains a set which is a finite intersection of sets of BN ,
it follows from lemma 1.6 that V has positive density, and so U has. This proves
assertion (i) and (ii) follows from lemma 1.7. �
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Recall that a point x of a topological space X is called isolated if {x} is an
open set in X.
IfG(F |E) is the Galois group of a finite Galois extension F |E andP a prime of

F , then we denote the decomposition group and the inertia subgroup of G(F |E)
with respect to P by GP = GP(F |E) and TP = TP(F |E), respectively. If � is a
prime number, then G(�) is a �-Sylow group of a group G.

Proposition 2.6. Let K|Q be a finite extension and let p ∈ ϕ−1
K|Q(R(K|Q)).

(i) Assume that K|Q is normal and that Gp(K|Q) has the following property:

there exists a prime number � such that Gp(�) is not cyclic and the quotient
Gp(�)/Tp(�) is non-trivial. Then p is an isolated point of (PK , TK).

(ii) For every prime ideal P|p of the normal closure N of K|Q there exists a
finite Galois extension L|N such that P and all G(N |Q)-conjugates of P
are inert in L|N and their unique extensions to L are isolated in (PL, TL).

Proof: Let K0 ⊆ K be the fixed field of [Gp(�), Gp(�)]. From our assumptions
it follows that K0 has subfields Ei, i = 0, 1, 2, such that K0 = E1E2, E0 =
E1 ∩ E2 and

G(K0|E0) ∼= Z/�Z × Z/�Z,

and p ∩E1 is inert and p ∩E2 is ramified in K0. Let E3 be any extension of E0

in K0 of degree � different to E1 and E2:

K0

i

��
��

��
��

i
r

��
��

��
��

E1

r ��
��

��
��

E3

r

E2

i��
��

��
��

E0.

The letters i and r indicate whether p ∩ E0 resp. its unique extensions to the
fields Ei, i = 1, 2, 3, are inert or ramify in the considered extensions. Now we
consider the open set

U = PK0
K0|E1

(σ) ∩ PK0
K0|E3

(τ) = ϕ−1
K0|E1

PK0|E1(σ) ∩ ϕ−1
K0|E3

PK0|E3(τ)

of (PK0 , TK0), where σ =
(

K0|E1
p∩K0

)
and τ =

(
K0|E3
p∩K0

)
. Observe that σ �= 1 �= τ

and p0 = p ∩ K0 ∈ U .
Let p′ be a prime ideal contained in U . Since K0|E0 is not cyclic and p′ ∩

E1 is inert in K0|E1, p′ ∩ E0 is completely decomposed or ramifies in E1|E0.
In the first case its extensions to E3 would also be completely decomposed in
K0|E3, and so p′ can not be contained in ϕ−1

K0|E3
PK0|E3(τ). It follows that
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U ⊆ ϕ−1
K0|E0

R(K0|E0), and so U is finite. Therefore {p0} ⊆ U is also open (the
finite set U\{p0} is closed as (PK0 , TK0) is a Hausdorff space). Therefore p0 is
an isolated point of (PK0 , TK0), and so p = ϕ−1

K|K0
(p0) is an isolated point of

(PK , TK). This proves assertion (i).
In order to prove (ii) let P be a prime ideal contained in ϕ−1

N |Q(R(N |Q)) and
let � be any prime number dividing the order of the inertia subgroup TP of
GP = GP(N |Q). Let L0|Q be a cyclic extension of �-power degree such that
P∩Q is inert in L0|Q and L0 � N . Let L = NL0. Then allG(N |Q)-conjugates of
P are inert in L|N and GPL

(L|Q) fulfills the condition of (i), where PL denotes
the unique extension of P to L. It follows that PL is isolated in (PL, TL). �

Definition 2.7. Let K be a number field and N the normal closure of K|Q. A
point p ∈ (PK , TK) is called potentially isolated if for every P|p of N there
exists a finite Galois extension L|N such that

(i) all G(N |Q)-conjugates of P are unramified in L|N ,
(ii) all points of ϕ−1

L|N (P) are isolated in (PL, TL).

We denote the set of all isolated points and the set of all potentially isolated
points of (PK , TK) by (PK)iso and (PK)p.iso , respectively.

Without condition (i) in the definition above, i.e. ϕ−1
N |Q(P∩Q) ⊆ U(L|N), all

points of PK would be potentially isolated, since for every p ∈ PK there exists a
finite Galois extension K ′|K in which p ramifies, and we can apply proposition
2.6(ii) to the field K ′. Furthermore we would like to mention (although it is
completely trivial) that PQ has no isolated points, since every open set of PQ

has positive density. The following proposition considers the general case.

Theorem 2.8. Let K be a number field. Then the following is true:

(i) (PK)iso ⊆ ϕ−1
K|Q(R(K|Q)) = (PK)p.iso ,

(ii) ϕ−1
K|Q(U(K|Q)) ⊆ {p ∈ PK | every open neighbourhood of p

has infinitely many points },

(iii) ϕ−1
K|Q(D(K|Q)) ⊆ {p ∈ PK | every open neighbourhood of p

has positive density }.

If K|Q is a Galois extension, then we have equality in (iii).
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Proof: Let N be the normal closure over K over Q. The inclusion

ϕ−1
K|Q(R(K|Q)) ⊆ (PK)p.iso

is just proposition 2.6(ii). In order to prove the other inclusion suppose that
p ∈ (PK)p.iso is not contained in ϕ−1

K|Q(R(K|Q)). Then the extensions P of p

to N are contained in ϕ−1
N |Q(U(N |Q)). Let P0 be one of these extensions and

let L|N be a finite Galois extension such that all G(N |Q)-conjugates of P0 are
unramified in L|N and all points P0L ∈ ϕ−1

L|N (P0) are isolated in (PL, TL).
Then P0L ∈ ϕ−1

L|Q(U(L|Q)). This contradicts proposition 2.5(ii) and therefore
we proved the equality stated in (i). Assertions (ii) (and so the inclusion in (i))
and the inclusion (iii) follow from proposition 2.5(ii) and (i), respectively.
Now we show that for every point P ∈ ϕ−1

N |Q(U(N |Q))\ϕ−1
N |Q(D(N |Q)) there

exists an open neighbourhood of density equal to 0. Indeed, let N0 ⊂ N be
its decomposition field and observe that by assumption N �= N0. Therefore
τ =

(
N |N0

P

)
∈ G(N |N0) is not equal to 1. Obviously, P ∈ ϕ−1

N |N0
PN |N0(τ) and

this open set has density equal to 0 since every prime ideal of PN |N0(τ) is inert
in the extension N |N0. So we get

ϕ−1
N |Q(D(N |Q)) = {P ∈ PN | every open neighbourhood of P

has positive density }

showing also the last assertion of the theorem. �

Remark: The inclusion in (ii) may be strict (even if K|Q is a Galois extension),
i.e. there may exist ramified primes having only infinite open neighbourhoods,
or with other words, it is possible that there are ramified points which are not
isolated. But one can show that for a number field K|Q there exists a finite
Galois extension L|K such that ϕ−1

L|Q(R(L|Q)) = (PL)iso.

3. Uniformity

In this section we consider uniformities on PK which induce the topology TK .
First we recall some facts concerning uniform structures on a normal topological
space (X, T ):
The uniformity Uoc of finite partitions by open and closed subsets of X is

defined by the base

Voc = {
n⋃.

i=1

(Vi × Vi) ⊆ X × X |Vi ⊆ (X, T ) open and closed,
n⋃.

i=1

Vi = X}.
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We denote the completion of (X, Uoc) by (X̂, Ûoc). The uniformity U o of finite
open coverings on X is defined by the base

V o = {
n⋃

i=1

(Ui × Ui) ⊆ X × X |n ∈ N, Ui ∈ T ,
n⋃

i=1

Ui = X}.

The Stone-Čech compactification βX of (X, T ) is the completion of X with
respect to the coarsest uniformity USč on X for which all continuous mappings
of X into [0, 1] are uniformly continuous. Concerning these three uniformities
on X we have the

Proposition 3.1. Let (X, T ) be a strongly zero-dimensional Hausdorff space.
Then following is true.

(i) The uniform structures Uoc, U o and USč on X are equal, now denoted by
U. The topology induced by U on X is equal to T .

(ii) The completion (X̂, Û) of X equipped with the uniformity U = Uoc is a
profinite space, i.e. it is compact and totally disconnected.

Proof: Since (X, T ) is normal, the uniformity U o is equal to the uniformity
USč

K and U o = USč induces the topology T on X, see [2] IX.1 ex. 7, IX.4 ex. 17.
By definition Uoc is coarser than U o and, since (X, T ) is strongly zero-dimen-

sional, there exists for every open covering
⋃n

i=1 Ui of X a refinement
⋃. n

i=1 Vi =
X where Vi ⊆ (X, T ) is open and closed. Thus Uoc is finer than U o, and so they
are equal. This proves (i).
From (i) it follows that (X̂, Û) = β(X, T ) and the compact space β(X, T ) is

totally disconnected, see [2] IX.6 ex. 1(b). This proves (ii). �

Proposition 3.2. Let X be a strongly zero-dimensional Hausdorff space and let

i : (X, U)−→(X̂, Û)

be the canonical mapping (U = Uoc) and we identify X with i(X). Let OCX and
OCX̂ be the set of both open and closed subsets of X and X̂, respectively.

(i) The maps

OCX −→OCX̂ , S �→ S, and OCX̂ −→OCX , S �→ S ∩ X

are bijections, where S is the closure of S in X̂.

(ii) For the set of isolated points of X and X̂ we have i(Xiso) = X̂iso.
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Proof: It is clear that the second map is well-defined. Let S ∈ OCX . Since
S and X\S are closed sets of X, we get from S ∪. (X\S) = X the partition
S ∪. X\S = X̂, see [2] IX.4 ex. 17(c), and so X̂\S = X\S. Thus the closed set
S is also open in X̂, and so also the first map is well-defined.
If S ∈ OCX , then S ⊆ S ∩ X. Let x ∈ S ∩ X and suppose that x ∈ X\S.

Then x ∈ X\S = X̂\S which is a contradiction, and it follows that x ∈ S.
Therefore S = S ∩ X.
If S ∈ OCX̂ , then S ∩ X ⊆ S, since S is closed. Since S is also open, S ∩ X

is dense in S, and so S ∩ X = S. This proves that the considered maps are
bijections.
In order to prove (ii) let x̂ ∈ X̂iso. Then {x̂} is open in X̂. Since i(X) is

dense in X̂, the set {x̂} ∩ i(X) is not empty and so x̂ ∈ i(X). Thus {x̂} is an
open subset of i(X).
Conversely, let x ∈ Xiso. Since the set {x} is open and closed inX, the same is

true, by (i), for its closure {x} in X̂. Consider the open set U = {x}\{i(x)} ⊆ X̂

(observe that {i(x)} is closed in the Hausdorff space X̂). Suppose that U is not
empty. Then, using (i), we get the contradiction

∅ �= U ∩ i(X) = ({x} ∩ i(X))\{i(x)} = {i(x)}\{i(x)}.

Therefore U is empty, i.e. {x} = {i(x)}, and so {i(x)} is open in X̂. �

Now let (X, T ) = (PK , TK). This space is a strongly zero-dimensional Haus-
dorff space by proposition 2.4(ii). If UK = Uoc

K denotes the uniformity of finite
partitions of PK by both open and closed subsets of (PK , TK), then we obtain

Theorem 3.3. The Hausdorff uniform space (PK ,UK) is pre-compact and
strongly zero-dimensional, and its completion (P̂K , ÛK) is a profinite space. The
canonical map

i : (PK ,UK)−→(P̂K , ÛK)

induces an isomorphism of (PK ,UK) onto a dense subspace of (P̂K , ÛK).
Furthermore the sets (PK)iso and (P̂K)iso of isolated points are isomorphic

and finite.

4. A metric for PQ

In this section we will define a metric on PQ which induces the topology TQ.
The idea is that two points x, y ∈ PQ are near, if they induce in many fields
with large discriminant the same Frobenius automorphism. We start by defining
another uniformity on PQ: the uniformity of finite open coverings of (PQ, TQ)
defined by the discriminant of finite Galois extensions F |Q.
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Let d ∈ N and let

Sd = {F |Q a finite Galois extension, |D(F |Q)| ≤ d},
where D(F |Q) denotes the discriminant of F . The set Sd is finite by Hermite’s
theorem, see [3] III. (2.16). For x ∈ PQ let

Sd,x = {F |Q finite Galois , x ∈ U(F |Q), |D(F |Q)| ≤ d}
and

Vd(x) =
⋂

F |Q∈Sd,x

PF |Q(
(F |Q

xF

)
),

where xF is an extension of x to F . Furthermore let

Rd =
⋃

F |Q∈Sd

R(F |Q), Gd =
∏

F |Q∈Sd

G(F |Q), Vd(σ̃) =
⋂

F |Q∈Sd

PF |Q(σF |Q)

for σ̃ = (σF |Q)F |Q ∈ Gd. Observe that Vd(σ̃) = Vd(x) for all x ∈ Vd(σ̃). We
obtain a finite open covering

Cov o(d) : PQ =
⋃

σ̃∈Gd

Vd(σ̃) ∪
⋃

α∈Rd

Vd(α)

of PQ. Finally we define

Vd =
⋃

σ̃∈Gd

(
Vd(σ̃)× Vd(σ̃)

)
∪

⋃
α∈Rd

(
Vd(α)× Vd(α)

)
.

Obviously, we have Vd′ ⊆ Vd for d ≤ d′.

Proposition 4.1. The set VD
Q = {Vd , d ∈ N} is a base for a uniform structure

UD
Q on PQ inducing the topology TQ.

Proof: Let Vd ∈ VD
Q . By proposition 2.3(ii) we find open (and closed) neigh-

bourhoods U(α) of α ∈ Rd which are pairwise disjoint and defined by finitely
many extensions of Q (see the proof of 2.3(ii)). Let Ṽd(α) = Vd(α) ∩ U(α)
and Ṽd(σ̃) = Vd(σ̃)\V (Rd), where V (Rd) =

⋃.
α∈Rd

Ṽd(α) is an open and closed
neighbourhood of the set Rd. Then

C̃ov(d) : PQ =
⋃.

σ̃∈Gd

Ṽd(σ̃)∪.
⋃.

α∈Rd

Ṽd(α)

is a partition of PQ by open sets which is a refinement of Cov o(d). Furthermore
these open sets are defined by finitely many extensions of Q. Let

d′ = maxF {|D(F |Q)|},
where F runs through all extensions of Q which appear in a definition of the
open sets in C̃ov(d). Then Cov o(d′) is a refinement of C̃ov(d). Indeed, let
U ∈ Cov o(d′), i.e. U = Vd′(σ̃) for some σ̃ ∈ Gd′ or U = Vd′(α) for some
α ∈ Rd′ . Then U = Vd′(x) for some x ∈ PQ. Let V ∈ C̃ov(d) be the unique
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open set containing x. It follows that U ⊆ V , since V is the (finite) union of
open sets of the form

⋂r
i=1 PFi|Q(σi), where |D(Fi|Q)| ≤ d′ for all i, and at least

one of these sets contains x.
Now we prove that the setVD

Q = {Vd , d ∈ N} is a base for a uniform structure
on PQ. The only axiom, which is not obvious, is the following: for Vd ∈ VD

Q

there exists a Vd′ ∈ VD
Q such that Vd′

2

⊆ Vd, where

Vd′

2

= {(x, y) ∈ PQ × PQ | (x, z), (z, y) ∈ Vd for some z ∈ PQ}.
But, taking d′ as above, and let

Wd =
⋃.

σ̃∈Gd

(
Ṽd(σ̃)× Ṽd(σ̃)

)
∪.

⋃.
α∈Rd

(
Ṽd(α)× Ṽd(α)

)
,

then it follows by the consideration above that Vd′

2

⊆ Wd

2

=Wd ⊆ Vd.
Finally, the topology induced by UD

Q is obviously coarser than TQ. On the
other hand, let x ∈ PQ and let U(x) ∈ TQ be an open neighbourhood of x.
We may assume that U(x) =

⋂r
i=1PFi|Q(σi) for some finite Galois extensions

Fi|Q and some σi ∈ G(Fi|Q). Let d = max{|D(Fi|Q)|, i = 1, . . . , r} and let
V ∈ C̃ov(d) be the unique open set containing x, and so V ⊆ U(x). The
neighbourhood of x induced by the entourage Vd′ with d′ as above is

Ud′(x) =

⎧⎪⎪⎨
⎪⎪⎩

Vd′(σ̃) ∪
⋃

α∈Rd′ (x)

Vd′(α), if x is unramified in all F ∈ Sd′ ,

⋃
α∈Rd′ (x)

Vd′(α), otherwise.

where Rd′(x) = {α ∈ Rd |x ∈ Vd′(α)} and σ̃ is given by the condition that
x ∈ Vd′(σ̃). Since the covering Cov o(d′) is a refinement of C̃ov(d), we obtain
that Ud′(x) ⊆ V ⊆ U(x). Thus the topology induced by UD

Q is finer than TQ.
This proves the proposition. �

Obviously, UD
Q is coarser than UQ = Uo

Q (and it seems unlikely that they are
equal), but this uniformity defines a nice metric on PQ.

Theorem 4.2. The map

δ : PQ × PQ −→ [0, 1] , (x, y) �→ δ(x, y) =
1
n

,
where

n = sup{ d | (x, y) ∈ Vd},

defines an ultra-metric on PQ which induces the uniformity UD
Q .

Corollary 4.3. The completion (P̂Q, ÛD
Q ) of (PQ,UD

Q ) is a profinite space.
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Proof: Obviously, δ is symmetric, δ(x, x) = 0, δ(x, y) ≤ max(δ(x, z), δ(z, y))
for x, y, z ∈ PQ and the (quasi-)metric δ induces the uniformity UD

Q . Since TQ

is a Hausdorff topology, δ is an (ultra-)metric.
Since UD

Q is coarser than UQ, we get a surjection (P̂Q, ÛQ) � (P̂Q, ÛD
Q ) and

so (P̂Q, ÛD
Q ) is compact. Furthermore, the extension of δ to (P̂Q, ÛD

Q ) is also an
ultra-metric and so the completion is totally disconnected. �

Remarks: 1. Analogously one can define a uniformity UD
K on (PK , TK) and a

corresponding metric having the properties stated in 4.1, 4.2 and 4.3.
2. It is obvious that the metric δ is not easily to calculate (at least if d > 21
when not only quadratic fields are involved). But we do some calculations for
d ≤ 5. We have three non-trivial extensions F |Q with absolute discriminant
|D(F |Q)| ≤ 5: Q(

√
−3), Q(

√
−1) and Q(

√
5). Now we use the notation (a|γ)

for PQ(
√

a)|Q(γ), γ ∈ G(Q(
√

a)|Q), and we denote the non-trivial element of
G(Q(

√
a)|Q) by −1. Then V3 = PQ × PQ, for V4 we have to use the covering(

(−3|−1) ∩ (−1| 1)
)
∪ (−3| 1) ∪ (−1|−1) of PQ and for V5 the covering

PQ =
(
(−3| 1) ∩ (−1| 1) ∩ (5|−1)

)
∪

(
(−3|−1) ∩ (−1|−1) ∩ (5| 1)

)
∪

(
(−3| 1) ∩ (5| 1)

)
∪

(
(−1|−1) ∩ (5|−1)

)
∪

(
(−3|−1) ∩ (−1| 1)

)
.

It follows that for prime numbers x < y ≤ 19
δ(x, y) = 1

4 , if (x, y) = (2, 7), (2, 13), (3, 11), (3, 19), (7, 11), (7, 13), (7, 19),

(11, 19), (13, 19),

δ(x, y) ≤ 1
5 , if (x, y) = (2, 19), (3, 7), (5, 17),

and for all other pairs we have δ(x, y) = 1
3 .
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