ON EXTREME X-HARMONIC FUNCTIONS

E. B. Dynkin

ABSTRACT. All positive harmonic functions in an arbitrary domain *E* of a Euclidean space can be decomposed in a unique way into extreme functions. The latter can be obtained by a passage to the limit from $k^y(x) = \frac{g(x,y)}{g(a,y)}$ where $g(x,y)$ is the Green function of the Laplacian and *a* is a fixed point of *E*. Our goal is to get similar results for a class of positive functions on a space of measures. These functions are associated with a superdiffusion *X* and we call them *X*-harmonic. Denote $\mathcal{M}_c(E)$ the set of all finite measures μ supported by compact subsets of *E*. *X*-harmonic functions are functions on $\mathcal{M}_c(E)$ characterized by a mean value propertyformulated in terms of exit measures of a superdiffusion. Extreme *X*harmonic functions play the same role as their classical counterpart. We describe a limit process for getting these functions. Instead of the ratio $\frac{g(x,y)}{g(a,y)}$ we use a Radon-Nikodym derivative of the probability distribution of an exit measure of *X* with respect to the probability distribution of another such measure.

1. Introduction

1.1. *X***-harmonic functions.** Suppose that *L* is a second order uniformly elliptic operator in a domain E of \mathbb{R}^d . An *L*-diffusion is a continuous strong Markov process $\xi = (\xi_t, \Pi_x)$ in *E* with the generator *L*. A function *h* in a domain *E* is called *ξ*-harmonic (or *L*-harmonic) if, for every domain $D \in E$, ¹

$$
\Pi_x h(\xi_{\tau_D}) = h(x) \quad \text{for all } x \in D.
$$

Here τ_D is the first exit time of ξ from *D*. This condition is satisfied if and only if $Lh = 0$ in E .

Let ψ be a function from $E \times \mathbb{R}_+$ to \mathbb{R}_+ where $\mathbb{R}_+ = [0, \infty)$. An (L, ψ) superdiffusion is a model of an evolution of a random cloud. It is described by a family of random measures (X_D, P_μ) where $D \subset E$ and μ is a finite measure on *E*. ² If μ is concentrated on *D*, then X_D is concentrated on *∂D*. We call X_D the exit measure from *D*. Heuristically, it describes the mass distribution on an absorbing barrier placed on *∂D*.

We put $\mu \in \mathcal{M}_c(D)$ if μ is a finite measure concentrated on a compact subset of *D*. We say that a function $H : \mathcal{M}_c(E) \to \mathbb{R}_+$ is *X*-harmonic and we write $H \in \mathbb{H}(X)$ if, for every $D \in E$ and every $\mu \in \mathcal{M}_c(D)$,

$$
(1.1) \t\t P\muH(XD) = H(\mu).
$$

Received by the editors January 9, 2005.

The author is partially supported by National Science Foundation Grant DMS-0204237.

¹We write $D \in E$ if *D* is a bounded domain such that the closure \bar{D} of *D* is contained in *E*.

²Assumptions about these random measures are formulated in Section 1.2.

For every domain $D \subset E$ we have an inclusion $\mathcal{M}_c(D) \subset \mathcal{M}_c(E)$. We say that *H* is *X*-harmonic in *D* if

(1.2)
$$
P_{\mu}H(X_O) = H(\mu) \text{ for all } O \in D, \mu \in \mathcal{M}_c(O).
$$

An element *H* of $\mathbb{H}(X)$ is called *extreme* if the conditions $\tilde{H} \leq H, \tilde{H} \in \mathbb{H}(X)$ imply that $H = \text{const.} H$.

Fix $a \in E$ and denote by $\mathbb{H}(X, a)$ the class of all positive X-harmonic functions *H* such that $H(\delta_a)=1$ [δ_a is the unit mass concentrated at *a*]. Let $\mathbb{H}_e(X,a)$ stand for the set of all extreme elements that belong to $\mathbb{H}(X,a)$. According to Theorem 3.1 in [Dyn04a], the formula

(1.3)
$$
H(\mu) = \int \hat{H}(\mu)\nu(d\hat{H})
$$

establishes a 1-1 correspondence between $H \in H(X, a)$ and probability measures *ν* on $\mathbb{H}_{e}(X, a)$. ³

1.2. Superdiffusions. We write $f \in \mathcal{B}$ if f is a positive B-measurable function. We denote by $\mathcal{B}(E)$ the class of all Borel subsets of E and by $\mathcal{M}(E)$ the set of all finite measures on $\mathcal{B}(E)$.

Suppose that to every open set $D \subset E$ and every $\mu \in \mathcal{M}(E)$ there corresponds a random measure (X_D, P_μ) on \mathbb{R}^{d-4} such that, for every $f \in \mathcal{B}(E)$,

(1.4)
$$
P_{\mu}e^{-\langle f,X_D \rangle} = e^{-\langle V_D(f),\mu \rangle}
$$

where $u = V_D(f)$ satisfies the equation ⁵

$$
(1.5) \t\t u + G_D \psi(u) = K_D f.
$$

Here

(1.6)
$$
G_D f(x) = \Pi_x \int_0^{\tau_D} f(\xi_s) ds,
$$

$$
K_D f(x) = \Pi_x 1_{\tau_D < \infty} f(\xi_{\tau_D})
$$

are the *Green operator* and the *Poisson operator* of ξ in *D*. We call the family $X = (X_D, P_\mu)$ an (L, ψ) -superdiffusion if, besides (1.4)-(1.5) it satisfies the following condition.

1.2.A. [Markov property] For every $\mu \in \mathcal{M}_c(E)$ and every $D \in E$,

$$
P_{\mu}YZ = P_{\mu}(YP_{X_D}Z)
$$

if *Y* ≥ 0 is measurable with respect to the σ -algebra $\mathcal{F}_{\subset D}$ generated by X_O , $O \subset$ *D* and $Z \geq 0$ is measurable with respect to the *σ*-algebra $\mathcal{F}_{\supset D}$ generated by *X*^{*O*} \cup *</sub> <i>D.*

³In Section 4.1 we deduce the representation (1.3) from a result in [Dyn78].

⁴A random measure on a measurable space (S, \mathcal{B}_S) is a pair (X, P) where $X(\omega, B)$ is a kernel from an auxiliary measurable space (Ω, \mathcal{F}) to (S, \mathcal{B}_S) and P is a probability measure on F. [We say that $p(x, B), x \in E, B \in \mathcal{B}'$ is a kernel from a measurable space (E, \mathcal{B}) to a measurable space (E', \mathcal{B}') if it is a \mathcal{B} -measurable function in x and a finite measure in B.

 $^{5}\psi(u)$ is a short writing for $\psi(x, u(x))$.

The existence of a (L, ψ) -superdiffusion is proved for a convex class of functions ψ which contains functions $\psi(x, u) = b(x)u^{\alpha}$ with bounded positive Borel *b* and $1 < \alpha \leq 2$. [See, e. g., Chapter 4 in [Dyn02].] It follows from (1.6) – (1.4) that

(1.7)
$$
P_{\mu}\{X_D(D) = 0\} = 1
$$

and

(1.8)
$$
P_{\mu}\{X_D = \mu\} = 1 \quad \text{if } \mu(D) = 0.
$$

Let F stand for the σ -algebra in Ω generated by $X_D(B)$ where $D \in E$ and $B \in \mathcal{B}(E)$. Denote by \mathfrak{M} the σ -algebra in $\mathcal{M}_c(E)$ generated by the functions $F(\mu) = \mu(B)$ with $B \in \mathcal{B}(E)$. If $\mu \in \mathcal{M}_c(E)$ and $D \in E$, then, P_μ -a.s., $X_D \in \mathcal{M}_c(E)$ and X_D is a measurable mapping from (Ω, \mathcal{F}) to $(\mathcal{M}_c(E), \mathfrak{M})$. Moreover, if $\mu \in M_c(D)$, then, P_μ -a.s., $X_D \in M(\partial D)$. It follows from (1.4) that $H(\mu) = P_{\mu}Y$ is \mathfrak{M} -measurable for every \mathcal{F} -measurable $Y \geq 0$.

We have:

1.2.B. [Absolute continuity property] For every set $C \in \mathcal{F}_{\supset D}$ either $P_\mu(C)$ = 0 for all $\mu \in \mathcal{M}_c(D)$ or $P_\mu(C) > 0$ for all $\mu \in \mathcal{M}_c(D)$.

A proof of this property can be found in [Dyn04b],Theorem 5.3.2.

1.3. *H***-transform.** Let $X = (X_D, P_\mu)$ be a superdiffusion in *E* and let *E* be the union of U_k such that $U_1 \in U_2 \in \ldots U_k \in \ldots$. Put $\mathcal{M} = \mathcal{M}_c(E)$ and denote by \mathcal{O}_k the class of all open sets $D \in U_k$.

The space $(\mathcal{M}, \mathfrak{M})$ is a measurable Luzin space. ⁶ Therefore Kolmogorov's extension theorem is applicable to $\mathcal{M}^{\mathcal{O}_k}$. Fix $a \in E$ and $H \in \mathbb{H}(X,a)$. Put $P_a = P_{\delta_a}$ and consider a family

$$
M_{n,k}(D_1, C_1; \ldots; D_n, C_n) = P_a\{X_{D_1} \in C_1, \ldots, X_{D_n} \in C_n; H(X_{U_k})\}
$$

where $n = 1, 2, \ldots, D_1, \ldots, D_n \in \mathcal{O}_k$ and $C_1, \ldots, C_n \in \mathcal{M}$. ⁷ Note that for $n > 1$

$$
M_{n,k}(D_1, C_1; \ldots; D_{n-1}, C_{n-1}; D_n, \mathcal{M}) = M_{n-1,k}(D_1, C_1; \ldots; D_{n-1}, C_{n-1})
$$

Since $H \in \mathbb{H}(X,a)$, $M_{1,k}(D,\mathcal{M}) = 1$ if $a \in U_k$. By (1.8), this is true also if $a \notin U_k$. By Kolmogorov's theorem, there exists a probability measure $P_{a,k}^H$ on \mathcal{M}^{O_k} such that, for all $D_1, \ldots, D_n \in \mathcal{O}_k$ and $C_1, \ldots, C_n \in \mathcal{M}$

$$
(1.9) \quad P_{a,k}^H\{X_{D_1} \in C_1, \dots, X_{D_n} \in C_n\} = M_{n,k}(D_1, C_1; \dots; D_n, C_n)
$$

$$
= P_a\{X_{D_1} \in C_1, \dots, X_{D_n} \in C_n; H(X_{U_k})\}.
$$

This implies

(1.10)
$$
P_{a,k}^H Y = P_a [YH(X_{U_k})]
$$

⁶That is there exists a 1-1 mapping from M onto a Borel subset $\tilde{\mathcal{M}}$ of a compact metric space such that elements of \mathfrak{M} correspond to Borel subsets of $\mathcal{\tilde{M}}$.

⁷Writing $P{A; f}$ means $\int_A f dP$.

for all *k* and all $Y \in \mathcal{F}_{\subset U_k}$. Indeed, by (1.9), formula (1.10) holds for $Y =$ $1_{C_1}(X_{D_1}) \ldots 1_{C_n}(X_{D_n})$ where $D_1, \ldots, D_n \in \mathcal{O}_k$ and these functions generate $\mathcal{F}_{\subset U_k}$. By 1.2.A, $P_a[YH(X_{U_k})] = P_a[YH(X_{U_\ell})]$ for $k < \ell$ and $Y \in \mathcal{F}_{\subset U_k}$. Since $\mathcal{O}_k \uparrow \mathcal{O}(E)$, there exists a measure P_a^H on $\mathcal{M}^{\mathcal{O}(E)}$ which coincides with $P_{a,k}^H$ on $\mathcal{M}^{\mathcal{O}_k}$. Clearly,

$$
P_a^H Y = P_a[YH(X_U)] \text{ for all } U \in E, Y \in \mathcal{F}_{\subset U}.
$$

The measure P_a^H is called the *H*-transform of P_a . ⁸

1.4. Main results. We denote by $\mathcal{P}_D(\mu, \cdot)$ the probability distribution of X_D under P_μ , that is

$$
\mathcal{P}_D(\mu, A) = P_\mu\{X_D \in A\} \quad \text{for } A \in \mathfrak{M}.
$$

Fix a reference point $a \in E$ and put $\mathcal{P}_D(A) = \mathcal{P}_D(\delta_a, A)$. By 1.2.B, there exists a Radon-Nikodym derivative

(1.11)
$$
H_D^{\nu}(\mu) = \frac{\mathcal{P}_D(\mu, d\nu)}{\mathcal{P}_D(d\nu)}.
$$

For every $\mu \in M_c(D)$, this is a function of $\nu \in M(\partial D)$ defined up to \mathcal{P}_D equivalence. We continue it to $\mathcal{M}(E) \times \mathcal{M}(E)$ by setting $H_D^{\nu}(\mu) = 0$ off $\mathcal{M}_c(D) \times$ M(*∂D*).

Theorem 1.1. There exists a version of $H_D^{\nu}(\mu)$ which is $\mathfrak{M} \times \mathfrak{M}$ -measurable and *X*-harmonic in μ in the domain *D* for every $\nu \in \mathcal{M}(\partial D)$.

In Theorems 1.2 and 1.3, $H_D^{\nu}(\mu)$ is the version of the Radon-Nikodym derivative (1.11) described in Theorem 1.1.

We say that a sequence D_k exhausts E if $D_1 \in D_2 \in \ldots D_k \in \ldots$ and E is the union of D_k .

Theorem 1.2. If $H \in \mathbb{H}_e(X, a)$, then, for every $\gamma \in \mathcal{M}_c(E)$ and for every sequence D_k exhausting E ,

(1.12)
$$
H(\gamma) = \lim_{k \to \infty} H_{D_k}^{X_{D_k}}(\gamma) \quad P_a^H
$$
-a. s.

Theorem 1.3. Let *H* and D_k be the same as in Theorem 1.2 and let $M_k^{\mu}(\cdot) =$ $\mathcal{P}_{D_k}(\mu, \cdot)$. There exists a sequence $\nu_n \in \partial D_n$ such that, for every $\mu \in \mathcal{M}_c(E)$ and for every *k*,

(1.13)
$$
M_k^{\mu} \{ \gamma : H_{D_n}^{\nu_n}(\gamma) \to H(\gamma) \quad \text{as } n \to \infty \} = 1.
$$

⁸J. L. Doob introduced *h*-transforms associated with excessive functions *h* for a Markov process. This is an important tool in the probabilistic analysis.

1.5. Comparison with the Martin boundary theory. In 1941 Martin studied positive harmonic functions in an arbitrary domain $E \subset \mathbb{R}^d$. Denote by $\mathcal{H}(a)$ the set of all such functions equal to 1 at $a \in E$. Martin proved that every $h \in \mathcal{H}(a)$ has a unique integral representation

$$
h(x) = \int \hat{h}(x)\mu(d\hat{h})
$$

where μ is a probability measure on the set $\mathcal{H}_e(a)$ of all exreme points of $\mathcal{H}(a)$. Formula (1.3) provides a counterpart of this result for *X*-harmonic functions.

A central role in the Martin theory is played by the function $k^y(x) = \frac{g(x,y)}{g(a,y)}$ (*g* is the Green function of the Laplacian in E). In terms of the Brownian motion (ξ_t, Π_x) it can be expressed by the formula

$$
(1.14) \t\t ky(x) = \frac{g(x, dy)}{g(a, dy)}
$$

where

$$
g(x, B) = \Pi_x \int_0^{\tau_E} 1_B(\xi_t) dt.
$$

Note an obvious similarity between (1.14) and (1.11). If $D \in E$, then $k^y(x)$ is harmonic in *D* for every $y \in \partial D$. Theorem 1.1 establishes a similar property of $H_D^{\nu}(\mu)$.

Theorem 1.2 is a counterpart of the following proposition: ⁹

1.5.A. If D_n exhaust *E* and if $h \in \mathcal{H}_e(a)$, then

$$
h(x) = \lim k^{\xi_{\tau_n}}(x) \quad \Pi_a^h\text{-a.s.}.
$$

Here Π_a^h is the *h*-transform of Π_a and τ_n is the first exit time from D_n .

Proposition 1.5.A in combination with the Harnack's inequality implies:

1.5.B. If D_n exhaust E and if $h \in \mathcal{H}_e(a)$, then there exist $y_n \in \partial D_n$ such that

$$
h(x) = \lim k^{y_n}(x) \quad \text{for all } x \in E.
$$

We would like to prove that, if $H \in \mathbb{H}_e(X, a)$, then there exist $\nu_n \in \mathcal{M}(\partial D_n)$ such that

(1.15)
$$
H(\mu) = \lim H_{D_n}^{\nu_n}(\mu) \text{ for all } \mu \in \mathcal{M}_c(E).
$$

Theorem 1.3 is a weaker statement. It implies only that (1.15) holds if, for some *k*, the functions $H_n = H_{D_n}^{\nu_n}, n > k$ were uniformly M_k^{μ} -integrable. Indeed, since H_n is *X*-harmonic in D_n , we have

(1.16)
$$
\int H_n(\gamma) \mathcal{M}_k^{\mu}(d\gamma) = P_{\mu} H_n(X_{D_k}) = H_n(\mu) \text{ for every } n > k.
$$

⁹We refer for the proof to [Dyn02], Chapter 7.

By (1.13) and (1.16),

$$
H(\mu) = P_{\mu}H(X_{D_k}) = \int H(\gamma)M_k^{\mu}(d\gamma) = \int \lim H_n(\gamma)M_k^{\mu}(d\gamma)
$$

=
$$
\lim \int H_n(\gamma)M_k^{\mu}(d\gamma) = \lim H_n(\mu).
$$

However we do not know, if the condition of the uniform integrability of *Hⁿ* is satisfied.

The set $\mathcal{H}_e(a)$ can be interpreted as the exit space for ξ . Proposition 1.5.B is applicable to a wide class of Markov processes *ξ* and it allows to describe the exit spaces for a number of interesting processes. [See, for instance, [Dyn64] and [Dyn66].] To apply, in a similar way, Theorem 1.3, it is necessary to learn more about the functions $H_D^{\nu}(\mu)$.

2. Proof of Theorem 1.1

The σ -algebra \mathfrak{M} is countably generated. ¹⁰ The existence of $\mathfrak{M} \times \mathfrak{M}$ measurable version of $H_D^{\nu}(\mu)$ follows from Theorem A.1 in the Appendix. Let us prove that this version can be chosen to be X -harmonic in μ in the domain *D*.

First we prove that, if $H_D^{\nu}(\mu)$ is $\mathfrak{M} \times \mathfrak{M}$ -measurable, then

(2.1)
$$
P_{\mu}H_{D}^{\nu}(X_{D})=H_{D}^{\nu}(\mu) \text{ for } \mathcal{P}_{D}\text{-almost all }\nu.
$$

Indeed, for every $A \in \mathfrak{M}$,

$$
\mathcal{P}_D(\mu, A) = \int_A \mathcal{P}_D(d\nu) H_D^{\nu}(\mu), \quad \mathcal{P}_D(X_O, A) = \int_A \mathcal{P}_D(d\nu) H_D^{\nu}(X_O).
$$

Therefore, by 1.2.A,

(2.2)
$$
P_{\mu} \int_{A} \mathcal{P}_D(d\nu) H_D^{\nu}(X_O) = P_{\mu} \mathcal{P}_D(X_O, A)
$$

$$
= P_{\mu} P_{X_O} \{ X_D \in A \} = P_{\mu} \{ X_D \in A \} = \mathcal{P}_D(\mu, A) = \int_A \mathcal{P}_D(d\nu) H_D^{\nu}(\mu).
$$

The function $H_D^{\nu}(X_O(\omega))$ is $\mathfrak{M} \times \mathcal{F}$ -measurable. By Fubini's theorem, it follows from (2.2) that

$$
\int_A \mathcal{P}_D(d\nu) P_{\mu} H_D^{\nu}(X_O) = \int_A \mathcal{P}_D(d\nu) H_D^{\nu}(\mu)
$$

for all $A \in \mathfrak{M}$ which implies (2.1) .

To prove Theorem 1.1, we consider any $\mathfrak{M} \times \mathfrak{M}$ measurable version \tilde{H}_{D}^{ν} of the Radon-Nikodym derivative (1.6) and we put

$$
H_D^{\nu}(\mu) = P_{\mu} \tilde{H}_D^{\nu}(X_D).
$$

¹⁰Every uncountable Luzin measurable space is isomorphic to the unit interval $[0,1]$ with the Borel *σ*-algebra. This is proved, for instance, in [DY79], Appendix 1.

This function is $\mathfrak{M} \times \mathfrak{M}$ -measurable. By (2.1) it coincides, for \mathcal{P}_D -almost all ν with $\tilde{H}^{\nu}_{D}(\mu)$. By the Markov property 1.2.A,

$$
P_{\mu}H_D^{\nu}(X_O) = P_{\mu}P_{X_O}\tilde{H}_D^{\nu}(X_D) = P_{\mu}\tilde{H}_D^{\nu}(X_D) = H_D^{\nu}(\mu)
$$

for every $O \in D, \mu \in \mathcal{M}_c(O)$.

To prove Theorem 1.2 we need some preparations.

3. Exit laws for Markov chains

3.1. Markov chains. Suppose (E_n, \mathcal{B}_n) , $n = 0, 1, 2, \ldots$ is a sequence of measurable spaces. A Markov transition function is a family of kernels $p(r, x; n, B)$, $0 \leq r < n$ from (E_r, \mathcal{B}_r) to (E_n, \mathcal{B}_n) such that

$$
p(r, x; n, E_n) = 1 \quad \text{for all } r < n, x \in E_r
$$

and

$$
\int_{E_k} p(r, x; k, dy)p(k, y; n, B) = p(r, x: n, B)
$$

for all $r < k < n$ and all $x \in E_r$, $B \in \mathcal{B}_n$.

A sequence $\omega = \{x_o, x_1, \ldots, x_n, \ldots\}$ where $x_n \in E_n$ is called a path. Consider the space Ω of all paths and denote by $\mathcal{F}_{\leq r}$ [$\mathcal{F}_{\geq r}]$ the σ -algebra in Ω generated by $\{X_n(\omega) \in B_n\}$ with $B_n \in \mathcal{B}_n$ and $n \leq r$ [$n \geq r$]. By Kolmogorov's theorem, to every $x \in E_0$ there corresponds a probability measure \mathbb{P}_x on $\mathcal{F}_{\geq 0}$ such that

$$
\mathbb{P}_x\{X_0=x\}=1
$$

and

$$
\mathbb{P}_x\{X_0 = r, X_1 \in B_1, \dots, X_n \in B_n\}
$$

= $\int_{B_1} \cdots \int_{B_n} p(0, x; 1, dy_1) \dots p(n-1, y_{n-1}; n, dy_n)$

for all $n > 0$ and all $B_1 \in \mathcal{B}_1, \ldots, B_n \in \mathcal{B}_n$. The family (X_n, \mathbb{P}_x) is a Markov chain with the transition function *p*.

3.2. Exit laws. A sequence of positive measurable functions $F^{n}(x), x \in E_{n}$ is called a *p*-exit law if

$$
\int_{E_n} p(m, x; n, dy) F^n(y) = F^m(x) \text{ for all } m < n, x \in E_r.
$$

We denote $\mathcal{E}(p)$ the set of all *p*-exit laws and we put $F \in \mathcal{E}(p, a)$ if $F \in \mathcal{E}(p)$ and $F^{0}(a) = 1.$

Suppose that *p* satisfies the condition:

3.2.A. If
$$
p(0, a; n, B) = 0
$$
, then $p(m, x; n, B) = 0$ for all x and all $m < n$.¹¹

 \Box

Let $\mathcal{E}_e(p,a)$ stand for the set of all extreme elements of $\mathcal{E}(p,a)$. The formula

(3.1)
$$
F^{n}(x) = \int \hat{F}^{n}(x)\mu(d\hat{F})
$$

establishes a 1-1 correspondence between $F \in \mathcal{E}(p, a)$ and probability measures μ on $\mathcal{F}_e(p,a)$. This was proved in [Dyn78], Section 10.2.

Put

$$
\nu_n(A) = p(0, a; n, A).
$$

The Radon-Nikodym derivative

$$
\rho(m, x; n, y) = \frac{p(m, x; n, dy)}{\nu_n(dy)}
$$

can be chosen to satisfy equation

$$
\int_{E_k} \rho(r, x; k, y) \nu_k(dy) \rho(k, y; n, z) = \rho(r, x; n, z)
$$

for all $r < k < n$ and all $x \in E_r$, $z \in E_n$.

3.3. *F***-transform.** Suppose that $F \in \mathcal{E}(p, c)$. By Kolmogorov's theorem, there exists a probability measure \mathbb{P}_{x}^{F} on the path space Ω such that

$$
(3.2) \mathbb{P}_x^F \{ X_0 = x, X_1 \in B_1, \dots, X_n \in B_n \} = P_x \{ X_0 = x, X_1 \in B_1, \dots, X_n \in B_n; F^n(X_n) \}
$$

for all $n > 0$ and all $B_1 \in \mathcal{B}_1, \ldots, B_n \in \mathcal{B}_n$.

The measure \mathbb{P}_{x}^{F} is called the *F*-transform of \mathbb{P}_{x} . We have

$$
\mathbb{P}_x^F Y = P_x Y F^n(X_n)
$$

for every $Y \in \mathcal{F}_{\geq n}$. It is proved in [Dyn78], Section 10 that, if *F* is an extreme element of $\mathcal{E}(p, a)$ and if $F^r(x) < \infty$, then

(3.3)
$$
F^{r}(x) = \lim_{n \to \infty} \rho(r, x; n, X_n) \quad \mathbb{P}_{a}^{F}
$$
-a.s.

4. Proof of Theorems 1.2and 1.3

4.1. Markov chains associated with superdiffusions. To construct such chains we fix a sequence D_0, D_1, \ldots exhausting E and we put

$$
\mathcal{M}_0 = \mathcal{M}_c(D_0), X_0 = \mu \in \mathcal{M}_0,
$$

$$
\mathcal{M}_n = \mathcal{M}(\partial D_n), X_n = X_{D_n} \text{ for } n \ge 1.
$$

The Markov property 1.2.A of a superdiffusion implies that (X_n, P_μ) is a Markov chain with the transition function

$$
(4.1) \qquad \mathcal{P}(r,\mu;n,A) = P_{\mu}(X_n \in A), \quad 0 \le r \le n, \mu \in \mathcal{M}_r, A \subset \mathcal{M}_n.
$$

We call it the *chain associated with the superdiffusion* (X_D, P_μ) .

 11 This property can be thought of as a probabilistic statement of the strong minimum principle.

If *H* is *X*-harmonic and if F^n is the restriction of *H* to \mathcal{M}_n , then *F* is a P-exit law. If $H \in H(X, a)$ and if $a \in D_0$, then $F \in \mathcal{E}(\mathcal{P}, \delta_a)$. This way we define a mapping $j : \mathbb{H}(X,a) \to \mathcal{E}(\mathcal{P},\delta_a)$. On the other hand, if $r < n$ and if $\mu \in$ $\mathcal{M}_c(D_n)$, then, by the Markov property 1.2.A, $P_\mu F^n(X_n) = P_\mu P_{X_r} F^n(X_n) =$ $P_{\mu}F^{r}(X_{r})$ and therefore $P_{\mu}F^{n}(X_{n})$ does not depend on $n \geq r$. We define $H = i(F)$ by the formula

$$
H(\mu) = P_{\mu} F^{n}(X_{n}) \quad \text{for } \mu \in \mathcal{M}_{c}(D_{n}).
$$

Every $D \in E$ is contained in D_n for sufficiently large *n*, and, by 1.2.A,

$$
P_{\mu}H(X_D) = P_{\mu}P_{X_D}F^{n}(X_n) = P_{\mu}F^{n}(X_n) = H(\mu).
$$

Hence, $H \in H(X, a)$ and we have a map $i : \mathcal{E}(\mathcal{P}, \delta_a) \to H(X, a)$. Clearly, *i* is the inverse for *j* and both mappings preserve the convex structure. It follows from the Absolute continuity property 1.2.B that P satisfies the condition 3.2.A and therefore the integral representation (3.1) of exit laws implies the integral representation (1.3) of *X*-harmonic functions.

4.2. Proof of Theorem 1.2. If $\mu \in \mathcal{M}_r, A \subset \mathcal{M}_n$, then

$$
\mathcal{P}(r,\mu;n,A) = \mathcal{P}_{D_n}(\mu,A), \quad \mathcal{P}(0,\delta_a;n,A) = \mathcal{P}_{D_n}(\delta_a,A)
$$

and therefore

(4.2)
$$
\frac{\mathcal{P}(r,\mu;n,d\nu)}{\mathcal{P}(0,\delta_a;n,d\nu)} = H_{D_n}^{\nu}(\mu).
$$

On the other hand, by comparing (1.9) and (3.2) , we get

$$
(4.3) \t\t\t P_a^H = \mathbb{P}_a^F.
$$

If $\mu \in \mathcal{M}_c(E)$, then $\mu \in \mathcal{M}_c(D_0)$ for some $D_0 \subset E$. Consider a sequence D_0, D_1, \ldots exhausting *E*. By applying (4.2) and (4.3), we get (1.12) from (3.3). \Box

4.3. Proof of Theorem 1.3. Every function $H_{D_n}^{X_{D_n}(\omega)}(\gamma)$ is $\mathfrak{M}\times \mathcal{F}$ -measurable in (γ,ω) and therefore the set

$$
W = \{ (\gamma, \omega) : H_{D_n}^{X_{D_n}}(\omega) (\gamma) \to H(\gamma) \quad \text{as } n \to \infty \}
$$

belongs to $\mathfrak{M} \times \mathcal{F}$. Put

$$
\Omega_{\gamma} = \{ \omega : (\gamma, \omega) \in \mathcal{W} \}, \quad \mathcal{M}^{\omega} = \{ \gamma : (\gamma, \omega) \in \mathcal{W} \}
$$

and $P = P_a^H$. By Theorem 1.2, $P(\Omega_\gamma) = 1$ and, by Fubini's theorem,

$$
\int_{\Omega} M_k^{\mu}(\mathcal{M}^{\omega}) P(d\omega) = \int_{\mathfrak{M}} P(\Omega_{\gamma}) M_k^{\mu}(d\gamma) = 1.
$$

Hence the measure P is concentrated on each of sets ${M_k^{\mu}(\mathcal{M}^{\omega})=1}$ and therefore it is concentrated on their intersection. Since $P(\Omega) = 1$, this intersection is not empty.□

Appendix

We need the following result

Theorem A.1. Suppose that $Q(x, dy)$ is a kernel from a measurable space (X, \mathcal{A}_X) to a Luzin measurable space (Y, \mathcal{A}_Y) and that \mathcal{A}_Y is countable generated. Let *P* be a finite measure on (Y, \mathcal{A}_Y) . If $Q(x, \cdot) \prec P(\cdot)$ ¹² for all *x*, then there exists a $A_X \times A_Y$ -measurable version of the Radon-Nikodym derivative $\frac{Q(x,dy)}{P(dy)}$.

Proof. 1 \degree . First, we note that, if a σ -algebra A is generated by the union of σ algebras $A_1 \subset A_2 \cdots \subset A_n \ldots$ if $\rho(y) = \frac{Q(dy)}{P(dy)}$, then the conditional mathematical expectation $\rho_n = P\{\rho | \mathcal{A}_n\}$ is equal to $\frac{Q_n(dx)}{P_n(dx)}$ where P_n and Q_n are the restrictions of *P* and *Q* to A_n . Indeed, for every $A \in \mathcal{A}_n$, $\int_A \rho dP = Q(A) = \int_A \rho_n dP$. Therefore $\rho_n \to \rho$ off a set $C \in \mathcal{A}$ such that $P(C) = 0$. A version of $\frac{Q(dx)}{P(dx)}$ can be defined as $\lim_{n \to \infty} \rho_n$ off *C* and a constant on *C*.

2°. If a σ -algebra A in Y is countably generated, then it is generated by a sequence of finite partitions of *Y* into disjoint sets. Moreover, we can choose this partitions to generate a monotone increasing sequence of σ -algebras \mathcal{A}_n .

3°. If A is generated by a partition $Y = Y_1 \cup \cdots \cup Y_n$ and if $Q \prec P$, then

$$
\frac{Q(dy)}{P(dy)} = \frac{Q(Y_k)}{P(Y_k)} \quad \text{on } Y_k.
$$

4°. It is suffiient to prove our theorem for the case $Q(x, Y) = 1$ for all x. We apply 1° and 2° to the σ -algebra \mathcal{A}_Y . By 3° , ρ_n are $\mathcal{A}_X \times \mathcal{A}_Y$ -measurable and an $\mathcal{A}_X \times \mathcal{A}_Y$ -measurable version of $\frac{Q(x,dy)}{P(dy)}$ can be defined as in 1[°]. \Box

Acknowledgements

The proof of Theorem A.1 was suggested by D.W.Stroock. It is more natural and much simpler than my original proof based on theorems of Lebesgue-Vitaly by De Possel. I am indebted to Dan Stroock for this suggestion and for other remarks that contributed to an improvement of the presentation.

References

- [Dyn64] E. B. Dynkin, *Martin boundary and non-negative solutions of a boundary value problem with oblique derivative*, Uspekhi Mat. Nauk **5(119)** (1964), 3–50, English translation in Russian Mathematical Surveys, 19:5(1964),1–48.
- [Dyn66] , *Brownian motion in certain symmetric spaces and non-negative eigenfunctions of the Laplace-Beltrami operator*, Izv. Acad. Nauk SSSR **30:2** (1966), 455–478, English translation in Amer. Math. Soc. Transl., Series 2, 72(1968), 203–228.

[Dyn78] , *Sufficient statistics and extreme points*, Ann. Probab. **6** (1978), 705–730.

- [Dyn02] , *Diffusions, Superdiffusions and Partial Differential Equations*, University Lecture Series, 34. Amer. Math. Soc., Providence, R.I., 2002.
- [Dyn04a] , *Harmonic functions and exit boundary of superdiffusion*, J. Funct. Anal. **206** (2004), 33–68.

¹²We write $Q \prec P$ if $P(A) = 0$ implies $Q(A) = 0$.

- [Dyn04b] , *Superdiffusions and Positive Solutions of Nonlinear Partial Differential Equations* (2004).
- [DY79] E. B. Dynkin and A. A. Yushkevich, Controlled Markov Processes, Springer, Belin-Heidelberg-New York, 1979.

Department of Mathematics, Cornell University, Ithaca, NY 14853 *E-mail address*: ebd1@cornell.edu