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LONGITUDINAL KAM-COCYCLES AND ACTION SPECTRA
OF MAGNETIC FLOWS

Nurlan S. Dairbekov and Gabriel P. Paternain

Abstract. Let M be a closed oriented surface and let Ω be a non-exact 2-form.
Suppose that the magnetic flow φ of the pair (g,Ω) is Anosov. We show that
the longitudinal KAM-cocycle of φ is a coboundary if and only if the Gaussian
curvature is constant and Ω is a constant multiple of the area form thus extending
the results in [12]. We also show infinitesimal rigidity of the action spectrum of
φ with respect to variations of Ω. Both results are obtained by showing that if
G : M → R is any smooth function and ω is any smooth 1-form on M such
that G(x) + ωx(v) integrates to zero along any closed orbit of φ, then G must be
identically zero and ω must be exact.

1. Introduction

Let M be a closed oriented surface endowed with a Riemannian metric g and
let Ω be a 2-form. The magnetic flow of the pair (g,Ω) is the flow φ on the unit
sphere bundle SM determined by the equation

Dγ̇

dt
= λ(γ) iγ̇,(1)

where i indicates rotation by π/2 according to the orientation of the surface and
λ is the smooth function on M uniquely determined by Ω = λΩa, where Ωa is
the area form of M . When Ω vanishes we recover the usual geodesic flow of the
surface. A curve γ : R →M that solves (1) will be called a magnetic geodesic.
In the present paper we shall study rigidity properties of Anosov magnetic

flows. The Anosov property means that T (SM) splits as T (SM) = E0⊕Eu⊕Es

in such a way that there are constants C > 0 and 0 < ρ < 1 < η such that E0

is spanned by the generating vector field of the flow, and for all t > 0 we have

‖dφ−t|Eu‖ ≤ C η−t and ‖dφt|Es‖ ≤ C ρt.
The subbundles are then invariant and Hölder continuous and have smooth in-
tegral manifolds, the stable and unstable manifolds, which define a continuous
foliation with smooth leaves.
To any Ck volume preserving Anosov flow ϕ on a closed 3-manifold N , P.

Foulon and B. Hasselblatt [4] associated its longitudinal KAM-cocycle. This is a
cocycle that measures the regularity of the subbundle Eu⊕Es The main theorem

Received by the editors January 12, 2005.

719



720 N.S. DAIRBEKOV AND G.P. PATERNAIN

in [4] asserts that Eu ⊕ Es is always Zygmund-regular and that the following
are equivalent:
1. Eu ⊕ Es is “little Zygmund”;
2. the longitudinal KAM-cocycle is a coboundary;
3. Eu ⊕ Es is Lipschitz;
4. Eu ⊕ Es is Ck−1;
5. ϕ is a suspension or contact flow.
(A continuous function f : U → R on an open set U ⊂ R is said to be

Zygmund-regular if |f(x + h) + f(x − h) − 2f(x)| = O(h) for all x in U . The
function is said to be “little Zygmund” if |f(x+ h) + f(x− h)− 2f(x)| = o(h).)
It is well known that for flows, a “choice of time” or equivalently, a choice of

speed at which orbits travel gets reflected on the regularity of the corresponding
strong stable and strong unstable distributions. The situation is different if
we look at the weak unstable and stable bundles E0 ⊕ Eu and E0 ⊕ Es. S.
Hurder and A. Katok proved [7] that the weak bundles are always differentiable
with Zygmund-regular derivative and there is a cocycle obstruction to higher
regularity given by the first nonlinear term in the Moser normal form (this
explains why Foulon and Hasselblatt used the terminology “longitudinal KAM-
cocycle”).
In [12], the second author showed that if Ω is non-exact, g has negative Gauss-

ian curvature K and λ is small enough in the C0 norm, then the longitudinal
KAM-cocycle of φ is a coboundary if and only if K and λ are constant. In
the present paper we would like to extend this result to all Anosov magnetic
flows, without restrictions on curvature or the size of λ. As shown in [1] the set
of Anosov magnetic flows can certainly go well beyond small perturbations of
Anosov geodesic flows.

Theorem A. Let M be a closed oriented surface endowed with a Riemannian
metric g and let Ω be an arbitrary 2-form. Suppose that the magnetic flow φ of
the pair (g,Ω) is Anosov. We have:
1. If Ω is exact, then the longitudinal KAM-cocycle of φ is a coboundary if

and only if Ω vanishes identically, i.e. φ is a geodesic flow;
2. If Ω is non-exact, then the longitudinal KAM-cocycle of φ is a coboundary if

and only if the Gaussian curvature is constant and Ω is a constant multiple
of the area form.

Item (1) was proved in [11] using Aubry-Mather theory, but it was stated
in a different form. The main result in [11] asserts that if Ω is exact and the
Anosov splitting is of class C1, then Ω must be zero (and this holds in any
dimension). The main result of Foulon and Hasselblatt tells us that, for surfaces,
the conditions of C1 Anosov splitting and longitudinal KAM-cocycle being a
coboundary are equivalent.
The proof of item (2) in [12] for negative K and small Ω was based on Fourier

analysis using the set up of V. Guillemin and D. Kazhdan in [5]. Our approach
here is based on establishing a Pestov identity for magnetic flows similar to the
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ones in [2, 3] for geodesic flows. Using this identity we will prove the following
result which has independent interest:

Theorem B. Let M be a closed oriented surface and Ω an arbitrary smooth
2-form. Suppose the magnetic flow φ of the pair (g,Ω) is Anosov and let Xφ be
the vector field generating φ. If G : M → R is any smooth function and ω is
any smooth 1-form on M such that there is a smooth function ϕ : SM → R for
which G(x) + ωx(v) = Xφ(ϕ), then G is identically zero and ω is exact.

Note that by the smooth Livšic theorem [8] saying that G(x)+ωx(v) = Xφ(ϕ)
is equivalent to saying that G(x) + ωx(v) has zero integral over every closed
magnetic geodesic. Theorem A follows from Theorem B using the same methods
as in [12], so we will not repeat the proof here. Instead we will consider a second
application of Theorem B.
Given any closed 2-form Ω, fix a constant c �= 0 such that the cohomology

class of cΩ is an integral class, i.e. [cΩ] ∈ H2(M,Z) = Z. Then there exists a
principal circle bundle Π : P → M with Euler class [cΩ]. The bundle admits
a connection 1-form α such that dα = −2πcΠ∗Ω. Recall that the holonomy
function is a map log holα : Z1(M) → R/Z, where Z1(M) is the space of 1-
cycles, such that for every 2-chain f : Σ→M we have

log holα(∂Σ) = −c
∫

Σ

f∗Ω mod 1.

Let γ be a closed magnetic geodesic and let )(γ) be its length. We define the
action of γ as:

A(γ) := )(γ) + c−1 log holα(γ) mod 1.

We call the set S ⊂ R/Z of values A(γ) as γ ranges over all closed magnetic
geodesics, the action spectrum of the magnetic flow. If all the closed orbits of
the magnetic flow φ are nondegenerate, then S is a countable set.
Suppose now that we vary the connection 1-form α. Let ατ be a smooth

1-parameter family of connections for τ ∈ (−ε, ε) with α0 = α Then we can
write ατ − α = Π∗βτ , where βτ are smooth 1-forms on M . The connection ατ
has curvature form −2πcΩ+ dβτ . If we let Ωτ = Ω− 1

2πcdβτ we get a magnetic
flow φτ and an action spectrum Sτ . If the magnetic flow φ is Anosov, then for
ε small enough φτ is Anosov for all τ ∈ (−ε, ε).
Theorem C. Let M be a closed oriented surface endowed with a Riemannian
metric g and let Ω be a 2-form. Suppose the magnetic flow of the pair (g,Ω) is
Anosov. If Sτ = S for all τ sufficiently small, then the deformation is trivial,
that is, ατ = α+Π∗dFτ and Ωτ = Ω, where Fτ are smooth functions on M .

Theorem C and the results of V. Guillemin and A. Uribe in [6] give a version
of infinitesimal spectral rigidity for magnetic flows. In order to describe this
rigidity we will assume that c = 1. This is really no restriction at all since
the magnetic flows of (g,Ω) and (c2 g, cΩ) are the same up to a constant time
change. For every positive integer m, let Lm be the Hermitian line bundle with
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connection over M associated with Π via the character eiθ �→ eimθ of S1. The
metric on M , together with the connection on Lm determine a Bochner-Laplace
operator acting on sections of Lm. For each m, let {νm,j : j = 1, 2, . . . } be the
spectrum of this operator. If we now vary the connection 1-form α as above we
obtain eigenvalues ντm,j .

Corollary. Let M be a closed oriented surface endowed with a Riemannian
metric g and let Ω be an integral 2-form. Suppose the magnetic flow of the pair
(g,Ω) is Anosov. If ντm,j is independent of τ for all m and j (i.e. the deformation
is isospectral), then the deformation is trivial, that is, ατ = α + Π∗dFτ and
Ωτ = Ω, where Fτ are smooth functions on M .

Indeed, let us consider the periodic distribution

Υ(s) =
∑
m,j

ϕ

(√
νm,j +m2 −m

√
2
)
eims

where ϕ is a Schwartz function on the real line. Theorem 6.9 in [6] asserts that the
singularities of Υ are included in the set of all s ∈ R for which s/2πmod1 ∈ S.
Moreover, each point of the action spectrum arises as a singularity of Υ for
an appropriate choice of ϕ. The corollary is now an immediate consequence of
Theorem C.

Acknowledgements: The first author would like to thank the Max-Planck-
Institut für Mathematik in Bonn for hospitality and financial support while this
work was in progress.

2. Preliminaries

LetM be a closed oriented surface, SM the unit sphere bundle and π : SM →
M the canonical projection. The latter is in fact a principal S1-fibration and we
let V be the infinitesimal generator of the action of S1.
Given a unit vector v ∈ TxM , we will denote by iv the unique unit vector

orthogonal to v such that {v, iv} is an oriented basis of TxM . There are two
basic 1-forms α and β on SM which are defined by the formulas:

α(x,v)(ξ) := 〈d(x,v)π(ξ), v〉;
β(x,v)(ξ) := 〈d(x,v)π(ξ), iv〉.

The form α is the canonical contact form of SM whose Reeb vector field is the
geodesic vector field X. The volume form α ∧ dα gives rise to the Liouville
measure dµ of SM .
A basic theorem in 2-dimensional Riemannian geometry asserts that there

exists a unique 1-form ψ on SM (the connection form) such that ψ(V ) = 1 and

dα = ψ ∧ β(2)

dβ = −ψ ∧ α(3)

dψ = −(K ◦ π)α ∧ β(4)
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where K is the Gaussian curvature of M . In fact, the form ψ is given by

ψ(x,v)(ξ) =
〈
DZ

dt
(0), iv

〉
,

where Z : (−ε, ε)→ SM is any curve with Z(0) = (x, v) and Ż(0) = ξ and DZ
dt

is the covariant derivative of Z along the curve π ◦ Z.
For later use it is convenient to introduce the vector field H uniquely defined

by the conditions β(H) = 1 and α(H) = ψ(H) = 0. The vector fields X,H
and V are dual to α, β and ψ and as a consequence of (2–4) they satisfy the
commutation relations

[V,X] = H, [V,H] = −X, [X,H] = KV.(5)

Equations (2–4) also imply that the vector fieldsX,H and V preserve the volume
form α ∧ dα and hence the Liouville measure.

3. Proof of Theorem B

Henceforth (M, g) is a closed oriented surface and X, H, and V are the same
vector fields on SM as in the previous section.
Let λ be the smooth function on M determined by Ω = λΩa, where Ωa is the

area form of M , and let

Xλ = X + λV

be the generating vector field of the magnetic flow φ (Xλ also preserves Liouville
measure).
From (5) we obtain:

[V,Xλ] = H, [V,H] = −Xλ + λV, [Xλ, H] = −λXλ + (K −Hλ+ λ2)V.

Note that

Hλ(x, v) = 〈∇λ(x), iv〉.

Lemma 3.1 (Pestov’s identity). For every smooth function ϕ : SM → R we
have

2Hϕ · V Xλϕ = (Xλϕ)2 + (Hϕ)2 − (K −Hλ+ λ2)(V ϕ)2

+Xλ(Hϕ · V ϕ)−H(Xλϕ · V ϕ) + V (Xλϕ ·Hϕ).

Remark 3.2. A similar identity for the vector fields X, Hλ := H + λV and V
was obtained in [16, Lemma 2.1].
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Proof of Lemma 3.1. Using the commutation formulas, we deduce:

2Hϕ · V Xλϕ− V (Hϕ ·Xλϕ)
= Hϕ · V Xλϕ− V Hϕ ·Xλϕ

= Hϕ · (XλV ϕ+ [V,Xλ]ϕ)−Xλϕ · (HV ϕ+ [V,H]ϕ)
= Hϕ · (XλV ϕ+Hϕ)−Xλϕ · (HV ϕ−Xλϕ+ λV ϕ)

= (Xλϕ)2 + (Hϕ)2 + (XλV ϕ)(Hϕ)− (HV ϕ)(Xλϕ)− λXλϕ · V ϕ
= (Xλϕ)2+ (Hϕ)2+Xλ(V ϕ ·Hϕ)−H(V ϕ ·Xλϕ)− [Xλ, H]ϕ · V ϕ
− λXλϕ · V ϕ
= (Xλϕ)2 + (Hϕ)2 +Xλ(V ϕ ·Hϕ)−H(V ϕ ·Xλϕ)

− (K −Hλ+ λ2)(V ϕ)2

which is equivalent to Pestov’s identity.

Integrating Pestov’s identity over SM against the Liouville measure dµ, we
get

2
∫
SM

Hϕ · V Xλϕdµ =
∫
SM

(Xλϕ)2 dµ+
∫
SM

(Hϕ)2 dµ(6)

−
∫
SM

(K −Hλ+ λ2)(V ϕ)2 dµ.

Let us derive one more integral identity. Let ϕ be again an arbitrary smooth
function on SM . By the commutation relations, we have

XλV ϕ = V Xλϕ−Hϕ.
Therefore,

(XλV ϕ)2 = (V Xλϕ)2 + (Hϕ)2 − 2V Xλϕ ·Hϕ.
Integrating, we obtain

∫
SM

(XλV ϕ)2 dµ =
∫
SM

(V Xλϕ)2 dµ+
∫
SM

(Hϕ)2 dµ− 2
∫
SM

V Xλϕ ·Hϕdµ.
(7)

Subtracting (6) from (7), we arrive at the final identity

∫
SM

{
(XλV ϕ)2 − (K −Hλ+ λ2)(V ϕ)2

}
dµ

(8)

=
∫
SM

(V Xλϕ)2 dµ−
∫
SM

(Xλϕ)2 dµ.

Let us now begin with the proof of Theorem B. If Xλϕ = G(x) +ωx(v), then
it is easy to see that the right-hand side of (8) is nonpositive. Indeed, since µ is
invariant under v �→ −v and v → iv we have∫

SM

ωx(v) dµ = 0 and
∫
SM

(ωx(v))2 dµ =
∫
SM

(ωx(iv))2 dµ.
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But V Xλϕ = ωx(iv) and thus∫
SM

(V Xλϕ)2 dµ−
∫
SM

(Xλϕ)2 dµ = −
∫
SM

(G(x))2 dµ ≤ 0.

Setting ψ = V ϕ, we get∫
SM

{
(Xλψ)2 − (K −Hλ+ λ2)ψ2

}
dµ ≤ 0.(9)

We now show that this is possible if and only if ψ = 0. This would give
V ϕ = 0, which says that ϕ = f ◦ π where f is a smooth function on M . But in
this case, since dπ(x,v)(Xλ) = v we have Xλ(ϕ) = dfx(v). This clearly implies
the claim of the theorem.

Lemma 3.3. If φ is Anosov, then for every closed magnetic geodesic γ : [0, T ]→
M and every smooth function z : [0, T ] → R such that z(0) = z(T ) and ż(0) =
ż(T ) we have

I :=
∫ T

0

{
ż2 − (K − 〈∇λ, iγ̇〉+ λ2)z2

}
dt ≥ 0

with equality if and only if z ≡ 0.
Proof. Given (x, v) ∈ SM and ξ ∈ T(x,v)TM , let

Jξ(t) = d(x,v)(π ◦ φt)(ξ).
We call Jξ a magnetic Jacobi field with initial condition ξ. It was shown in [14]
that Jξ satisfies the following Jacobi equation:

J̈ξ +R(γ̇, Jξ)γ̇ − [Y (J̇ξ) + (∇Jξ
Y )(γ̇)] = 0,(10)

where γ(t) = π ◦ φt(x, v), R is the curvature tensor of g and Y is determined
by the equality Ωx(u, v) = 〈Yx(u), v〉 for all u, v ∈ TxM and all x ∈ M . Let us
express Jξ as follows:

Jξ(t) = x(t)γ̇(t) + y(t)iγ̇(t),

and suppose in addition that ξ ∈ T(x,v)SM , which implies

gγ(J̇ξ, γ̇) = 0.(11)

A straightforward computation using (10) and (11) shows that x and y must
satisfy the scalar equations:

ẋ = λ(γ) y(12)

ÿ +
[
K(γ)− 〈∇λ(γ), iγ̇〉+ λ2(γ)

]
y = 0.(13)

Let E be the weak stable bundle of φ. Since for any (x, v) ∈ SM the subspace E
does not intersect the vertical subspace Ker dπ(x,v) [13, 10], there exists a linear
map S(x, v) : TxM → TxM such that E can be identified with the graph of S.
Let u(x, v) be the trace of S(x, v) and let Jη = xγ̇+ yiγ̇ be the Jacobi field with
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initial conditions η = (iv, S(iv)) ∈ E. Since u(t) = 〈S(t)iγ̇, iγ̇〉 and J̇η = SJη
we see that

ẏ = u y(14)

Note that y never vanishes. Given z as in the hypothesis of the lemma, let q be
defined by the equation z = qy. Using equation (13) we have

I = −
∫ T

0

z(z̈ + [K(γ)− 〈∇λ(γ), iγ̇〉+ λ2(γ)]z) dt = −
∫ T

0

q
d

dt
(q̇y2) dt

= −[qq̇y2]T0 +
∫ T

0

q̇2y2 dt.

Using the periodicity properties of z and (14) we have

[qq̇y2]T0 = [zq̇y]
T
0 = −[qẏz]T0 = −[quyz]T0 = −[uz2]T0

and the last term vanishes since u is globally defined on SM . We conclude that

I ≥ 0
with equality if and only q̇ ≡ 0. Hence if I = 0, q must be a constant, which
must be zero since y cannot be periodic in T .

We continue now with the proof of Theorem B. The last lemma, applied to
the function z = ψ(γ), yields∫

γ

{
(Xλψ)2 − (K −Hλ+ λ2)ψ2

}
dt ≥ 0(15)

for every closed magnetic geodesic γ. Since the flow is Anosov, the invariant mea-
sures supported on closed orbits are dense in the space of all invariant measures
on SM . Therefore, the above yields∫

SM

{
(Xλψ)2 − (K −Hλ+ λ2)ψ2

}
dµ ≥ 0.

Combining this with (8), we find that∫
SM

{
(Xλψ)2 − (K −Hλ+ λ2)ψ2

}
dµ = 0.(16)

By the non-negative version of the Livšic theorem, proved independently by
M. Pollicott and R. Sharp and by A. Lopes and P. Thieullen (see [9, 15]), we
conclude from (15) and (16) that∫

γ

{
(Xλψ)2 − (K −Hλ+ λ2)ψ2

}
dt = 0

for every closed magnetic geodesic γ. Applying again Lemma 3.3, we see that ψ
vanishes on all closed magnetic geodesics. Since the latter are dense in SM , the
function ψ vanishes on all of SM , as required.
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4. Proof of Theorem C

We begin with a general easy lemma. Given a smooth closed curve γ : [0, T ]→
M and k ∈ R we define the free time action of γ as:

Ak(γ) :=
1
2

∫ T

0

|γ̇(t)|2 dt+ kT + c−1 log holα(γ) mod 1.

Recall that the energy is the function given by E(x, v) := 1
2 |v|2x.

Lemma 4.1. Let γ : [0, T ] → M be a closed magnetic geodesic with energy k.
Let γτ : [0, Tτ ] → M , τ ∈ (−ε, ε), be a smooth variation of γ by smooth closed
curves. Then

dAk(γτ )
dτ

(0) = 0.

Proof. The curves γτ − γ form a 1-cycle which is the boundary of a 2-chain Στ .
Then

c−1 log holα(γτ ) + c−1 log holα(γ) = −
∫

Στ

Ω mod 1.(17)

If we let W (t) be the variational vector field of γτ , a straightforward calculation
using that γ has energy k and (17) shows that

dAk
dτ
(0) = −

∫ T

0

〈
Dγ̇

dt
,W (t)

〉
dt+

∫ T

0

Ω(γ̇(t),W (t)) dt.

Since γ is a magnetic geodesic,
Dγ̇

dt
= Yγ(γ̇)

where Y is determined by Ωx(u, v) = 〈Yx(u), v〉. Thus
dAk
dτ
(0) = 0.

Let us assume now that we are under the hypotheses of Theorem C.

Lemma 4.2. Suppose Sτ = S for all τ ∈ (−ε, ε). Then∫
γτ

dβτ
dτ

= 0

for every closed magnetic geodesic γτ of (g,Ωτ ).

Proof. In each nontrivial homotopy class we have a 1-parameter family of closed
magnetic geodesics γτ . Let

aτ (γτ ) := Aτ1/2(γτ ) = )(γ) + c
−1 log holατ

(γ) mod 1.

Since S is countable and the map (−ε, ε) � τ �→ aτ (γτ ) is continuous we have

aτ (γτ ) = aτ0(γτ0)
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for all τ ∈ (−ε, ε). Since

log holατ (σ) = log holατ0
(σ) +

1
2π

∫
σ

(βτ − βτ0) mod 1

for all σ, we have:

aτ (γτ ) = aτ0(γτ ) +
1
2πc

∫
γτ

(βτ − βτ0) mod 1.

By Lemma 4.1, the map τ �→ aτ0(γτ ) has a critical point at τ = τ0, hence the
last equality implies

d

dτ

∣∣∣∣
τ=τ0

∫
γτ

(βτ − βτ0) = 0

which is easily seen to imply ∫
γτ0

dβτ
dτ

∣∣∣∣
τ=τ0

= 0.

To complete the proof of Theorem C, observe that the previous lemma and
Theorem B imply that for each τ , dβτ

dτ is exact. If we let fτ be a primitive of
dβτ

dτ , then

Fτ :=
∫ τ

0

fs ds

are the required functions.

Remark 4.3. The proofs of Theorem C and its corollary work in any dimension
provided that Theorem B holds in any dimension. One only needs the cohomol-
ogy class [Ω] to be rational, i.e. there exists λ ∈ R such that [λΩ] is an integral
class.
Even if [Ω] is not rational, we can still attach to the magnetic flow an action

spectrum by considering a torus bundle T
r over M . The action spectrum is

now a subset of T
r and the same infinitesimal rigidity holds, provided that the

magnetic flow is Anosov.
The question of whether Theorem B extends to higher dimension is more

delicate. We hope to discuss these topics elsewhere, as well as the analogue of
Theorem B for higher order tensors.
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