
Math. Res. Lett. 13 (2006), no. 1, 59–69 c© International Press 2006

ON EXTREME X-HARMONIC FUNCTIONS

E. B. Dynkin

Abstract. All positive harmonic functions in an arbitrary domain E of a Eu-
clidean space can be decomposed in a unique way into extreme functions. The

latter can be obtained by a passage to the limit from ky(x) =
g(x,y)
g(a,y)

where g(x, y)

is the Green function of the Laplacian and a is a fixed point of E. Our goal is to
get similar results for a class of positive functions on a space of measures. These
functions are associated with a superdiffusion X and we call them X-harmonic.
Denote Mc(E) the set of all finite measures µ supported by compact subsets of
E. X-harmonic functions are functions on Mc(E) characterized by a mean value
property formulated in terms of exit measures of a superdiffusion. Extreme X-
harmonic functions play the same role as their classical counterpart. We describe

a limit process for getting these functions. Instead of the ratio
g(x,y)
g(a,y)

we use a

Radon-Nikodym derivative of the probability distribution of an exit measure of X
with respect to the probability distribution of another such measure.

1. Introduction

1.1. X-harmonic functions. Suppose that L is a second order uniformly ellip-
tic operator in a domain E of R

d. An L-diffusion is a continuous strong Markov
process ξ = (ξt,Πx) in E with the generator L. A function h in a domain E is
called ξ-harmonic (or L-harmonic) if, for every domain D � E, 1

Πxh(ξτD
) = h(x) for all x ∈ D.

Here τD is the first exit time of ξ from D. This condition is satisfied if and only
if Lh = 0 in E.

Let ψ be a function from E × R+ to R+ where R+ = [0,∞). An (L, ψ)-
superdiffusion is a model of an evolution of a random cloud. It is described by a
family of random measures (XD, Pµ) where D ⊂ E and µ is a finite measure on
E. 2 If µ is concentrated on D, then XD is concentrated on ∂D. We call XD

the exit measure from D. Heuristically, it describes the mass distribution on an
absorbing barrier placed on ∂D.

We put µ ∈ Mc(D) if µ is a finite measure concentrated on a compact subset
of D. We say that a function H : Mc(E) → R+ is X-harmonic and we write
H ∈ H(X) if, for every D � E and every µ ∈ Mc(D),

PµH(XD) = H(µ).(1.1)
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1We write D� E if D is a bounded domain such that the closure D̄ of D is contained in E.
2Assumptions about these random measures are formulated in Section 1.2.
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For every domain D ⊂ E we have an inclusion Mc(D) ⊂ Mc(E). We say
that H is X-harmonic in D if

PµH(XO) = H(µ) for all O � D, µ ∈ Mc(O).(1.2)

An element H of H(X) is called extreme if the conditions H̃ ≤ H, H̃ ∈ H(X)
imply that H̃ = const. H.

Fix a ∈ E and denote by H(X, a) the class of all positive X-harmonic functions
H such that H(δa) = 1 [δa is the unit mass concentrated at a]. Let He(X, a)
stand for the set of all extreme elements that belong to H(X, a). According to
Theorem 3.1 in [Dyn04a], the formula

H(µ) =
∫

Ĥ(µ)ν(dĤ)(1.3)

establishes a 1-1 correspondence between H ∈ H(X, a) and probability measures
ν on He(X, a). 3

1.2. Superdiffusions. We write f ∈ B if f is a positive B-measurable function.
We denote by B(E) the class of all Borel subsets of E and by M(E) the set of
all finite measures on B(E).

Suppose that to every open set D ⊂ E and every µ ∈ M(E) there corresponds
a random measure (XD, Pµ) on R

d 4 such that, for every f ∈ B(E),

Pµe−〈f,XD〉 = e−〈VD(f),µ〉(1.4)

where u = VD(f) satisfies the equation 5

u + GDψ(u) = KDf.(1.5)

Here

GDf(x) = Πx

∫ τD

0

f(ξs) ds,

KDf(x) = Πx1τD<∞f(ξτD
)

(1.6)

are the Green operator and the Poisson operator of ξ in D. We call the fam-
ily X = (XD, Pµ) an (L, ψ)-superdiffusion if, besides (1.4)-(1.5) it satisfies the
following condition.

1.2.A. [Markov property] For every µ ∈ Mc(E) and every D � E,

PµY Z = Pµ(Y PXD
Z)

if Y ≥ 0 is measurable with respect to the σ-algebra F⊂D generated by XO, O ⊂
D and Z ≥ 0 is measurable with respect to the σ-algebra F⊃D generated by
XO′ , O′ ⊃ D.

3In Section 4.1 we deduce the representation (1.3) from a result in [Dyn78].
4A random measure on a measurable space (S,BS) is a pair (X, P ) where X(ω, B) is a

kernel from an auxiliary measurable space (Ω,F) to (S,BS) and P is a probability measure
on F . [We say that p(x, B), x ∈ E, B ∈ B′ is a kernel from a measurable space (E,B) to a
measurable space (E′,B′) if it is a B-measurable function in x and a finite measure in B.]

5ψ(u) is a short writing for ψ(x, u(x)).
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The existence of a (L, ψ)-superdiffusion is proved for a convex class of func-
tions ψ which contains functions ψ(x, u) = b(x)uα with bounded positive Borel
b and 1 < α ≤ 2. [See, e. g., Chapter 4 in [Dyn02].] It follows from (1.6)–(1.4)
that

Pµ{XD(D) = 0} = 1(1.7)

and

Pµ{XD = µ} = 1 if µ(D) = 0.(1.8)

Let F stand for the σ-algebra in Ω generated by XD(B) where D � E and
B ∈ B(E). Denote by M the σ-algebra in Mc(E) generated by the functions
F (µ) = µ(B) with B ∈ B(E). If µ ∈ Mc(E) and D � E, then, Pµ-a.s.,
XD ∈ Mc(E) and XD is a measurable mapping from (Ω,F) to (Mc(E),M).
Moreover, if µ ∈ Mc(D), then, Pµ-a.s., XD ∈ M(∂D). It follows from (1.4)
that H(µ) = PµY is M-measurable for every F-measurable Y ≥ 0.

We have:
1.2.B. [Absolute continuity property] For every set C ∈ F⊃D either Pµ(C) =

0 for all µ ∈ Mc(D) or Pµ(C) > 0 for all µ ∈ Mc(D).

A proof of this property can be found in [Dyn04b],Theorem 5.3.2.

1.3. H-transform. Let X = (XD, Pµ) be a superdiffusion in E and let E be
the union of Uk such that U1 � U2 � . . . Uk � . . . . Put M = Mc(E) and denote
by Ok the class of all open sets D � Uk.

The space (M,M) is a measurable Luzin space. 6 Therefore Kolmogorov’s
extension theorem is applicable to MOk . Fix a ∈ E and H ∈ H(X, a). Put
Pa = Pδa and consider a family

Mn,k(D1, C1; . . . ;Dn, Cn) = Pa{XD1 ∈ C1, . . . , XDn
∈ Cn;H(XUk

)}
where n = 1, 2, . . . , D1, . . . , Dn ∈ Ok and C1, . . . , Cn ∈ M. 7 Note that for
n > 1

Mn,k(D1, C1; . . . ;Dn−1, Cn−1;Dn,M) = Mn−1,k(D1, C1; . . . ;Dn−1, Cn−1)

Since H ∈ H(X, a), M1,k(D,M) = 1 if a ∈ Uk. By (1.8), this is true also if
a /∈ Uk. By Kolmogorov’s theorem, there exists a probability measure PH

a,k on
MOk such that, for all D1, . . . , Dn ∈ Ok and C1, . . . , Cn ∈ M
(1.9) PH

a,k{XD1 ∈ C1, . . . , XDn ∈ Cn} = Mn,k(D1, C1; . . . ;Dn, Cn)

= Pa{XD1 ∈ C1, . . . , XDn ∈ Cn; H(XUk
)}.

This implies

PH
a,kY = Pa[Y H(XUk

)](1.10)

6That is there exists a 1-1 mapping from M onto a Borel subset M̃ of a compact metric
space such that elements of M correspond to Borel subsets of M̃.

7Writing P{A; f} means
∫

A fdP .
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for all k and all Y ∈ F⊂Uk
. Indeed, by (1.9), formula (1.10) holds for Y =

1C1(XD1) . . . 1Cn(XDn) where D1, . . . , Dn ∈ Ok and these functions generate
F⊂Uk

. By 1.2.A, Pa[Y H(XUk
)] = Pa[Y H(XU�

)] for k < . and Y ∈ F⊂Uk
. Since

Ok ↑ O(E), there exists a measure PH
a on MO(E) which coincides with PH

a,k on
MOk . Clearly,

PH
a Y = Pa[Y H(XU )] for all U � E, Y ∈ F⊂U .

The measure PH
a is called the H-transform of Pa. 8

1.4. Main results. We denote by PD(µ, ·) the probability distribution of XD

under Pµ, that is

PD(µ, A) = Pµ{XD ∈ A} for A ∈ M.

Fix a reference point a ∈ E and put PD(A) = PD(δa, A). By 1.2.B, there
exists a Radon-Nikodym derivative

Hν
D(µ) =

PD(µ, dν)
PD(dν)

.(1.11)

For every µ ∈ Mc(D), this is a function of ν ∈ M(∂D) defined up to PD-
equivalence. We continue it to M(E)×M(E) by setting Hν

D(µ) = 0 off Mc(D)×
M(∂D).

Theorem 1.1. There exists a version of Hν
D(µ) which is M × M-measurable

and X-harmonic in µ in the domain D for every ν ∈ M(∂D).

In Theorems 1.2 and 1.3, Hν
D(µ) is the version of the Radon-Nikodym deriv-

ative (1.11) described in Theorem 1.1.
We say that a sequence Dk exhausts E if D1 � D2 � . . . Dk � . . . and E is

the union of Dk.

Theorem 1.2. If H ∈ He(X, a), then, for every γ ∈ Mc(E) and for every
sequence Dk exhausting E,

H(γ) = lim
k→∞

H
XDk

Dk
(γ) PH

a -a. s.(1.12)

Theorem 1.3. Let H and Dk be the same as in Theorem 1.2 and let Mµ
k (·) =

PDk
(µ, ·). There exists a sequence νn ∈ ∂Dn such that, for every µ ∈ Mc(E)

and for every k,

Mµ
k {γ : Hνn

Dn
(γ) → H(γ) as n → ∞} = 1.(1.13)

8J. L. Doob introduced h-transforms associated with excessive functions h for a Markov
process. This is an important tool in the probabilistic analysis.
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1.5. Comparison with the Martin boundary theory. In 1941 Martin stud-
ied positive harmonic functions in an arbitrary domain E ⊂ R

d. Denote by
H(a) the set of all such functions equal to 1 at a ∈ E. Martin proved that every
h ∈ H(a) has a unique integral representation

h(x) =
∫

ĥ(x)µ(dĥ)

where µ is a probability measure on the set He(a) of all exreme points of H(a).
Formula (1.3) provides a counterpart of this result for X-harmonic functions.

A central role in the Martin theory is played by the function ky(x) = g(x,y)
g(a,y) (g

is the Green function of the Laplacian in E). In terms of the Brownian motion
(ξt,Πx) it can be expressed by the formula

ky(x) =
g(x, dy)
g(a, dy)

(1.14)

where

g(x, B) = Πx

∫ τE

0

1B(ξt)dt.

Note an obvious similarity between (1.14) and (1.11). If D � E, then ky(x) is
harmonic in D for every y ∈ ∂D. Theorem 1.1 establishes a similar property of
Hν

D(µ).
Theorem 1.2 is a counterpart of the following proposition: 9

1.5.A. If Dn exhaust E and if h ∈ He(a) , then

h(x) = lim kξτn (x) Πh
a-a.s..

Here Πh
a is the h-transform of Πa and τn is the first exit time from Dn.

Proposition 1.5.A in combination with the Harnack’s inequality implies:
1.5.B. If Dn exhaust E and if h ∈ He(a), then there exist yn ∈ ∂Dn such

that

h(x) = lim kyn(x) for all x ∈ E.

We would like to prove that, if H ∈ He(X, a), then there exist νn ∈ M(∂Dn)
such that

H(µ) = limHνn

Dn
(µ) for all µ ∈ Mc(E).(1.15)

Theorem 1.3 is a weaker statement. It implies only that (1.15) holds if, for
some k, the functions Hn = Hνn

Dn
, n > k were uniformly Mµ

k -integrable. Indeed,
since Hn is X-harmonic in Dn, we have∫

Hn(γ)Mµ
k(dγ) = PµHn(XDk

) = Hn(µ) for every n > k.(1.16)

9We refer for the proof to [Dyn02], Chapter 7.
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By (1.13) and (1.16),

H(µ) = PµH(XDk
) =

∫
H(γ)Mµ

k (dγ) =
∫

lim Hn(γ)Mµ
k (dγ)

= lim
∫

Hn(γ)Mµ
k (dγ) = limHn(µ).

However we do not know, if the condition of the uniform integrability of Hn

is satisfied.
The set He(a) can be interpreted as the exit space for ξ. Proposition 1.5.B

is applicable to a wide class of Markov processes ξ and it allows to describe the
exit spaces for a number of interesting processes. [See, for instance, [Dyn64] and
[Dyn66].] To apply, in a similar way, Theorem 1.3, it is necessary to learn more
about the functions Hν

D(µ).

2. Proof of Theorem 1.1

The σ-algebra M is countably generated. 10 The existence of M × M-
measurable version of Hν

D(µ) follows from Theorem A.1 in the Appendix. Let
us prove that this version can be chosen to be X-harmonic in µ in the domain
D.

First we prove that, if Hν
D(µ) is M × M-measurable, then

PµHν
D(XD) = Hν

D(µ) for PD-almost all ν.(2.1)

Indeed, for every A ∈ M,

PD(µ, A) =
∫

A

PD(dν)Hν
D(µ), PD(XO, A) =

∫
A

PD(dν)Hν
D(XO).

Therefore, by 1.2.A,

(2.2) Pµ

∫
A

PD(dν)Hν
D(XO) = PµPD(XO, A)

= PµPXO
{XD ∈ A} = Pµ{XD ∈ A} = PD(µ, A) =

∫
A

PD(dν)Hν
D(µ).

The function Hν
D(XO(ω)) is M×F-measurable. By Fubini’s theorem, it follows

from (2.2) that ∫
A

PD(dν)PµHν
D(XO) =

∫
A

PD(dν)Hν
D(µ)

for all A ∈ M which implies (2.1).
To prove Theorem 1.1, we consider any M×M measurable version H̃ν

D of the
Radon-Nikodym derivative (1.6) and we put

Hν
D(µ) = PµH̃ν

D(XD).

10Every uncountable Luzin measurable space is isomorphic to the unit interval [0, 1] with
the Borel σ-algebra. This is proved, for instance, in [DY79], Appendix 1.
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This function is M × M-measurable. By (2.1) it coincides, for PD-almost all ν

with H̃ν
D(µ). By the Markov property 1.2.A,

PµHν
D(XO) = PµPXO

H̃ν
D(XD) = PµH̃ν

D(XD) = Hν
D(µ)

for every O � D, µ ∈ Mc(O).
To prove Theorem 1.2 we need some preparations.

3. Exit laws for Markov chains

3.1. Markov chains. Suppose (En,Bn), n = 0, 1, 2, . . . is a sequence of mea-
surable spaces. A Markov transition function is a family of kernels p(r, x; n, B),
0 ≤ r < n from (Er,Br) to (En,Bn) such that

p(r, x;n, En) = 1 for all r < n, x ∈ Er

and ∫
Ek

p(r, x; k, dy)p(k, y;n, B) = p(r, x : n, B)

for all r < k < n and all x ∈ Er, B ∈ Bn.
A sequence ω = {xo, x1, . . . xn, . . . } where xn ∈ En is called a path. Consider

the space Ω of all paths and denote by F≤r [F≥r] the σ-algebra in Ω generated
by {Xn(ω) ∈ Bn} with Bn ∈ Bn and n ≤ r [n ≥ r]. By Kolmogorov’s theorem,
to every x ∈ E0 there corresponds a probability measure Px on F≥0 such that

Px{X0 = x} = 1

and

Px{X0 = r, X1 ∈ B1, . . . , Xn ∈ Bn}

=
∫

B1

· · ·
∫

Bn

p(0, x; 1, dy1) . . . p(n − 1, yn−1;n, dyn)

for all n > 0 and all B1 ∈ B1, . . . , Bn ∈ Bn. The family (Xn, Px) is a Markov
chain with the transition function p.

3.2. Exit laws. A sequence of positive measurable functions Fn(x), x ∈ En is
called a p-exit law if∫

En

p(m, x;n, dy)Fn(y) = Fm(x) for all m < n, x ∈ Er.

We denote E(p) the set of all p-exit laws and we put F ∈ E(p, a) if F ∈ E(p) and
F 0(a) = 1.

Suppose that p satisfies the condition:

3.2.A. If p(0, a;n, B) = 0, then p(m, x;n, B) = 0 for all x and all m < n.11
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Let Ee(p, a) stand for the set of all extreme elements of E(p, a). The formula

Fn(x) =
∫

F̂n(x)µ(dF̂ )(3.1)

establishes a 1-1 correspondence between F ∈ E(p, a) and probability measures
µ on Fe(p, a). This was proved in [Dyn78], Section 10.2.

Put

νn(A) = p(0, a;n, A).

The Radon-Nikodym derivative

ρ(m, x;n, y) =
p(m, x;n, dy)

νn(dy)
can be chosen to satisfy equation∫

Ek

ρ(r, x; k, y)νk(dy)ρ(k, y;n, z) = ρ(r, x;n, z)

for all r < k < n and all x ∈ Er, z ∈ En.

3.3. F -transform. Suppose that F ∈ E(p, c). By Kolmogorov’s theorem, there
exists a probability measure P

F
x on the path space Ω such that

(3.2) P
F
x {X0 = x, X1 ∈ B1, . . . , Xn ∈ Bn}

= Px{X0 = x, X1 ∈ B1, . . . , Xn ∈ Bn;Fn(Xn)}
for all n > 0 and all B1 ∈ B1, . . . , Bn ∈ Bn.

The measure P
F
x is called the F -transform of Px. We have

P
F
x Y = PxY Fn(Xn)

for every Y ∈ F≥n. It is proved in [Dyn78], Section 10 that, if F is an extreme
element of E(p, a) and if F r(x) < ∞, then

F r(x) = lim
n→∞ ρ(r, x;n, Xn) P

F
a -a.s.(3.3)

4. Proof of Theorems 1.2 and 1.3

4.1. Markov chains associated with superdiffusions. To construct such
chains we fix a sequence D0, D1, . . . exhausting E and we put

M0 = Mc(D0), X0 = µ ∈ M0,

Mn = M(∂Dn), Xn = XDn for n ≥ 1.

The Markov property 1.2.A of a superdiffusion implies that (Xn, Pµ) is a Markov
chain with the transition function

P(r, µ;n, A) = Pµ(Xn ∈ A), 0 ≤ r ≤ n, µ ∈ Mr, A ⊂ Mn.(4.1)

We call it the chain associated with the superdiffusion (XD, Pµ).

11This property can be thought of as a probabilistic statement of the strong minimum
principle.
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If H is X-harmonic and if Fn is the restriction of H to Mn, then F is a
P-exit law. If H ∈ H(X, a) and if a ∈ D0, then F ∈ E(P, δa). This way we
define a mapping j : H(X, a) → E(P, δa). On the other hand, if r < n and if µ ∈
Mc(Dn), then, by the Markov property 1.2.A, PµFn(Xn) = PµPXrF

n(Xn) =
PµF r(Xr) and therefore PµFn(Xn) does not depend on n ≥ r. We define
H = i(F ) by the formula

H(µ) = PµFn(Xn) for µ ∈ Mc(Dn).

Every D � E is contained in Dn for sufficiently large n, and, by 1.2.A,

PµH(XD) = PµPXD
Fn(Xn) = PµFn(Xn) = H(µ).

Hence, H ∈ H(X, a) and we have a map i : E(P, δa) → H(X, a). Clearly, i is
the inverse for j and both mappings preserve the convex structure. It follows
from the Absolute continuity property 1.2.B that P satisfies the condition 3.2.A
and therefore the integral representation (3.1) of exit laws implies the integral
representation (1.3) of X-harmonic functions.

4.2. Proof of Theorem 1.2. If µ ∈ Mr, A ⊂ Mn, then

P(r, µ;n, A) = PDn
(µ, A), P(0, δa;n, A) = PDn

(δa, A)

and therefore
P(r, µ;n, dν)
P(0, δa;n, dν)

= Hν
Dn

(µ).(4.2)

On the other hand, by comparing (1.9) and (3.2), we get

PH
a = P

F
a .(4.3)

If µ ∈ Mc(E), then µ ∈ Mc(D0) for some D0 ⊂ E. Consider a sequence
D0, D1, . . . exhausting E. By applying (4.2) and (4.3), we get (1.12) from (3.3).

4.3. Proof of Theorem 1.3. Every function H
XDn (ω)
Dn

(γ) is M×F-measurable
in (γ, ω) and therefore the set

W = {(γ, ω) : H
XDn (ω)
Dn

(γ) → H(γ) as n → ∞}
belongs to M ×F . Put

Ωγ = {ω : (γ, ω) ∈ W}, Mω = {γ : (γ, ω) ∈ W}
and P = PH

a . By Theorem 1.2, P (Ωγ) = 1 and, by Fubini’s theorem,∫
Ω

Mµ
k (Mω)P (dω) =

∫
M

P (Ωγ)Mµ
k (dγ) = 1.

Hence the measure P is concentrated on each of sets {Mµ
k (Mω) = 1} and there-

fore it is concentrated on their intersection. Since P (Ω) = 1, this intersection is
not empty.
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Appendix

We need the following result

Theorem A.1. Suppose that Q(x, dy) is a kernel from a measurable space
(X,AX) to a Luzin measurable space (Y,AY ) and that AY is countable gener-
ated. Let P be a finite measure on (Y,AY ). If Q(x, ·) ≺ P (·) 12 for all x, then
there exists a AX × AY -measurable version of the Radon-Nikodym derivative
Q(x,dy)
P (dy) .

Proof. 1◦. First, we note that, if a σ-algebra A is generated by the union of σ-
algebras A1 ⊂ A2 · · · ⊂ An . . . if ρ(y) = Q(dy)

P (dy) , then the conditional mathemati-

cal expectation ρn = P{ρ|An} is equal to Qn(dx)
Pn(dx) where Pn and Qn are the restric-

tions of P and Q to An. Indeed, for every A ∈ An,
∫

A
ρdP = Q(A) =

∫
A

ρndP .
Therefore ρn → ρ off a set C ∈ A such that P (C) = 0. A version of Q(dx)

P (dx) can
be defined as lim ρn off C and a constant on C.

2◦. If a σ-algebra A in Y is countably generated, then it is generated by a
sequence of finite partitions of Y into disjoint sets. Moreover, we can choose this
partitions to generate a monotone increasing sequence of σ-algebras An.

3◦. If A is generated by a partition Y = Y1 ∪ · · · ∪ Yn and if Q ≺ P , then
Q(dy)
P (dy)

=
Q(Yk)
P (Yk)

on Yk.

4◦. It is suffiient to prove our theorem for the case Q(x, Y ) = 1 for all x. We
apply 1◦ and 2◦ to the σ-algebra AY . By 3◦ , ρn are AX ×AY -measurable and
an AX ×AY -measurable version of Q(x,dy)

P (dy) can be defined as in 1◦.
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