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TWO GENERALIZATIONS OF JACOBI’S DERIVATIVE
FORMULA

Samuel Grushevsky and Riccardo Salvati Manni

Abstract. In this paper we generalize Jacobi’s derivative formula, considered
as an identity for theta functions with characteristics and their derivatives, to
higher genus/dimension. By applying the methods developed in our previous pa-
per [GSM04], several generalizations to Siegel modular forms are obtained. These
generalizations are identities satisfied by theta functions with characteristics and
their derivatives at zero. Equating all the coefficients of the Fourier expansion of
these relations to zero yields non-trivial combinatorial identities.

1. Definitions and notations

We denote by Hg the Siegel upper half-space — the space of symmetric com-
plex g × g matrices with positive definite imaginary part. For ε, δ ∈ (Z/2Z)g,
thought of as vectors of zeros and ones, τ ∈ Hg and z ∈ C

g, the theta function
with characteristic [ε, δ] is

θ

[
ε
δ

]
(τ, z) :=

∑
m∈Zg

expπi

[
t(m+

ε

2
)τ(m+

ε

2
) + 2 t(m+

ε

2
)(z +

δ

2
)
]
.

A characteristic [ε, δ] is called even or odd depending on whether it is even or odd
as a function of z, which corresponds to the scalar product ε · δ ∈ Z/2Z being
zero or one, respectively. The number of even (resp. odd) theta characteristics
is 2g−1(2g + 1) (resp. 2g−1(2g − 1)). For ε ∈ (Z/2Z)g the second order theta
function with characteristic ε is

Θ[ε](τ, z) := θ

[
ε
0

]
(2τ, 2z).

A theta constant is the evaluation at z = 0 of a theta function. We drop the
argument z = 0 in the notations for theta constants. Obviously all odd theta
constants vanish identically, and thus there are 2g−1(2g + 1) non-trivial theta
constants with characteristics, and 2g theta constants of the second order.

A triplet of characteristics [ε1, δ1], [ε2, δ2], [ε3, δ3] is called azygetic if

(−1)ε1·δ1+ε2·δ2+ε3·δ3+(ε1+ε2+ε3)·(δ1+δ2+δ3) = −1.
Received by the editors December 28, 2003.
First author partially supported by NSF Mathematical Sciences Postdoctoral Research

Fellowship.

921



922 SAMUEL GRUSHEVSKY AND RICCARDO SALVATI MANNI

A sequence of 2g + 2 characteristics [ε1, δ1], . . . , [ε2g+2, δ2g+2] is called a special
fundamental system if the first g characteristics are odd, the remaining are even
and any triple of characteristics in it is azygetic.

In the genus 1 case one of the main identities for theta functions is Jacobi’s
derivative formula:

d
dz

θ

[
1
1

]
(τ, z)|z=0 = −πθ

[
0
0

]
(τ)θ

[
1
0

]
(τ)θ

[
0
1

]
(τ).(1)

There is a long history of possible generalizations of this formula to higher genus.
We consider g odd characteristics [ε1, δ1], . . . , [εg, δg], and define their jacobian
determinant to be

D([ε1, δ1], . . . [εg, δg])(τ) :=

π−ggrad θ

[
ε1

δ1

]
∧ grad θ

[
ε2

δ2

]
∧ · · · ∧ grad θ

[
εg

δg

]
(τ, 0).(2)

Essentially the problem of generalizing Jacobi’s derivative formula consists in
expressing some linear combinations of jacobian determinants of g distinct odd
theta functions as polynomials or rational functions in theta constants. When
g = 2, such formulas are due to Rosenhain, Frobenius, Thomae, Fay, Igusa: we
refer to [Th870], [Fr885], [Fa79], [Ig80] and [SM83] for exact statements and a
precise description of the situation. We recall from these works that there is
a precise conjectural formula, which has been proven for g ≤ 5. Moreover, for
g ≤ 3 the equality

D([ε1, δ1], . . . , [εg, δg])(τ) = ±θ

[
εg+1

δg+1

]
(τ) . . . θ

[
ε2g+2

δ2g+2

]
(τ)(3)

holds if and only if the 2g + 2 characteristics appearing in it form a special
fundamental system.

Differential equations for genus 2 theta constants have also been studied by
Ohyama [Oh96] and Zudilin [Zu00]; Grant [Gr88] obtains a nice relation involv-
ing only one partial derivative.

Generalizations of Jacobi’s derivative formula in another direction, to higher
level theta constants in one variable, are derived and discussed in [FK01] —
generalizing these to the higher genus would also be very interesting.

A different generalization of Jacobi’s derivative formula involves higher order
derivatives of theta functions. For example it makes sense in genus 1 to ask for
the expression of

det




θ

[
0
0

]
(τ) θ

[
1
0

]
(τ)

d2

d2z θ

[
0
0

]
(τ, z)|z=0

d2

d2z θ

[
1
0

]
(τ, z)|z=0


(4)

= 4πidet




θ

[
0
0

]
(τ) θ

[
1
0

]
(τ)

d
dτ θ

[
0
0

]
(τ) d

dτ θ

[
1
0

]
(τ)
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as a polynomial in theta constants and first-order derivatives with respect to z
of theta functions, evaluated at z = 0 (the two determinants are equal by the
heat equation). We know in fact that

−Θ[1](2τ)2 d
dτ

(Θ[0](τ))/Θ[1](τ)) =
i

4π

(
d
dz

θ

[
1
1

]
(τ, z)|z=0

)2

(5)

or, equivalently,

det
(

Θ[0](τ) Θ[1](τ)
d
dτ Θ[0](τ)

d
dτ Θ[1](τ)

)
=

i

4π

(
d
dz

θ

[
1
1

]
(τ, z)|z=0

)2

.(6)

To prove this, one can invoke a modular argument, saying that both sides are
modular of the same weight, thus proportional, and the constant can be easily
computed. Of course such a proof is not very revealing, and thus obtaining
another proof would be desirable. As explained to us by H. Farkas, this identity
can also be deduced from theorem 5.3 in chapter 2 of [FK01] by applying Jacobi’s
triple product identity, changing to the argument τ/2 and then verifying the
resulting identity combinatorially for each coefficient of the Fourier series.

In this paper we shall generalize both the identities (5) and (6) to higher
genus. It would be interesting to understand the combinatorial meaning of these
generalizations similarly to the one-variable identities above or obtain alternative
combinatorial proofs, but these questions lie beyond the scope of the current
work.

The main tool will be a consequence of Riemann’s addition theorem relating
the first z-derivatives of odd theta functions with characteristics to the second
z-derivatives of second order theta functions. This has also been the main tool
in our paper [GSM04], where we showed that generically a principally polarized
abelian variety is uniquely determined by the gradients of odd theta functions
at z = 0.

Remark 1. We note that the classical generalization of Jacobi’s derivative for-
mula can be given an interpretation in terms of theta series with harmonic
polynomial coefficients. In fact monomials of degree g+2 in the theta constants
are theta series relative to the quadratic form 4 · 1g+2 and harmonic polynomial
“1”. The jacobian determinants, on the other hand, are theta series relative to
the quadratic form 4 · 1g and harmonic polynomial “det”, [Ig83].

This is the simplest pair of theta series with harmonic polynomial coefficients.
Our generalizations can also be interpreted in this way. For example in genus
one, while, as we wrote, in the first two cases the harmonic polynomials are 1
and x, in our case it is a polynomial in two variables: x2 − y2.

As a further consequence of our formulas, we shall give a characterization of
the locus of reducible principally polarized abelian variety in terms of vanishing
of certain derivatives of odd theta functions.
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2. The symplectic group action

Let Γg := Sp(2g,Z) be the integral symplectic group; it acts on Hg by

M · τ := (Aτ +B)(Cτ +D)−1,

where M =
(
A B
C D

)
∈ Γg. A period matrix τ is called reducible if there exists

M ∈ Γg such that

M · τ =
(
τ1 0
0 τ2

)
, τi ∈ Hgi

, g1 + g2 = g;

otherwise we say that τ is irreducible.
We define the level subgroups of the symplectic group to be

Γg(n) :=
{
M =

(
A B
C D

)
∈ Γg |M ≡

(
1 0
0 1

)
mod n

}

Γg(n, 2n) :=
{
M ∈ Γg(n) |diag(AtB) ≡ diag(CtD) ≡ 0 mod 2n

}
.

A function F : Hg → C is called a modular form of weight k with respect to
Γ ⊂ Γg if

F (M · τ) = det(Cτ +D)kF (τ), ∀M ∈ Γ, ∀τ ∈ Hg

The theta functions transform under the action of Γg as follows:

θ

[
M

(
ε
δ

)]
(M · τ, t(Cτ +D)−1z)

= φ(ε, δ, M, τ, z) det(Cτ +D)
1
2 θ

[
ε
δ

]
(τ, z),

where

M

(
ε
δ

)
:=

(
D −C
−B A

) (
ε
δ

)
+

(
diag(C tD)
diag(A tB)

)

taken modulo 2, and φ(ε, δ, M, τ, z) is some complicated explicit function. For
more details, we refer to [Ig72] and [RF74].

Theta constants with characteristics are modular forms of weight 1/2 with
respect to Γg(4, 8). In this case φ(ε, δ,M) := φ(ε, δ,M, τ, 0) is an eighth root of
unity that does not depend on τ .

Differentiating the theta transformation law above with respect to some zi

and then evaluating at z = 0, we see that

∂

∂zi
θ

[
M

(
ε
δ

)]
(M · τ, z)|z=0

= φ(ε, δ,M) det(Cτ +D)1/2
∑

j

(Cτ +D)ij
∂

∂zj
θ

[
ε
δ

]
(τ, z)|z=0.
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Denoting by grad θ

[
ε
δ

]
(τ) the gradient of the theta function with respect to

z1, z2, . . . , zg at z = 0, the above formula becomes

grad θ

[
M

(
ε
δ

)]
(M · τ)=φ(ε, δ,M) det(Cτ +D)

1
2 (Cτ +D)grad θ

[
ε
δ

]
(τ).

As a consequence, the jacobian determinant D([ε1, δ1], . . . [εg, δg])(τ) is a mod-
ular form of weight 1

2g + 1 with respect to Γg(4, 8) (see [Ig80] and [SM83]).

3. Some multilinear algebra

For our purposes we need some results from linear algebra, which we recall
and prove for the sake of completeness. We are grateful to C. De Concini, A.
Maffei, D. Zagier and one of the referees for useful suggestions about these topics.

To any A ∈ Matg×g(C) we associate the (g − 1) × (g − 1) matrix Ã whose
entries are the determinants of 2 × 2 minors of A obtained taking the first line
and the first column and letting the other row and column vary, i.e.

Ãi j := detA1 j
1 i , 2 ≤ i, j ≤ g.

We observe that decomposing the matrix A in blocks

A =
(
a11

tz
w B

)
,

with B a (g − 1)× (g − 1) matrix, and z, w ∈ C
g−1, we have

Ãi j := det(a11B − wtz)

With these notations we have

Lemma 2.

ag−2
1 1 detA = det Ã(7)

Proof. It is trivial when a1 1 = 0 and it is an immediate consequence of

A =
(

1 0
w/a11

1
a11

I

) (
a11

tz′

0 Ã

)

when a1 1 �= 0

We denote N := g(g+1)/2 and for any v ∈ C
g we denote by v2 its symmetric

tensor square. Then the following is true

Lemma 3. Let v1, . . . , vN ∈ C
g. Then

(N !)v2
1 ∧ v2

2 ∧ · · · ∧ v2
N =

∑
s∈SN

sign(s)(vs(1) ∧ vs(2) ∧ · · · ∧ vs(g))·

(vs(1) ∧ vs(g+1) ∧ vs(g+2) ∧ · · · ∧ vs(2g−1)) · (vs(2) ∧ vs(g+1) ∧ vs(2g) ∧ · · · ∧ vs(3g−3))

(vs(3) ∧ vs(g+2) ∧ vs(2g) ∧ · · · ∧ vs(4g−6)) . . . (vs(g) ∧ vs(2g−1) ∧ vs(3g−3) ∧ · · · ∧ vs(N))
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Proof. Since the LHS is SL(g,C) invariant, it can be expressed as a polyno-
mial in determinants of g × g minors of the g × N matrix with columns being
v’s. Moreover, this polynomial must be homogeneous of degree g + 1 in these
determinants, each vi has to appear in it exactly twice, and it has to be skew-
symmetric in v’s. For this reason first we sum over all possible permutations
with the signs. We further observe that if the same two vectors appear in two
different determinants, then the expression vanishes. Thus the expression has
to be a sum of monomials each of degree g + 1 in the determinants, such that
each v appears exactly twice, and no pair of v’s appears twice in two different
determinants. Thus the expression is forced to be exactly that of the statement,
up to a multiplicative constant, which is easily computed.

4. θ’s and Θ’s

A special case of Riemann’s bilinear addition theorem for theta functions (see
[Ig72],[RF74],[Mu84]) is

Θ[α](τ, z)Θ[α+ ε](τ, 0) =
1
2g

∑
σ∈(Z/2Z)g

(−1)α·σθ
[
ε
σ

]
(τ, z)θ

[
ε
σ

]
(τ, z)(8)

which is valid for all τ and z. Taking a sum of these with different signs, we get,
for any δ ∈ (Z/2Z)g ∑

α∈(Z/2Z)g

(−1)α·δΘ[α](τ, z)Θ[α+ ε](τ, 0) =

1
2g

∑
α, σ∈(Z/2Z)g

(−1)α·(σ+δ)θ

[
ε
σ

]
(τ, z)θ

[
ε
σ

]
(τ, z) = θ

[
ε
δ

]
(τ, z)θ

[
ε
δ

]
(τ, z).

(9)

We assume that the characteristic [ε, δ] is odd, differentiate this relation with
respect to zi and zj , and then evaluate at z = 0. Denoting by Cε δ(τ) the g × g
symmetric matrix with entries

Cε δ, ij(τ) := 2∂ziθ

[
ε
δ

]
(τ, 0)∂zjθ

[
ε
δ

]
(τ, 0),

and by Aε δ(τ) — the g × g symmetric matrix with entries

Aε δ, ij(τ) := (∂zi
∂zj

Θ[δ](τ, 0))Θ[ε](τ, 0)− (∂zi
∂zj

Θ[ε](τ, 0))Θ[δ](τ, 0),

we thus have (see [GSM04]) — notice that Cε δ = 0 if [ε, δ] is even

Lemma 4.

Cε δ(τ) =
1
2

∑
α∈(Z/2Z)g

(−1)α·δAε+α α(τ)(10)

and the “inverse”

Lemma 5.

Aε+α α(τ) =
1

2g−1

∑
β∈(Z/2Z)g

(−1)α·βCε β(τ).(11)
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We remark also that

Cε δ(τ) = 2grad θ

[
ε
δ

]
(τ) tgrad θ

[
ε
δ

]
(τ).(12)

5. Generalized Jacobi’s derivative formulas

To generalize the first result of the introduction, we introduce the matrix-
valued differential operator

D :=




∂
∂τ11

1
2

∂
∂τ12

. . . 1
2

∂
∂τ1g

1
2

∂
∂τ21

∂
∂τ22

. . . 1
2

∂
∂τ2g

. . . . . . . . . . . .
1
2

∂
∂τg1

. . . . . . ∂
∂τgg


 .

Then we have

Theorem 6 (First generalization). For any ε �= δ the following holds:

cΘ[δ]2g det(D(Θ[ε]/Θ[δ])
=

∑
{αi1 ,...,αig |[ε+δ,αij

] odd}
(−1)δ·(αi1+···+αig )D([ε+ δ, αi1 ], . . . [ε+ δ, αig

])2(13)

for some computable constant c.

Proof. For any characteristics ε, δ we have by definition

Θ[δ]2D(Θ[ε]/Θ[δ])(τ) = 4πiAεδ(τ).

Thus
Θ[δ]2g det (D(Θ[ε]/Θ[δ]))(τ) = (4πi)g det(Aεδ)(τ).

Now, using the result of lemma 2, we get

detAεδ(τ) = det


 1
2g−1

∑
{α|[ε+δ, α] odd}

(−1)δ·αCε+δ, α)(τ)


 =

det


 1
2g−1

∑
{α|[ε+δ, α] odd}

(−1)δ·α grad θ

[
ε+ δ
α

]
(τ)t grad θ

[
ε+ δ
α

]
(τ)


 .

When we expand this determinant, each summand will be of the type

sign(µ)
(
(−1)δ·α1∂µ(1)θ

[
ε+ δ
α1

]
(τ) · · · (−1)δ·αg∂µ(g)θ

[
ε+ δ
αg

]
(τ)

)

sign(σ)
(
∂σ(1)θ

[
ε+ δ
α1

]
(τ) · · · ∂σ(g)θ

[
ε+ δ
αn

]
(τ)

)

for some permutations σ and µ. Taking the sum of these for all possible permu-
tations σ and µ gives exactly the square of the jacobian determinant, so that we
end up with(

π2

2g−2

)g ∑
αi1 ,...,αig∈(Z/2)g

(−1)δ·(αi1+···+αig )D([ε+ δ, αi1 ], . . . [ε+ δ, αig ])
2,
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proving the theorem.

At this point, we observe that our relations are not trivial. In fact each term
appearing in the RHS is not identically zero, [SM83]. We remark that the set of
characteristics appearing in the jacobian determinant above is syzygetic, while
in all the other generalizations of Jacobi’s derivative formula only azygetic sets
appear, cf. [Ig80].

If we would like to have relations involving the derivatives of the second order
theta constants with respect to τij , then since the matrix Cε δ(τ) has rank 1, we
have the following

Proposition 7. If g ≥ 2, then

det


 ∑

α∈(Z/2Z)g

(−1)α·δAε+α α(τ)


 = 0.(14)

For the LHS of (13), we have the following non-vanishing:

Theorem 8. For all possible pairs ε �= δ ∈ (Z/2Z)g the expression

Θ[δ]2g det (D(Θ[ε]/Θ[δ]))

is not identically zero in τ .

Proof. We shall prove a slightly more general result: that for any pair of distinct
even characteristics [ε, α] and [δ, β] the expression

θ

[
δ
β

]2g

det
(
D

(
θ

[
ε
α

]
/θ

[
δ
β

]))
(τ)

is not identically zero.
Indeed, we know that the symplectic group Γg acts doubly transitively on the

set of even characteristics, and we have the following transformation formula

D
(
θ

[
M

(
ε
α

)]
/ θ

[
M

(
δ
β

)])
(M · τ)

= φ(ε, α, δ, β,M)(Cτ +D)tD
(
θ

[
ε
α

]
/θ

[
δ
β

])
(τ)(Cτ +D).

with φ(ε, α, δ, β,M) an eighth root of unity.
We learnt from [BZ03] that for some specific [ε, 0] and [δ, 0] we have

detD
(
θ

[
ε
0

]
/θ

[
δ
0

])
not identically zero; since all such expressions are permuted

by the symplectic group action, they are all not identically zero.
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For the second generalization of Jacobi’s derivative formula, for any set of
N + 1 := 1

2g(g + 1) + 1 characteristics ε0, ε1, . . . , εN we introduce the matrix

M(ε0, ε1, . . . , εN )(τ) :=




Θ[ε0] . . . Θ[εN ]
∂

∂τ11
Θ[ε0] . . . ∂

∂τ11
Θ[εN ]

∂
∂τ12

Θ[ε0] . . . ∂
∂τ12

Θ[εN ]
. . . . . . . . .

∂
∂τgg

Θ[ε0] . . . ∂
∂τgg

Θ[εN ]




It is a well-known fact (see [Sa83]) that detM(ε0, ε1, . . . , εN )(τ) is a modular
form of weight 1

4 (g+2)(g+3) relatively to Γg(2, 4). Moreover, it is not identically
zero if and only if the theta constants

Θ[ε0],Θ[ε1], . . . ,Θ[εN ]

are algebraically independent. Indeed, if these theta constants are algebraically
independent, they define a rational map from the modular variety to the pro-
jective space, the image of which is not contained in any closed subset. Thus
the image is dense, and so there must exist an open subset in the modular vari-
ety where the map is locally invertible, and hence the rank of its differential is
maximal. We set

δk := ε0 + εk

and let Cε β(τ) be the vector in C
N with entries Cε β, ij(τ) (before we thought

of C as a matrix, but now we write down all the matrix elements in a single
vector). Using the results of Lemmata 4, 2 and 1, we get the following

Proposition 9 (Second generalization). For some computable constant c

cΘ[ε0]N−1 detM(ε0, ε1, . . . , εN )(τ)

=
∑

β1,... ,βN∈(Z/2Z)g

(−1)εkβk det(Cδ1 β1 ∧ Cδ2 β2 ∧ · · · ∧ CδN βN
)

By lemma 2 the RHS can be expressed as a homogeneous polynomial of degree
g + 1 in jacobian determinants.

Remark 10. Recalling the definition of theta functions, we can expand all of
the above identities in Fourier series in τ or equivalently in power series in
qij := exp τij . The coefficients of these expansions will then be some rather
complicated but quite natural combinatorial quantities in several variables, and
the equality of the RHS and LHS of any of the above would then yield a non-
trivial multidimensional combinatorial identity, which it would be interesting to
understand and prove combinatorially.

6. An application in genus 2

We will now work out in detail the situation in the case of genus 2. Indeed
let us write down (13) for ε = [00] and δ = [10]:

Θ[10]4 det(D(Θ[00]/Θ[10]) = cD([10, 10], [10, 11])2,(15)
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with c a known constant.
Using lemma 4 to express the RHS in terms of theta constants of the second

order and their derivatives, we get (we denote ∂ij := ∂τij to simplify notations)

(Θ[00]∂11Θ[10]−Θ[10]∂11Θ[00]) (Θ[00]∂22Θ[10]−Θ[10]∂22Θ[00])

− (Θ[00]∂12Θ[10]−Θ[10]∂12Θ[00])
2

+(Θ[01]∂11Θ[11]−Θ[11]∂11Θ[01]) (Θ[01]∂22Θ[11]−Θ[11]∂22Θ[01])

− (Θ[01]∂12Θ[11]−Θ[11]∂12Θ[01])
2 = 0

Clearly we get the same equation if we chose ε = [01] and δ = [11]. Thus in all
we get three different equations.

In [BZ03] it is shown that in genus 2 there are 2 · 22 + 2 = 10 algebraically
independent quantities among 4 theta constants of the second order and their
4 · 3 = 12 derivatives. Thus there are 6 non-trivial algebraic relations among
theta constants and their first-order derivatives. So far we have obtained three
such equations, and three more can be obtained by writing down formula (14).

In [BZ03] some other 6 independent relations are given. We shall prove that
they are all consequences of (13) and (3).

Indeed, for genus two formula (3) reads

D([10, 10], [10, 11])2 =
(
θ

[
11
00

]
θ

[
11
11

]
θ

[
01
00

]
θ

[
01
10

])2

.

Applying (9) to rewrite the RHS in terms of theta constants of the second order,
we finally see that

Θ[10]4 det(D(Θ[00]/Θ[10])
is a polynomial in the theta constants of the second order. This equation is up
to a rational function equal to one of the equations in [BZ03]. From the other
choices of characteristics ε and δ we get the other 5 equations. We observe that
these 5 equations can also be obtained from the first one by the action of Γ2. In
this spirit we remark that in genus 1, we have four variables and the relation is
an immediate consequence of (1) and (6). These relations can also be obtained
considering the determinant of (14).

This method allows us to give a conjectural description of the situation in the
genus 3 case. By the results of [BZ03] we know that among 56 variables (all Θ[ε]
and their derivatives ∂ijΘ[ε]) there are 21 algebraically independent ones. Thus
there are 35 algebraic relations. We know that there is a unique polynomial
relation among the Θ[ε], of degree 16, cf. [vGvG86]; let us denote it by R(τ).
Thus we have

R(τ) = 0, ∂ijR(τ) = 0

and other 28 relations obtained by applying (14), since in genus 3 there are
exactly 28 odd characteristics. So in total we have 35 relations that we conjecture
to be algebraically independent.
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7. Characterization of the reducible locus

We finish the paper by giving a characterization of the locus of reducible
abelian varieties. Different characterizations of the reducible locus are known:
in [EL97] it is characterized in terms of the dimension of the singular locus of the
theta divisor, in [Sa83] — in terms of the non-maximality of the rank of matrix
P (τ) with rows (Θ[ε], ∂

∂τij
Θ[ε]), and columns corresponding to all ε ∈ (Z/2Z)g,

in [SM94] — in terms of the vanishing of certain theta constants. Here we use
the vanishing of certain first derivatives of theta functions evaluated at zero.

Proposition 11. A ppav with a period matrix τ is reducible if and only if there
exist some M ∈ Γg and some k < g such that if we write any odd characteristic
[ε, δ] as [ε1 ε2, δ1 δ2], where [ε1, δ1] is a k-dimensional characteristic, and [ε2, δ2]
is (g − k)-dimensional, then

∂ziθ

[
ε
δ

]
(M · τ, z)|z=0 = 0

for all i ≤ k for [ε1, δ1] even, and for all i > k for [ε1, δ1] odd.

Proof. Suppose the period matrix M ·τ splits as M ·τ =
(
τ1 0
0 τ2

)
, with τ1 ∈ Hk

and τ2 ∈ Hg−k, so that the theta functions with characteristics factor as follows:

θ

[
ε
δ

]
(M · τ, z) = θ

[
ε1

δ1

]
(τ1, z1) · θ

[
ε2

δ2

]
(τ2, z2).

The vanishing of the derivatives in question is immediate for M · τ by differen-
tiating and evaluating at z = 0; thus the “only if” part is proven. For the “if”
part, assume the vanishing of derivatives as stated. Then according to (11) we
have Cεδ,ij = 0 and consequently Aεδ,ij = 0 for 1 ≤ i ≤ k < j ≤ g and all
odd [ε, δ]. Thus the matrix P (τ) does not have maximal rank, and thus, by the
results of [Sa83], it corresponds to a reducible abelian variety.
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