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A QUANTITATIVE SHARPENING OF MORIWAKI’S
ARITHMETIC BOGOMOLOV INEQUALITY

N. Naumann

Abstract. A. Moriwaki proved the following arithmetic analogue of the Bogo-

molov unstability theorem. If a torsion-free hermitian coherent sheaf on an arith-

metic surface has negative discriminant then it admits an arithmetically destabil-
ising subsheaf. In the geometric situation it is known that such a subsheaf can be

found subject to an additional numerical constraint and here we prove the arith-
metic analogue. We then apply this result to slightly simplify a part of C. Soulé’s

proof of a vanishing theorem on arithmetic surfaces.

1. Introduction and statement of result

LetK be a number field with ring of integersOK andX/Spec (OK) an arithmetic
surface, i.e. a regular, integral, purely two-dimensional scheme, proper and
flat over Spec (OK) and with smooth and geometrically connected generic fibre.
Attached to a hermitian coherent sheaf on X are the usual characteristic classes
with values in the arithmetic Chow-groups ĈH

i
(X) (cf. [GS1], 2.5), and in

particular the discriminant of E

∆(E) := (1− r)ĉ1(E)2 + 2rĉ2(E) ∈ ĈH
2
(X)

where r := rk(E). The arithmetic degree map

d̂eg : ĈH
2
(X)R −→ R

is an isomorphism [GS2] and we will use the same symbol to to denote an element

in ĈH
2
(X)R and its arithmetic degree in R, see [GS2], 1.1 for the definition of

arithmetic Chow-groups with real coefficients ĈH
∗
(X)R. Following [Mo2] we

define the positive cone of X to be

Ĉ++(X) := {x ∈ ĈH
1
(X)R |x2 > 0 and degK(x) > 0} .

Given a torsion-free hermitian coherent sheaf E of rank r ≥ 1 on X and a
subsheaf E′ ⊆ E we endow E′ with the metric induced from E and consider the
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difference of slopes

ξE
′
,E :=

ĉ1(E
′
)

rk(E′)
− ĉ1(E)

r
∈ ĈH

1
(X)R.

Recall that a subsheaf E′ ⊆ E is saturated if the quotient E/E′ is torsion-free.
Our main result is the following.

Theorem 1. Let E be a torsion-free hermitian coherent sheaf of rank r ≥ 2 on
the arithmetic surface X, satisfying

∆(E) < 0 .

Then there is a non-zero saturated subsheaf E
′ ⊆ E such that ξE

′
,E ∈ Ĉ++(X)

and

(1) ξ2
E

′
,E

≥ −∆
r2(r − 1) .

Remark 2. The existence of an E
′ ⊆ E with ξE

′
,E ∈ Ĉ++(X) is the main result

of [Mo2] and means that E
′ ⊆ E is arithmetically destabilising with respect to any

polarisation of X, c.f. loc. cit. for more details on this. The new contribution
here is the inequality (1) which is the exact arithmetic analogue of a known
geometric result, c.f. for example [HL], Theorem 7.3.4.

Remark 3. A special case of Theorem 1 appears in disguised form in the proof
of [So], Theorem 2: Given a sufficiently positive hermitian line bundle L on
the arithmetic surface X and some non-torsion element e ∈ H1(X,L−1) 

Ext1(L,OX), C. Soulé establishes a lower bound for

||e||2 := sup σ:K↪→C ||σ(e)||2L2

by considering the extension determined by e

E : 0 −→ OX −→ E −→ L −→ 0

and suitably metrised as to have ĉ1(E) = L and 2ĉ2(E) =
∑

σ ||σ(e)||2L2 , hence
∆(E) = −L

2
+2

∑
σ ||σ(e)||2L2 (where we write L = ĉ1(L) following the notation

of loc. cit.).
If EQ is semi-stable the arithmetic Bogomolov inequality concludes the proof.
Otherwise, the main point is to show the existence of of an arithmetic divisor D
satisfying

degK(D) ≤ degK(L)/2 and(2)

2(L−D)D ≤ [K : Q] · ||e||2,(3)
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c.f. (28) and (32) of loc. cit. where these inequalities are established by some
direct argument. We wish to point out that the existence of some D satisfying
(2) and (3) is a special case of Theorem 1. In fact, let E

′ ⊆ E be as in Theorem
1 and define D := L− ĉ1(E′). We then compute

ξE
′
,E =

L

2
−D

and ξE
′
,E ∈ Ĉ++(X) implies (2). Furthermore, the inequality (1) in the present

case reads

ξ2
E

′
,E
=

L
2

4
+D

2 − L D ≥ −∆
4

=
L

2

4
− 1
2

∑
σ

||σ(e)||2L2 , i.e.

2(L−D)D ≤
∑

σ

||σ(e)||2L2 ,

hence the trivial estimate [K : Q] · ||e||2 ≥ ∑
σ ||σ(e)||2L2 gives (3).

I would like to thank K. Künnemann for useful conversations about a preliminary
draft of the present note.

2. Proof of Theorem 1

We collect some lemmas first. We call a short exact sequence

E : 0 −→ E
′ −→ E −→ E

′′ −→ 0

of hermitian coherent sheaves on X isometric if the metrics on E′ and E′′ are
induced from the one on E. This implies that ĉ1(E) = ĉ1(E

′
) + ĉ1(E

′′
) (i.e.

c̃1(E) = 0). We also have
ĉ2(E) = ĉ2(E

′ ⊕ E
′′
)− a(c̃2(E)) in ĈH

2
(X) ,

where
a : Ã1,1(XR) −→ ĈH

2
(X)

is the usual map [SABK], chapter III.

Lemma 4. If
E : 0 −→ E

′ −→ E −→ E
′′ −→ 0

is an isometric short exact sequence of hermitian coherent sheaves on X with
ranks r′, r, r′′ ≥ 1 and discriminants ∆′,∆,∆′′, then

∆′

r′
+
∆′′

r′′
− ∆

r
=

rr′

r′′
ξ2
E

′
,E
+ 2a(c̃2(E)) in ĈH

2
(X)R .
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Proof. We omit the computation using the formulas for ĉi(E) recalled above
which shows that the left hand side of the stated equality equals

ĉ1(E)2
(
r − 1
r

+
1− r′

r′

)
+ ĉ1(E

′′
)2

(
r − 1
r

+
1− r′′

r′′

)
+

+ĉ1(E
′
)ĉ1(E

′′
)
(
2(r − 1)

r
− 2

)
+ 2a(c̃(E)).

Similarly one writes ξ2
E

′
,E
as a rational linear combination of ĉ1(E)2, ĉ1(E

′′
)2

and ĉ1(E
′
)ĉ1(E

′′
) and comparing the results, the stated formula drops out. �

Lemma 5. For E as in Lemma 4 and G
′′ ⊆ E

′′
a saturated subsheaf of rank

s ≥ 1 carrying the induced metric, put

G := ker(E −→ E′′ −→ E′′/G′′) ⊆ E

with the induced metric. Then

ξG,E =
r′(r′′ − s)
(r′ + s)r′′

ξE
′
,E +

s

r′ + s
ξG

′′
,E

′′ in ĈH
1
(X)R .

Observe that the coefficients in the last expression are non-negative rational
numbers.

Proof. We have a commutative diagram with exact rows and columns

0 0

E/G

��

� �� E′′/G′′

��

E : 0 ��
E

′ �� E

��

��
E

′′ ��

��

0

0 �� H

�
��

�� G ��

��

G
′′

��

�� 0

0

��

0.

��

Here, we have endowed E/G,E′′/G′′ and H with the metrics induced from E,E
′′

and G, hence all rows and columns are isometric by definition. A minor point
to note is that with this choice of metrics the two indicated isomorphisms are
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isometric, indeed this only means that taking sub- (resp. quotient-)metrics is
transitive. One has

ξE
′
,E =

r′′ĉ1(E
′
)− r′ĉ1(E

′′
)

r′r
and analogously for any isometric exact sequence in place of E . Using this and the
diagram one writes both sides of the stated equality as a Q-linear combination
of ĉ1(E

′
), ĉ1(G

′′
) and ĉ1(E′′/G′′) to obtain the same result, namely

r′′ − s

(r′ + s)r
ĉ1(E

′
) +

r′′ − s

(r′ + s)r
ĉ1(G

′′
)− 1

r
ĉ1(E′′/G′′).

�

Finally, we will need the following observation about the intersection theory on
X where, for x ∈ Ĉ++(X), we write |x| := (x2)1/2 ∈ R+.

Lemma 6. The subset Ĉ++(X) ⊆ ĈH
1
(X)R is an open cone, i.e. x, y ∈

Ĉ++(X) and λ ∈ R+ implies that x+ y, λx ∈ Ĉ++(X). For x, y ∈ Ĉ++ we have
|x+ y| ≥ |x|+ |y|.

Proof. This is [Mo2], (1.1.2.2) except for the final assertion which is obvious

if x ∈ Ry and we can thus assume that V := Rx + Ry ⊆ ĈH
1
(X)R is two-

dimensional. We claim that the restriction of the intersection-pairing makes V a
real quadratic space of type (1,−1). As we have x ∈ V and x2 > 0 we only have

to exhibit some v ∈ V with v2 < 0. To achieve this let h ∈ ĈH
1
(X)R be the first

arithmetic Chern class of some sufficiently positive hermitian line bundle on X
such that the arithmetic Hodge index theorem holds for the Lefschetz operator
defined by h, c.f. [GS2], Theorem 2.1, ii). Then a := xh (resp. b := yh) are
non-zero real numbers for otherwise we would have x2 < 0 (resp. y2 < 0). Thus
v := x

a − y
b ∈ V satisfies v �= 0 and vh = 0 , hence v2 < 0.

Fix a basis e, f ∈ V with e2 = 1, f2 = −1 and write
x = αe+ βf and

y = γe+ δf.

To show that |x + y| ≥ |x| + |y| we can assume, changing both the signs of x
and y if necessary, that α > 0. We then claim that γ > 0. For otherwise there
would be λ1, λ2 ∈ R+ such that v := λ1x+ λ2y would have e- coordinate equal
to zero, hence v2 ≤ 0 contradicting the fact that either −v or v lies in Ĉ++(X)
(depending on whether or not we changed the signs of x and y above).
From x2 = α2 − β2, y2 = γ2 − δ2 > 0 we obtain α = |α| ≥ |β| and γ = |γ| ≥ |δ|
and then αγ ≥ |βδ| ≥ βδ, i.e.

(4) xy = αγ − βδ ≥ 0.
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To conclude, we use the following chain of equivalent statements

|x+ y| ≥ |x|+ |y| ⇔
(x+ y)2 − (|x|+ |y|)2 ≥ 0⇔

2xy − 2|x||y| ≥ 0⇔
xy ≥ |x||y| (4)⇔

(xy)2 ≥ |x|2|y|2 ⇔
(αγ − βδ)2 ≥ (α2 − β2)(γ2 − δ2)⇔

α2γ2 + β2δ2 − 2αβγδ ≥ α2γ2 − α2δ2 − β2γ2 + β2δ2 ⇔
2αβγδ ≤ α2δ2 + β2γ2 ⇔

0 ≤ (αδ − βγ)2.

�

Proof of Theorem 1. We first remark that for a torsion-free hermitian coherent
sheaf F of rank one on X we always have ∆(F ) ≥ 0. In fact,

F 
 L⊗ IZ

for some line-bundle L and IZ the ideal sheaf of some closed subscheme Z ⊆ X
of codimension 2. This becomes an isometry for the trivial metric on IZ and a
suitable metric on L (since IZ is trivial on the generic fibre of X). Then

∆(F ) = 2ĉ2(L ⊗ IZ) = 2ĉ2(IZ) = 2 length(Z) ≥ 0 .

By the main result of [Mo2], there is 0 �= E
′ ⊆ E saturated such that ξE

′
,E ∈

Ĉ++(X). We can assume that, as E′ varies through these subsheaves, the real
numbers ξ2

E
′
,E
remain bounded for otherwise there is nothing to prove. So we

can choose 0 �= E
′ ⊆ E saturated with ξE

′
,E ∈ Ĉ++(X) and ξ2

E
′
,E
maximal

subject to these conditions. Put E′′ := E/E′ and consider the isometric exact
sequence

E : 0 −→ E
′ −→ E −→ E

′′ −→ 0
with discriminants ∆′,∆,∆′′ and ranks r′, r, r′′. We claim that ∆′ ≥ 0. This is
clear in case r = 2 from the remark made at the beginning of the proof. In case
r ≥ 3 we assume that ∆′ < 0 and we let G ⊆ E

′
be a saturated subsheaf with

ξG,E
′ ∈ Ĉ++. Then G ⊆ E is saturated and using lemma 6 we get

|ξG,E | = |ξG,E
′ + ξE

′
,E | ≥ |ξG,E

′ |+ |ξE
′
,E | > |ξE

′
,E |

contradicting the maximality of |ξE
′
,E |. So we have indeed ∆′ ≥ 0. Assume

now, contrary to our assertion, that

(5)
∆
r

< −r(r − 1)ξ2
E

′
,E

.
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Then from Lemma 4, ∆′ ≥ 0, (5) and c̃2(E) ≤ 0 ([Mo1], 7.2) we get

∆′′

r′′
≤ ∆

r
+

rr′

r′′
ξ2
E

′
,E

<

(
−r(r − 1) + rr′

r′′

)
ξ2
E

′
,E

= −r2 r
′′ − 1
r′′

ξ2
E

′
,E

≤ 0 ,

hence ∆′′ < 0. By induction, there is 0 �= G
′′ ⊆ E

′′
saturated with ξG

′′
,E

′′ ∈
Ĉ++(X) and

(6) ξ2
G

′′
,E

′′ ≥ −∆′′

r′′2(r′′ − 1) >
r2

r′′2 ξ
2
E

′
,E

.

Clearly G := ker(E → E′′/G′′) ⊆ E is saturated and from Lemma 5, the
positivity of the coefficients appearing there and lemma 6 we get

|ξG,E | ≥ r′(r′′ − s)
(r′ + s)r′′

|ξE
′
,E |+

s

r′ + s
|ξG

′′
,E

′′ |
(6)
>

r′(r′′ − s)
(r′ + s)r′′

|ξE
′
,E |+

s

r′ + s

r

r′′
|ξE

′
,E |

=
(
r′(r′′ − s) + rs

r′′(r′ + s)

)
|ξE

′
,E | = |ξE

′
,E | .

This again contradicts the maximality of |ξE
′
,E | and concludes the proof. �
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