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ROOTS OF BERNSTEIN-SATO POLYNOMIALS FOR
MONOMIAL IDEALS: A POSITIVE CHARACTERISTIC

APPROACH

Nero Budur, Mircea Mustaţǎ, and Morihiko Saito

Abstract. We describe the roots of the Bernstein-Sato polynomial of a monomial
ideal using reduction mod p and invariants of singularities in positive characteris-
tic. We give in this setting a positive answer to a problem from [MTW] concerning
the dependence on the characteristic for these invariants of singularities.

1. Introduction

The Bernstein-Sato polynomial (or b-function) of an arbitrary ideal in a poly-
nomial ring was introduced in [BMS2] generalizing the case of principal ideals.
For monomial ideals, it was shown there that this polynomial can be computed
algorithmically in principle, using for example Macaulay2. In this paper we
use a positive characteristic approach to give a description of the roots of the
Bernstein-Sato polynomial in this case. This is a by-product of positive an-
swers to questions in [MTW] on the dependence on the characteristic for some
invariants of singularities.

In order to explain our approach, we recall the definition of the invariants
from [MTW]. Let a be a nonzero ideal in a regular local ring R of characteristic
p > 0. Suppose that J is a proper ideal in R whose radical contains a. For
every positive integer e, let J [pe] be the ideal generated by the peth powers of
the elements of J , and

νJ
a (pe) := max{� ≥ 0 | a� �⊆ J [pe]}.

Suppose now that we start with ideals a and J in Z[X1, . . . , Xn] such that a

is contained in the radical of J , and let ba(s) be the Bernstein-Sato polynomial
of a. We consider the invariants associated to the reductions mod p of a and J
around the origin. It was shown in [MTW] that if p � 0, then ba(νJ

a (pe)) ≡ 0
(mod p) for all e (see also Proposition 2.2 below).

One expects that in many cases there are polynomial formulas for the invari-
ants mod p, formulas depending on a suitable congruence of p. More precisely,
in good situations there should be a positive integer N , and for every i relatively
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prime to N there should be a polynomial Pi ∈ Q[t] such that νJ
a (pe) = Pi(p)

whenever p is large enough and p ≡ i (mod N). When this holds, Dirichlet’s
Theorem on the distribution of prime numbers implies that we get roots of the
Bernstein-Sato polynomial over Q: in fact, each Pi(0) is such a root (see Re-
mark 2.4). Our main results are that such formulas can be given for monomial
ideals (see Theorem 4.1), and furthermore that all the roots can be obtained in
this way (see Theorem 4.9).

The proofs of the above results give in particular a description of all roots of
the Bernstein-Sato polynomial of a monomial idea. As a consequence we deduce
the following description mod Z of the roots. Suppose that a is a proper nonzero
ideal in Z[X1, . . . , Xn] generated by monomials. The Newton polyhedron Pa of
a is the convex hull in Rn

+ of those u in Nn such that the monomial Xu is in
a. For every facet Q of Pa that is not contained in a coordinate hyperplane,
there is a unique linear function LQ on Rn having rational coefficients such that
Q = Pa ∩L−1

Q (1). (Here a facet means a maximal-dimensional face.) We denote
by mQ the smallest positive integer such that mQLQ has integer coefficients.

Corollary 1.1. The set consisting of the images in Q/Z of the roots of the
Bernstein-Sato polynomial of a is equal to

{
m

mQ
+ Z | Q facet of Pa and 0 ≤ m < mQ

}
.

One can deduce from our results a description of the roots of the Bernstein-
Sato polynomial, and not just of their classes mod Z (see Remark 4.6). Note
that such a description has to be more involved, as the roots do not depend only
on the integral closure of the ideal (or equivalently, on the Newton polyhedron).
Another, more explicit description of the roots of the Bernstein-Sato polynomial
of monomial ideals (with a direct, combinatorial proof) will appear in [BMS1].

A few words about the structure of the paper: in the next section we recall
the definition of Bernstein-Sato polynomials and give some details in the gen-
eral set-up about the connection between their roots and the invariants obtained
by reduction mod p. In §3 we specialize to monomial ideals, and give a direct
proof of the existence of the Bernstein-Sato polynomial in this case. This will be
useful later, as it provides useful information about the roots (see Remark 3.5).
The idea is based on the approach to computing Bernstein-Sato polynomials of
monomial ideals from [BMS2]. In §4, we study the invariants of the reduction
mod p for monomial ideals. We give a polynomial formula for these invariants
(depending on a suitable congruence of p) and show that all the roots of the
Bernstein-Sato polynomial can be obtained by our method. The fourth section
is devoted to some examples. In the Appendix we show that if a is a mono-
mial ideal, it is enough to consider only positive characteristic invariants that
correspond to monomial ideals J .
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2. Bernstein-Sato polynomials and reduction mod p

We start by recalling some general facts about Bernstein-Sato polynomials.
For proofs and details we refer to [BMS2].

Let a ⊆ (X1, . . . , Xn) ⊆ C[X] = C[X1, . . . , Xn] be a nonzero ideal, and let
f1, . . . , fr be nonzero generators of a. The Bernstein-Sato polynomial ba(s) ∈
C[s] of a is the monic generator of the ideal consisting of those b(s) for which we
have a relation

b(s1 + . . . + sr)
∏
j

f
sj

j =
∑

c

Pc ·
∏

j,cj<0

(
sj

−cj

) ∏
j

f
sj+cj

j ,(1)

where the above sum is over finitely many c ∈ Zr such that
∑

j cj = 1, and
where Pc ∈ C[X, ∂X , s] for all c. (Here

∏
j,cj<0 means that the product is over

the j such that cj < 0.) As usual, if m > 0, then the notation
(
sj

m

)
stands for

1
m!sj(sj − 1) . . . (sj − m + 1).

In (1) one has to interpret the equality formally. Note that if r = 1, then this
equation can be rewritten as

b(s)fs = P (X, ∂X , s) · fs+1,

so we recover the usual definition of the Bernstein-Sato polynomial of a principal
ideal (see [Bj], [Ka]).

The fact that there is a nonzero b(s) as above is proved in [BMS2], where one
also shows that it does not depend on the choice of generators and that all its
roots are negative rational numbers. We refer to [BMS2] also for the motivation
for the defining formula (1) in terms of V -filtrations.

In our case the ideal is defined over Z, and the Pc can be defined over Q by
the following

Proposition 2.1. If the ideal a is defined over a subfield K of C, then the Pc

in (1) can be defined also over K.

Proof. There is a finitely generated K-subalgebra A of C such that the Pc are
defined over A. Choosing a maximal ideal of A and taking the image in the
corresponding residue field K ′ of A, we get a relation in which the Pc are defined
over a finite extension K ′ of K. We may assume that K ′/K is Galois by enlarging
K ′ if necessary. Averaging by the action of the Galois group (where the Galois
group acts on the coefficients of Pc), we get the assertion.

From now on, we consider only ideals in Z[X], as this will be enough for our
purpose. We will always work in a neighborhood of the origin. Note that there
is a local notion of Bernstein-Sato polynomial, where we require (1) to hold only
in some open subset containing the origin. In the rest of this section one could
replace ba by this local version. However, in what follows we are interested
in monomial ideals (which are homogeneous), so in this case there will be no
distinction between local and global Bernstein-Sato polynomials.
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If p is a prime number, the ideal a defines by reduction mod p (and localiza-
tion) an ideal ap in Rp := Fp[X](X1,... ,Xn), where Fp = Z/pZ as usual. Recall
that if I is an ideal in Rp and if e ≥ 1, then I [pe] = (gpe |g ∈ I). To simplify the
notation, for a ⊆ Rad(J) ⊆ (X1, . . . , Xn), we will denote by νJ

a (pe) the largest
� such that a�

p �⊆ J
[pe]
p .

By Proposition 2.1, ba and all Pc in (1) have coefficients in Q, and hence in
Z[m−1] for some integer m. Moreover, we may assume that for all c that appear
in (1) and for all j such that cj < 0, (−cj)! divides m. If p does not divide m,
then (1) will hold also after reduction mod p. We will apply this equality by
letting s1, . . . , sr to be nonnegative integers. Note that in this case, if cj < 0
and sj + cj < 0, then

(
sj

−cj

)
= 0, so the corresponding term in (1) vanishes.

The key to our approach is the following elementary observation from [MTW].
The proof below uses Proposition 2.1, and may be slightly easier than the original
one, although both arguments are essentially the same.

Proposition 2.2. Let a and J be nonzero ideals in Z[X] such that a ⊆ Rad(J) ⊆
(X1, . . . , Xn). Let m be as above. If p does not divide m and e ≥ 1, then

ba(νJ
a (pe)) = 0 in Fp.(2)

Proof. We can find nonnegative integers a1, . . . , ar such that
∑

j aj = νJ
a (pe)

and
∏

j f
aj

j �∈ J
[pe]
p . On the other hand, the hypothesis implies

∏
j f

bj

j ∈ J
[pe]
p if∑

j bj = νJ
a (pe) + 1 and bj ≥ 0 for all j.

Using (1) mod p for sj = aj (together with the remark before this proposition)
and the fact that J

[pe]
p is an Fp[X, ∂X ]-submodule of Fp[X], we deduce that

ba(νJ
a (pe)) = 0 in Fp.

This can be used to give roots of the Bernstein-Sato polynomial whenever one
can solve the following problem from [MTW].

Problem 2.3. Under good conditions on a and J there should exist a positive
integer N together with polynomials Pi of degree e in Q[t] for every i ∈ (Z/NZ)×

such that the following holds. If a prime p is sufficiently large and p ≡ i (mod
N), then νJ

a (pe) = Pi(p). Moreover, one should be able to choose N to depend
only on a.

Remark 2.4. Note that if we have Pi as in the above problem, then ba(Pi(p)) =
0 in Fp for infinitely many primes p by Proposition 2.2 and Dirichlet’s Theorem.
Therefore Pi(0) is a root of ba. Here we may assume that Pi is defined over
Z[m−1], replacing m by a multiple if necessary. A basic question is which roots
can be obtained in this way (Example 4.1 in [MTW] shows that there might be
roots which are not detected by the above method).
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We mention that the asymptotic behavior of νJ
a (pe) for e → ∞ is measured

by the F -threshold cJ(ap) introduced in [MTW]: this is defined by

cJ(ap) := lim
e→∞

νJ
a (pe)
pe

= sup
e

νJ
a (pe)
pe

.(3)

The set of such numbers for various J form the jumping coefficients for the test
ideals {τ(aα

p )}α introduced by Hara and Yoshida in [HY]. On the other hand,
in characteristic zero we have the multiplier ideals of a, and the corresponding
jumping coefficients (see [La] for the theory of multiplier ideals). We refer to
[MTW] for an overview of results and open questions relating the jumping co-
efficients of the multiplier ideals and the F -thresholds for the reduction mod p,
when p � 0.

Remark 2.5. As follows from the above discussion, the “top degree” part in
νJ

a (pe) is related to the jumping coefficients of the multiplier ideals of a, while the
“free term” is related to the roots of the Bernstein-Sato polynomial. Recall that
there is also a direct connection between these roots and the jumping coefficients.
More precisely, the largest root of ba is − lc(a), where lc(a) is the log canonical
threshold of a (this is the first nonzero jumping coefficient). Moreover, if λ ∈
[lc(a), lc(a) + 1) is a jumping coefficient, then −λ is a root of ba. These results
are proved in [Ko] and [ELSV] in the codimension one case, and in [BMS2] in
general.

We turn now to the monomial case, in which we will give an explicit descrip-
tion of the whole picture. As we will see, understanding the F -thresholds is
quite easy. For example, this follows from the result in [HY] saying that for
monomial ideals the test ideals are the same as the multiplier ideals. On the
other hand, we will see that the invariants νJ

a (pe) give much more information.
In particular, by the method described above we will be able to recover all the
roots of the Bernstein-Sato polynomial.

3. Bernstein-Sato polynomials of monomial ideals

From now on we assume that a is an ideal generated by monomials, so we
may take fj = Xaj =

∏
i X

ai,j

i for all j, where aj = (a1,j , . . . , an,j) ∈ Nn. We
consider the linear forms �i(s) =

∑
j ai,jsj on Zr.

In this section we give a direct proof of the existence of the Bernstein-Sato
polynomial in this case. We first make use of the homogeneity of the ideal
to reinterpret equation (1) as in [BMS2]. We consider, more generally, the
ideal Ia ⊆ C[s1, . . . , sr] consisting of those polynomials F such that there is an
equality of the form

F (s1, . . . , sr)fs1
1 . . . fsr

r =
∑

c

Pc ·
∏

j,cj<0

(
sj

−cj

)
fs1+c1
1 . . . fsr+cr

r ,(4)

with c and Pc as in (1).
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On C[X, X−1, s] we consider the Zn-grading given by deg(sj) = 0 and
deg(Xi) = ei, the ith element of the standard basis of Zn. This induces a grad-
ing on C[X, X−1, s]

∏
j f

sj

j such that deg(h
∏

j f
sj

j ) = deg(h). On C[X, ∂X , s]
we have the corresponding grading with deg(∂Xi) = −deg(Xi) and the action
on C[X, X−1, s]

∏
j f

sj

j is compatible with the gradings.

Note that
∏

j f
sj

j =
∏

i X
�i(s)
i and

∏
j f

sj+cj

j =
∏

i X
�i(s+c)
i . It follows that

in (4) we may assume that deg(Pc) = −(�1(c), . . . , �n(c)) for all c. If P ∈
C[X, ∂X , s] has degree m = (mi), then

P ∈ C[X1∂X1 , . . . , Xn∂Xn , s] ·
∏

i

ξ
|mi|
i ,

where ξi = Xi if mi ≥ 0, and ξi = ∂Xi if mi ≤ 0.
For every c ∈ Zr, let

gc :=
∏

j,cj<0

(
sj

−cj

)
·

∏
i,�i(c)>0

(
�i(s) + �i(c)

�i(c)

)
.

Proposition 3.1. With the above notation, we have

Ia =


gc | c ∈ Zr,

∑
j

cj = 1


 =


gc | c ∈ Zr,

∑
j

cj ≥ 1


 .

Proof. We get the first equality by the above argument, considering the action of
∂

�k(c)
Xk

on
∏

i X
�i(s+c)
i . For the second equality we need to show that if c ∈ Zr and∑

j cj ≥ 1, then gc ∈ Ia. We get this by induction on
∑

j cj . Indeed, if
∑

j cj ≥ 2
and cj0 > 0, let c′j = cj for j �= j0 and c′j0 = cj0 − 1. Since �i(c) ≥ �i(c′), it
follows that gc′ divides gc. By the induction hypothesis, gc′ lies in Ia, hence so
does gc.

It follows from the above description of the generators of Ia that for any
irreducible component Γ of V (Ia)red, there are subsets A ⊆ {1, . . . , r} and B ⊆
{1, . . . , n} together with αj in Z≥0 for j in A and βi in Z<0 for i in B such that

Γ = {u = (uj) ∈ Cr | uj = αj for j inA, �i(u) = βi for i inB}.(5)

Moreover, after possibly enlarging A and B, we may assume that if j is not in
A and uj is constant on Γ, then uj is not in Z≥0 for u in Γ, and if i is not in B
and �i is constant on Γ, then �i(u) is not in Z<0 for u in Γ.

Lemma 3.2. With the above notation and assumption, if c in Zr is such that
cj ≥ −αj for all j in A and �i(c) ≤ −βi − 1 for all i in B, then

∑
j cj ≤ 0.

Proof. By Proposition 3.1, if
∑

j cj ≥ 1 then Γ ⊆ g−1
c (0). Therefore the assertion

follows from the above maximality assumption.

Remark 3.3. We see that the converse of the above argument is also true: if
A, B, the αj and the βi are such that the assertion in Lemma 3.2 holds and if
Γ is given by (5), then Γ ⊆ V (Ia)red.
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By definition, the Bernstein-Sato polynomial of a is the monic generator of
Ia ∩ C[s1 + . . . + sr]. The existence of this polynomial follows from the next
proposition.

Proposition 3.4. With the above notation, the intersection Ia∩C[s1 + . . .+sr]
is nonzero.

Proof. We need to show that for every irreducible component Γ of V (Ia)red, the
map u = (uj) ∈ Γ −→ ∑

j uj is constant. This is equivalent to the assertion
that if A and B are such that Γ is given by (5) and Lemma 3.2 holds, then for
every u in Cr such that uj = 0 for all j in A and �i(u) = 0 for all i in B, we have∑

j uj = 0. Since the vector space cut out by these equations is defined over Q,
we may assume that u is in Qr and moreover, that it is in Zr.

Suppose that
∑

j uj is nonzero. After possibly replacing u by −u, we may as-
sume that

∑
j uj > 0. In this case we get a contradiction by applying Lemma 3.2

for c = u. This completes the proof of the existence of the Bernstein-Sato poly-
nomial ba in the monomial case.

Remark 3.5. It follows from the discussion before Proposition 3.1 that both
ba and the Pc satisfying (4) have rational coefficients. The above proof shows
that all roots of ba are rational, since Γ is an affine linear subspace defined by
equations with rational coefficients. Moreover, we have obtained the following
description of the roots: we need to consider all A, B, αj and βi such that the
assertion in Lemma 3.2 holds. If Γ is defined by (5) and if it is nonempty, then∑

j uj is constant on Γ, and its value gives a root of ba. In addition, all the roots
arise in this way.

4. Roots of Bernstein-Sato polynomials for monomial ideals

We study now the invariants from §2 in the case when a is a monomial ideal.
Proposition 6.1 in the Appendix shows that for every ideal J ⊆ (X, . . . , Xn) ⊆
Z[X1, . . . , Xn] such that a ⊆ Rad(J), there is a monomial ideal J̃ such that if
p � 0, then νJ

a (pe) = νJ̃
a (pe) for every e ≥ 1. Therefore in order to understand

the functions νJ
a for various J , it is enough to consider the case when J is a

monomial ideal, too. Our goal is to give an affirmative answer to Problem 2.3 in
this setting and to show that all roots of ba are given by our method. Moreover,
along the way we will get a description of these roots.

We assume that a and J are proper nonzero monomial ideals in Z[X1, . . . , Xn]
such that a is contained in the radical of J . Since we deal with monomial ideals,
we can define the function νJ

a without taking the reduction mod p. If q is an
arbitrary positive integer (not necessarily a prime power), we put

J [q] := (Xqw|Xw ∈ J),

where Xw =
∏

i Xwi
i for w = (w1, . . . , wn) ∈ Nn. We also define

νJ
a (q) := max{t ≥ 0 | at �⊆ J [q]}.



132 N. BUDUR, M. MUSTAŢǍ, AND M. SAITO

Our first goal is to prove the following theorem. Note that it immediately
gives a positive answer to Problem 2.3 for monomial ideals.

Theorem 4.1. If a is a nonzero proper monomial ideal, then there is a positive
integer N with the following property. If J is a monomial ideal whose radical
contains a, then there are rational numbers α > 0 and γj for j = 0, . . . , N − 1,
such that νJ

a (q) = αq + γj if q ≡ j (mod N) and q is large enough.

Remark 4.2. With the notation in the theorem, note that if j and N are
relatively prime, then by Proposition 2.2 together with Dirichlet’s Theorem,
ba(γj) ≡ 0 (mod p) for infinitely many primes p. Therefore γj is a root of ba for
every such j. Note also that if p � 0 is a prime, then α is equal to the F -pure
threshold cJ(ap).

The proof of Theorem 4.1 will give, in fact, a description of α and of the γj .
Moreover, Theorem 4.9 below will show that all roots of ba are given by some
γj as above, for a suitable J and some j relatively prime to N .

We start with some preparations. Note first that we may write J =
⋂d

i=1 Ji,
where each Ji is generated by powers of variables X

bj

j for j ∈ Ii ⊆ {1, . . . , n}.
This can be checked, for example, by induction on n. If Theorem 4.1 holds for
every Ji, then it holds for J : it is clear that we have νJ

a (q) = maxi νJi
a (q) for all

q. The assertion follows from the fact that if a finite set S is such that for every i
in S the function m → hi(m) is affine linear for m large enough and in a suitable
congruence class, then so is the function m −→ maxi∈S hi(m). Therefore from
now on we may assume that J = (Xbi

i |i ∈ I) for some I ⊆ {1, . . . , n}.
Recall that we denote the generators of a by Xa1 , . . . , Xar , where aj =

(a1,j , . . . , an,j). We have at ⊆ J [q] if and only if for all β = (βj) ∈ Nr

with
∑

j βj = t, there is i in I such that qbi ≤ ∑r
j=1 ai,jβj . Hence νJ

a (q) =
τ(I; (qbi − 1)i∈I), where for w = (wi) ∈ N|I|, we put

τ(I;w) := max




r∑
j=1

βj |β ∈ Nr, �i(β) ≤ wi for i in I


 .

Recall that �i(α) =
∑r

j=1 ai,jαj . We denote by �i also the extension of this
linear function to Qr.

In order to simplify the notation we show that we may assume I = {1, . . . , n},
after replacing, if necessary, J by J ′ := J + (XM

i |i �∈ I) for M sufficiently large.
Indeed, note first that if b′ is in N|I|, then τ(I; b′) is finite, so the set

{β ∈ Qr
+ | �i(β) ≤ b′i for i in I}

is bounded. This implies that if M � 0, then for every q ≥ 1 and every β ∈ Nn

such that �i(β) < qbi for all i in I, we have �i(β) < qM for all i �∈ I. For such
M we have νJ

a (q) = νJ′
a (q) for every q ≥ 1.
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From now on we assume that I = {1, . . . , n}, and we put τ(w) for τ(I;w).
For every w in Qn

+ we define also

τQ(w) := max




r∑
j=1

αj |α ∈ Qr
+, �i(α) ≤ wi for all i


 .

Here we may replace α ∈ Qr
+ with α ∈ Rr

+ because w is in Qn
+ and the �i have

coefficients in Q.
Let Pa be the Newton polyhedron of a and let ∆ be the fan decomposition

of Qn
+ whose cones are the closed convex cones over the faces of Pa. A maximal

such cone corresponds to a facet Q of Pa that is not contained in a coordinate
hyperplane, and we denote by LQ or by Lσ the linear function such that Q =
Pa ∩ L−1

Q (1).

Lemma 4.3. Let Pa be the Newton polyhedron of a. If there is λ > 0 such that
w is in λPa, then

τQ(w) = max{λ > 0 | w ∈ λPa},
and if there is no such λ, then τQ(w) = 0. In particular, τQ is piecewise linear
on Qn

+: if σ is a maximal cone in ∆, then τQ = Lσ on σ. Moreover, there is a
positive integer N such that τQ(w) = τ(w) if wi/N ∈ N for all i.

Proof. Since Pa = conv(a1, . . . , ar) + Rn
+, where conv(a1, . . . , ar) denotes the

convex hull of the ai, we see that 1
λw is in Pa if and only if there are β1, . . . , βr ≥

0 such that
∑

j βj = 1 and wi/λ ≥ �i(β) for all i, where β = (β1, . . . , βr). This
gives the first assertion.

Let w be in the closed cone σ over a facet Q of Pa. If there is λ > 0 such that
w is in λPa, then for the largest such λ we have w in λQ. Therefore λ = Lσ(w).
Since both Lσ and τQ are continuous, we deduce that Lσ = τQ on σ.

We denote by e1, . . . , en the standard basis of Rn. Every maximal cone σ
in ∆ is generated as a convex cone by some of the aj (the vertices of Q) and
some of the vectors e1, . . . , en. By Carthéodory’s theorem (see Proposition 1.15
in [Zi]) σ can be written as a union of cones, each generated by a subset of the
generators of σ that forms a basis of Rn.

Suppose now that w lies in the maximal cone σ. By the above discussion, we
can write

w =
∑
j∈I1

αjaj +
∑
i∈I2

βiei withαj andβi in R+,

where the aj and the ei lie in σ and give a basis of Rn. For the last assertion we
need to find N such that for every w as above lying in (NN)n, the αj and the
βi are integers.

Let N be a positive number which is divisible by the determinant of any
square submatrix of (ai,j). Using the determinant of the submatrix (ai,j), with
i in the complement of I2 and j in I1, we see that αj is an integer for every j in
I1. This in turn implies that all βi are integers, and completes the proof of the
lemma.
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With N as in the above lemma, we have a good understanding of τ on (NN)r.
We describe now the behavior of τ on the congruence classes modulo the sub-
group (NZ)n. Let ∆ be the fan decomposition in Lemma 4.3. Consider a cone σ
in ∆ which is not contained in any of the coordinate hyperplanes, and a translate
v + σ of this cone, for some v ∈ Zn.

Lemma 4.4. With the above notation, there is w in σ ∩ Nn such that the re-
striction of τ to the intersection of each congruence class with v + w + σ is
given by an affine linear function. More precisely, for every c = (c1, . . . , cn) in
{0, . . . , N −1}n there is Ac in Q+ such that for every u in (v +w+σ)∩Nn with
ui ≡ ci (mod N) for all i, we have τ(u) = τQ(u) − Ac.

Proof. Note that we may replace at any time v by v + v′ for some v′ in σ ∩ Nn.
If σ̃ is a maximal cone in ∆ such that σ is a face of σ̃, then by taking v′ to be
a large enough multiple of an element in the interior of σ̃, we may assume that
v + σ is contained in σ̃.

It is clear that τ is concave: if b, b′ ∈ Nn we have τ(b + b′) ≥ τ(b) + τ(b′). On
the other hand, τ(b) and τQ(Nb) = NτQ(b) are in N, so

0 ≤ τQ(b) − τ(b) ∈ 1
N

Z.

It follows that given c, we may choose wc ∈ σ ∩ Nn such that

τQ(v + wc) − τ(v + wc) =

min{τQ(v + w) − τ(v + w) | w ∈ σ ∩ Nn, vi + wi ≡ ci (modN) for all i}.
If w′ ∈ σ ∩ (NN)n, then by concavity we have

τQ(v + wc + w′) − τ(v + wc + w′) ≤ τQ(v + wc) − τ(v + wc)(6)

(note that τQ is linear on σ̃). By minimality, we have equality in (6). If we take
w =

∑
c wc, then we can find for every c an Ac as required by the lemma.

Remark 4.5. Note that if σ is a maximal cone, then for every c there are
infinitely many u in (v + w + σ) ∩ Nn such that ui ≡ ci (mod N) for every i.
This is not necessarily the case if σ is not maximal. However, if given c there is
one such u, then there are infinitely many with the same property.

We can solve now the monomial case of Problem 2.3.

Proof of Theorem 4.1. We use the notation in Lemmas 4.3 and 4.4. We have
seen that we may assume J = (Xbi

i |1 ≤ i ≤ n). Consider N and the fan ∆ in
Lemma 4.3. Let σ be the cone in ∆ such that b = (bi) lies in the relative interior
of σ (note that since bi > 0 for every i, σ is not contained in any coordinate
hyperplane). We put e = (1, . . . , 1) ∈ Nn and let σ̃ be a maximal cone in ∆
such that qb − e ∈ σ̃ for q � 0. It follows that σ is a face of σ̃. Recall that we
have a linear function Lσ̃ whose restriction to σ̃ is equal to τQ.

Lemma 4.4 implies that we can find vσ in σ∩Nn and for every c ∈ {0, . . . , N−
1}n, a nonnegative rational number Aσ

c such that

τQ(u) − τ(u) = Aσ
c
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if u is in (vσ − e + σ) ∩ Nn and ui ≡ ci (mod N) for all i.
Recall that νJ

a (q) = τ(qb− e). Moreover, if q is large enough, then qb− e lies
in vσ − e + σ. Given j ∈ {0, . . . , N − 1}, we take c = (ci) such that jbi − 1 ≡ ci

(mod N) for all i. If we put α = Lσ̃(b) = τQ(b) and γj = Lσ̃(−e)−Aσ
c , then the

requirement of the theorem is satisfied.

Remark 4.6. For future reference, we give explicitly the description of the roots
of ba that are obtained by our method (Theorem 4.9 below shows that these are,
indeed, all the roots of ba). For every cone σ in our fan ∆, such that σ is not
contained in a coordinate hyperplane, let us choose a maximal cone σ̃ in ∆ with
the property that for some v in σ we have v − e + σ ⊆ σ̃ (hence σ is a face of
σ̃). Let Lσ̃ be the linear function whose restriction to σ̃ is equal to τQ.

We consider now those c in {0, . . . , N − 1}n such that there is b in Nn in the
relative interior of σ with bi−1 ≡ ci (mod N) for all i (if σ is maximal, then all c
satisfy this condition). With Aσ

c as in the proof of Theorem 4.1, we deduce from
Remark 4.2 that Lσ̃(−e)−Aσ

c is a root of ba. Indeed, it is enough to consider j

with j ≡ 1 (mod N) and J = (Xb1
1 , . . . , Xbn

n ). In addition, every root we obtain
by our method is of this form. Note that the roots we obtain for σ ∈ ∆ do not
depend on the choice of σ̃: if σ̃′ is another maximal cone that satisfies the same
property, then Lσ̃ and Lσ̃′ agree on the linear span of σ and e.

Remark 4.7. With the notation in the previous remark, the class of the root
Lσ̃(−e) − Aσ

c in Q/Z is equal to the class of Lσ̃(−e) − Lσ̃(qw − e) = −qLσ̃(w),
where w ∈ Nn is in the relative interior of σ and q � 0 are such that wi − 1 ≡ ci

(mod N) for all i and q ≡ 1 (mod N). Recall that NLσ̃(w) is an integer for all
such w. We see that in order to compute the set of all such classes, when σ and
c vary, it is enough to consider only the maximal cones σ. The set we get in this
way is the set of classes of

{−τQ(w) | w ∈ (Z>0)n}.
Remark 4.8. It follows from Remark 4.6 that we get the same roots of the
Bernstein-Sato polynomial if we consider only the invariants νJ

a (p) for ideals J

of the form (Xb1
1 , . . . , Xbn

n ), and for p prime and large enough with p ≡ 1 (mod
N).

The following theorem shows that all the roots of the Bernstein-Sato polyno-
mial of a monomial ideal are detected by our method.

Theorem 4.9. For every nonzero monomial ideal a, and for every root λ of ba

there is a monomial ideal J together with a rational number α and a positive
integer N ′ such that νJ

a (q) = αq + λ for q sufficiently large and with q ≡ 1 (mod
N ′).

Corollary 4.10. The procedure described in Remark 4.6 gives all the roots of
the Bernstein-Sato polynomial ba.
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Proof. If λ is a root of ba, let J , α and N ′ be as in Theorem 4.9. Applying
Theorem 4.1 for a and J , we see that there are α′ and λ′ such that νJ

a (q) =
α′q + λ′ if q is large enough and q ≡ 1 (mod N). Taking q ≡ 1 (mod NN ′),
we deduce α′ = α and λ′ = λ, which shows that λ is obtained by the procedure
described in Remark 4.6.

Proof of Theorem 4.9. We use the description of the roots of ba from Remark 3.5.
We can find A ⊆ {1, . . . , r}, B ⊆ {1, . . . , n} and (αj)j∈A in Z

|A|
≥0 and (βi)i∈B in

Z
|B|
<0 such that

Γ := {w = (wj) ∈ Qr | wj = αj for j inA and �i(w) = βi for i inB}
is nonempty, and if w ∈ Γ, then λ =

∑r
j=1 wj . Moreover, we may assume by

Lemma 3.2 that the following condition holds: if u = (uj) in Zr is such that
uj ≥ −αj for all j in A and �i(u) ≤ −βi − 1 for all i in B, then

∑r
j=1 uj ≤ 0.

Let us fix w in Γ. We deduce from our condition on (αj) and (βi) that

λ = max
v

r∑
j=1

vj ,(7)

the maximum being over those v in Qr such that vj ≥ 0 for j in A, �i(v) ≤ −1
for i in B and vj − wj ∈ Z for all j (the maximum is achieved for v = w).

We choose now u = (uj) in Qr
+ such that uj = 0 if and only if j is in A,

and such that u + w is in Zr. Moreover, we may choose u such that �i(u) =∑r
j=1 ai,juj > 0 for all i in B. Indeed, if this is not the case, then there is i

in B such that ai,j = 0 whenever j is not in A. This contradicts the fact that
�i(w) < 0. Note also that since u + w lies in Zr, �i(u) is an integer for every i in
B.

Let N ′ be a positive integer such that N ′u is in Zr
≥0. If q = mN ′ + 1 for

m ≥ 1, then qu + w is in Zr. With the notation introduced for the proof of
Theorem 4.1, we claim that if q as above is large enough, then we have

τ(B; (q�i(u) − 1)i∈B) = q
r∑

j=1

uj + λ.(8)

This implies the assertion of the theorem: take J = (X�i(u)
i |i ∈ B) and α =∑r

j=1 uj .
In order to prove the claim, suppose that v ∈ Zr

≥0 is such that �i(v) ≤
q�i(u) − 1 for all i in B. For j in A we have vj − quj = vj ≥ 0, and for i in B
we have �i(v − qu) ≤ −1. As all vj − quj − wj are integers, we deduce from (7)
that

∑r
j=1 vj ≤ q

∑r
j=1 uj + λ.

On the other hand, if q � 0 then quj +wj ≥ 0 for all j. Note that �i(qu+w) ≤
q�i(u) − 1 for i in B and

∑r
j=1(quj + wj) = q

∑
j uj + λ. This completes the

proof of the claim, and hence that of the theorem.

We can prove now the description of the classes mod Z of the roots of the
Bernstein-Sato polynomial.
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Proof of Corollary 1.1. We use Theorems 4.1 and 4.9. Recall that we have seen
in Remark 4.7 that the classes in Q/Z of the roots of ba are equal to

{−Lσ(w) + Z | σ maximal cone in ∆, w ∈ σ ∩ (Z>0)n}.(9)

Therefore in order to prove the theorem it is enough to show that for every
maximal cone σ in ∆, the set of classes {−Lσ(w) + Z | w ∈ σ ∩ (Z>0)n} is the
subgroup of Q/Z generated by 1

mσ
, where if Q is the facet of Pa corresponding

to σ, we put mσ for mQ.
Since mσLσ has integer coefficients, for every w in σ ∩ (Z>0)n the class of

−Lσ(w) lies in the subgroup generated by 1/mσ. On the other hand, if τ ⊆ σ
is a convex cone generated by a basis e′1, . . . , e′n for Zn, then mσ is the smallest
positive integer such that all mσLσ(e′i) are integers. In this case it follows easily
that there is w in the interior of τ such that 1

mσ
+Lσ(w) is an integer. By taking

suitable multiples of w we see that the subgroup generated by the class of 1
mσ

is contained in (9), which completes the proof.

Example 4.11. As we have already mentioned, it is a general fact that the
largest root of the Bernstein-Sato polynomial of a is − lc(a), where lc(a) is the
log canonical threshold of a (see [BMS2]). Let us prove this for monomial ideals
using the above results.

It follows from [Ho1] that lc(a) is the largest positive real number c such that
e = (1, . . . , 1) lies in cPa, where Pa is the Newton polyhedron of a. Lemma 4.3
implies that, with our notation, lc(a) = τQ(e).

Let σ0 be a maximal cone in the fan ∆ such that e lies in σ0. With the
notation in Remark 4.6, we get the root − lc(a) as Lσ0(−e)−Aσ0

0 (corresponding
to c = (0, . . . , 0)).

On the other hand, if λ is another root of ba, then by Theorem 4.9 and
Remark 4.6 we have λ = Lσ̃(−e) − Aσ

c for some σ, σ̃ and some c. Since Aσ
c ≥ 0

and since concavity of τQ gives Lσ̃(e) ≥ τQ(e) = Lσ0(e), we get λ ≤ − lc(a).

We end this section with a description of the F -thresholds of monomial ideals
(see §2 for the definition). It follows from Proposition 6.1 in the Appendix that
the set of all F -thresholds of the monomial ideal a (computed for the reduction
mod p of a, where p � 0 is a prime) is equal to the set of F -thresholds cJ(ap)
with respect to monomial ideals J . Moreover, we have seen that it is enough
to consider the case when J = (Xb1

1 , . . . , Xbn
n ), where bi are positive integers.

With the notation in the proof of Theorem 4.1, we have shown that for this J
we have

cJ(ap) = τQ(b)

for every prime p large enough. We will denote this number simply by cJ(a), as
it does not depend on p.

We make the connection with the multiplier ideals of a. Recall that by the
description in [Ho1], the multiplier ideal I(aα) of a with exponent α can be
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described as follows

I(aα) = (Xw|u + e ∈ Int(αPa)).

The jumping coefficients of the multiplier ideals defined in [ELSV] are those
α > 0 such that I(aα) is strictly contained in I(aα−ε) for every ε > 0. It follows
from the above description of the multiplier ideals of a, that every b = (bi) with
bi positive integers gives a jumping coefficient α characterized by the fact that
b lies in the boundary of αPa. Moreover, every jumping coefficient arises in this
way. The connection with the F -thresholds is given by

Proposition 4.12. For every prime p, the jumping coefficient corresponding to
b = (bi) as above is equal to cJ(ap), where J = (Xb1

1 , . . . , Xbn
n ).

Proof. The assertion follows from Lemma 4.3.

Remark 4.13. It follows from the above discussion that the F -thresholds in the
monomial case are easy to describe. Alternatively, this can be seen as follows:
it is shown in [MTW] that in general, the F -thresholds (for various J) are the
jumping coefficients for the test ideals introduced in [HY] as an analogue of
multiplier ideals. On the other hand, it is proved in [HY] that for monomial
ideals the test ideals coincide with the multiplier ideals. This gives a different
approach to the description in Proposition 4.12.

Remark 4.14. It is clear that for monomial ideals all F -thresholds are rational
numbers. In fact, more is true. If p is a prime, then the series

∑
e νJ

a (pe)te is
rational. This follows from the fact that the function e → νJ

a (pe+1)− pνJ
a (pe) is

eventually periodic, which is a consequence of Theorem 4.1.

5. Examples

In this section we give some examples to illustrate how to use our approach
to give roots of the Bernstein-Sato polynomial. We use freely the notation
introduced for the proof of Theorem 4.1. In all these examples we do not describe
the complete picture given in Remark 4.6, but we give enough information to
recover all the roots. For more complicated examples, based on a more explicit
combinatorial description of the roots of the Bernstein-Sato polynomial, we refer
to [BMS1].

Example 5.1. Let a = (
∏

j 	=i Xj |1 ≤ i ≤ 4) in Z[X1, . . . , X4], so we have
�i(s) =

∑
j 	=i sj for 1 ≤ i ≤ 4. If α ∈ N4 is such that �i(α) ≤ bi for all i,

summing these inequalities we get∑
i

αi ≤ �(
∑

i

bi)/3�,

where we use the notation �x� for the largest integer ≤ x.
Consider first the cone

σ = {w|wi ≥ 0,
∑

j

wj ≥ 3wi for all i}.
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If b ∈ σ ∩ N4, then τ(b) = �(∑i bi)/3�. Indeed, suppose for example that∑
i bi ≡ 2 (mod 3). If we take αi = (

∑
j bj − 2)/3 − (bi − 1) for i = 1, 2 and

αi = (
∑

j bj −2)/3−bi for i = 3, 4, then α ∈ N4 and
∑

i αi = (
∑

i bi−2)/3. The
other two cases are similar. We get Li for i = 0, 1, 2 with Li(b) = (

∑
j bj − i)/3,

such that whenever b ∈ σ ∩ N4, with
∑

i bi ≡ i (mod 3) we have τ(b) = Li(b).
All Li(−1, . . . ,−1) are roots of ba, which gives the roots − 4

3 ,− 5
3 and −2.

Suppose now that b ∈ N4 is such that, for example, 2b4 > b1 + b2 + b3. If
�i(α) ≤ bi for all i, adding these inequalities for 1 ≤ i ≤ 3 implies

4∑
i=1

αi ≤ �(
3∑

i=1

bi)/2�.

If we assume, in addition, that b1+b2 ≥ b3, b1+b3 ≥ b2 and b2+b3 ≥ b1, then this
maximum can be achieved. Indeed, if

∑3
i=1 bi is even, take αj = (

∑3
i=1 bi)/2−bj

for 1 ≤ j ≤ 3 and α4 = 0. If
∑3

i=1 bi is odd, take α1 = (
∑3

i=1 bi−1)/2−(b1−1),
αj = (

∑3
i=1 bi − 1)/2 − bj for j = 2, 3, and α4 = 0.

If we take L′
i for i = 0, 1 given by L′

i(b) = (
∑3

j=1 bj − i)/2, we see that if
b is as above and

∑3
j=1 bj ≡ i (mod 2), we have τ(b) = L′

i(b). Therefore both
L′

i(−1, . . . ,−1) are roots of ba, which gives the roots − 3
2 and −2.

Therefore we have obtained the roots − 3
2 , − 4

3 , − 5
3 and −2. Note that, in

fact, by [BMS2] (4.5) ba = (s + 3
2 )(s + 4

3 )(s + 5
3 )(s + 2)3.

Example 5.2. Let a = (X2Y Z, XY 2Z, XY Z2), so �1(s) = 2s1+s2+s3, �2(s) =
s1 + 2s2 + s3 and �3(s) = s1 + s2 + 2s3.

If α ∈ N3 is such that �i(α) ≤ bi, by summing these relations we get
∑

i αi ≤
� 1

4

∑
i bi�. This maximum is achieved if b lies in the cone

σ = {w|wi ≥ 0, wi ≥
∑

j wj

4
for all i}.

Indeed, suppose for example that
∑

j bj ≡ 1 (mod 4). If

α1 = b1 −
∑

i bi − 1
4

, α2 = b2 −
∑

i bi − 1
4

, and α3 = b3 −
∑

i bi + 3
4

,

then α ∈ N3 and
∑

i αi = (b1 + b2 + b3 − 1)/4. The other three cases are similar.
We get Li(b) = (

∑
j bj − i)/4 for i = 0, 1, 2, 3 such that if b ∈ N3 is in σ

and
∑

j bj ≡ i (mod 4), then τ(b) = Li(b). We get roots of the Bernstein-Sato
polynomial of a given by Li(−1,−1,−1) for i = 0, 1, 2, 3, i.e. − 3

4 , −1, − 5
4 and

− 6
4 . Note that by [BMS2] (4.5), ba(s) = (s + 3

4 )(s + 5
4 )(s + 6

4 )(s + 1)3.

Example 5.3. Let a be the ideal generated by XiXj for all 1 ≤ i < j ≤ n, with
n ≥ 3. We have

�i(s) =
∑
j<i

sj,i +
∑
j>i

si,j
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for s = (si,j)i<j . Note that if �i(s) ≤ bi for all i, by taking the sum we get∑
i<j

si,j ≤ �(
∑

i

bi)/2�.

It is easy to give, as above, a full-dimensional cone σ on which this maximum is
achieved. This gives L1 and L2 with Li(b) = (

∑
j bj−i)/2 such that if b ∈ Nn lies

in σ and
∑

j bj ≡ i (mod 2), then τi(b) = Li(b). Therefore L0(−1, . . . ,−1) = −n
2

and L1(−1, . . . ,−1) = −n+1
2 are roots of ba.

Suppose now that b ∈ Nn is such that b1 >
∑n

j=2 bj . If �i(α) ≤ bi for
all i, by adding these inequalities for i ≥ 2, we deduce

∑
i<j αi,j ≤ ∑

j≥2 bj .
Moreover, this maximum can be achieved: let α1,i = bi for i > 1 and all other
αi,j = 0. If L(b) =

∑
j≥2 bj we see that if b is as above, then τ(b) = L(b). Hence

L(−1, . . . ,−1) = −(n − 1) is also a root of ba. Note that by [BMS2] (4.5), the
Bernstein-Sato polynomial of a is ba(s) = (s + n

2 )(s + n+1
2 )(s + n − 1).

6. Appendix

We show that if a is a monomial ideal, then in order to compute the functions
νJ

a (pe) for p � 0, it is enough to consider the case when J is a monomial ideal.

Proposition 6.1. Let a be a nonzero ideal generated by monomials in
Z[X1, . . . , Xn] and let J ⊆ (X1, . . . , Xn) be an ideal such that a is contained
in the radical of J . If we put

J̃ := (Xu | hXu ∈ J for some h ∈ Z[X1, . . . , Xn] � (X1, . . . , Xn))

and if p � 0, then νJ
a (pe) = νJ̃

a (pe) for every e ≥ 1.

For the proof of Proposition 6.1 we will need the following lemma.

Lemma 6.2. With the notation in Proposition 6.1, for p � 0 we have

J̃p = (Xu | Xu ∈ Jp)

as ideals in Fp[X1, . . . , Xn](X1,... ,Xn).

Proof. Given Xu in J̃ and h ∈ Z[X1, . . . , Xn] such that h(0) �= 0 and hXu ∈ J ,
then for p not dividing h(0) we see that the image of Xu in
Fp[X1, . . . , Xn](X1,... ,Xn) lies in Jp. Since J̃ is finitely generated, for p � 0
we deduce the inclusion ⊆ in the statement.

We prove now the reverse inclusion. It is clear that if a = (ai) and b = (bi)
in Nn are such that ai ≤ bi for every i, then (J : Xa) ⊆ (J : Xb). For a subset A
of {1, . . . , n} and w = (wi) ∈ Nn, we denote by w + NA the set

{u = (ui) ∈ Nn | ui ≥ wi for i ∈ A andui = wi for i �∈ A}.
Using the fact that Z[X1, . . . , Xn] is Noetherian, we deduce that there is a

decomposition

Nn =
m⊔

j=1

(w(j) + NAj ),



ROOTS OF BERNSTEIN-SATO POLYNOMIALS 141

for some w(j) in Nn and Aj ⊆ {1, . . . , n} such that for every w in w(j) + NAj

the ideal (J : Xw) is equal to a fixed ideal Ij . In particular, we deduce that for
every i in Aj , we have (Ij : Xi) = Ij .

Given a prime p, for every ideal I in Z[X1, . . . , Xn] we denote by I the
reduction of I in Fp[X1, . . . , Xn]. There is p0 such that for every prime p ≥ p0

the following hold:

(Ij : Xi) = Ij in Fp[X1, . . . , Xn] for all j ≤ m and all i ∈ Aj ,(10)

(J : Xw(j)
) = Ij in Fp[X1, . . . , Xn] for all j ≤ m.(11)

In order to show (10), use the exact sequence

0 → (Ij : Xi)/Ij → Z[X1, . . . , Xn]/Ij
φ→ Z[X1, . . . , Xn]/Ij ,(12)

where φ is multiplication by Xi. Note that given an arbitrary finitely generated
Z[X1, . . . , Xn]-module M , there is a positive integer � such that M [1/�] is flat
over Z[1/�]. Indeed, the submodule N ⊆ M of elements annihilated by some
positive integer is finitely generated over Z[X1, . . . , Xn]. Therefore we can find
� such that �N = 0, and M [1/�] is torsion-free, hence flat over Z[1/�]. Applying
this observation for the image and for the cokernel of h, we see that if p � 0,
then the sequence obtained from (12) by tensoring with Fp is again exact, which
gives (10). The proof of (11) is similar.

Consider now a prime p ≥ p0 and fix w ∈ Nn. Let j be such that w is in
w(j) + NAj . Suppose that h is in Fp[X1, . . . , Xn] such that h(0) �= 0 and hXw

is in J . Using (11) we deduce that hXw−w(j)
lies in Ij . Moreover, (10) implies

that h is in Ij . If g is an element in Ij whose class is h, then g(0) �= 0 and gXw(j)

is in J . In particular, gXw is in J , so Xw ∈ J̃ , which completes the proof of the
lemma.

Proof of Proposition 6.1. We consider p � 0 so the assertion in Lemma 6.2
applies. In particular, we have J̃p ⊆ Jp, so νJ̃

a (pe) ≥ νJ
a (pe). In order to show

that we have equality, since a is monomial it is enough to prove that if Xu is
in J

[pe]
p , then Xu is in J̃

[pe]
p . We do induction on e ≥ 0, the case e = 0 being a

consequence of Lemma 6.2.
If e ≥ 1, we write u = pv + w with v and w in Nn and 0 ≤ wi < p for every

i. We deduce

Xw ∈ (J [pe]
p : Xpv) = (J [pe−1]

p : Xv)[p],(13)

where the equality follows from the fact that Fp[X1, . . . , Xn] is flat over
Fp[X

p
1 , . . . , Xp

n]. The assumption on w implies that wi = 0 for every i and

(J [pe−1]
p : Xv) is the unit ideal. We deduce that Xv lies in J

[pe−1]
p , hence in

J̃
[pe−1]
p by the induction hypothesis. Therefore Xu is in J

[pe]
p , which completes

the proof of the proposition.
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