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EXOTIC SMOOTH STRUCTURES ON CP
2#5CP2

Jongil Park, András I. Stipsicz, and Zoltán Szabó

Abstract. Motivated by a construction of Fintushel and Stern, we show that

the topological 4–manifold CP
2#5CP2 supports infinitely many distinct smooth

structures.

1. Introduction

It is a basic problem in 4–dimensional topology to find exotic smooth struc-
tures on rational surfaces. The first such structures were found by Donald-
son [4]; these examples were homeomorphic to CP

2#9CP2 . While in this home-
omorphism type many exotic examples were constructed [6, 9, 18], the cases
of CP

2#kCP2 with k < 9 were more elusive. The Barlow surface [1] pro-
vided the first exotic structure on CP

2#8CP2 , see [13]. More recently, an
exotic smooth structure on CP

2#7CP2 has been constructed [15]. After this
example many new exotic 4–manifolds with small Euler characteristic have been
found. In [16] symplectic 4–manifolds homeomorphic but not diffeomorphic to
CP

2#6CP2 were constructed, implying the existence of an exotic smooth struc-
ture on CP

2#6CP2 . In a beautiful recent paper [7] Fintushel and Stern showed
the existence of infinitely many distinct smooth structures on CP

2#kCP2 with
k = 6, 7, 8. Combining their technique of knot surgery in a double node neigh-
borhood with a particular form of generalized rational blow–down, in this note
we prove

Theorem 1.1. There exist infinitely many pairwise nondiffeomorphic
4–manifolds all homeomorphic to CP

2#5CP2 .

In Section 2 various constructions of 4–manifolds homeomorphic to
CP

2#5CP2 are described. In Section 3 we use Seiberg–Witten theory to show
that many of these examples are mutually nondiffeomorphic, leading us to the
proof of Theorem 1.1.
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2. The constructions

We construct our examples using knot surgery (in a double node neighbor-
hood, as in [7]) when applied to particular elliptic fibrations. The special prop-
erties of the chosen elliptic fibration allow us to find a configuration in the
result of the knot surgery such that after rationally blowing it down we arrive
to a 4–manifold homeomorphic, but not diffeomorphic to CP

2#5CP2 . By us-
ing a suitable infinite set of knots (the twist knots already encountered in [7],
cf. also [6, 18]), we get an infinite family of 4–manifolds all homeomorphic to
CP

2#5CP2 .

2.1. Elliptic fibrations. Singular fibers of holomorphic elliptic fibrations have
been classified [12] (cf. also [11]). In this note we will consider fibrations con-
taining only singular fibers of type In (n ≥ 1). Recall that the singular fiber
I1 (also known as the fishtail fiber) is an immersed 2–sphere with one positive
double point, and it is created from a regular torus fiber by collapsing a homo-
logically essential simple closed curve (the vanishing cycle of the singular fiber).
The In –fiber (n ≥ 2) is a collection of n 2–spheres of self–intersection (−2),
intersecting each other in a circular pattern, see [11, page 35]. An elliptic fibra-
tion with singular fibers only of type In are Lefschetz fibrations in the sense of
[10, Chapter 8]. The only subtlety we have to keep in mind is that here we allow
a singular fiber to contain more than one singular points as well.

Lefschetz fibrations can be conveniently described by the monodromy factor-
ization induced by the singular fibers of the fibration, that is, by a word involving
right–handed Dehn twists which is equal to 1 in the mapping class group of the
regular fiber. The mapping class group Γ1 of the 2–torus T 2 can be presented
as

Γ1 = {a, b | aba = bab, (ab)6 = 1},
where a, b ∈ Γ1 denote the right–handed Dehn twists along the two standard
simple closed curves A,B in T 2 intersecting each other transversally in a unique
point. This group can identified with SL(2; Z) by mapping a to ( 1 1

0 1 ) and
b to

(
1 0−1 1

)
. For example, the standard elliptic fibration we get by blowing

up nine base points of a generic elliptic pencil in CP
2 results the monodromy

factorization (ab)6 . Using the braid relation aba = bab it can be shown that
(a3b)3 also defines an elliptic fibration on CP

2#9CP2 . Furthermore, it is easy
to see that for any expression x ∈ Γ1 the mapping class ax = xax−1 can be
identified with the right–handed Dehn twist along the image of a under a map
giving x . Note, for example, that the braid relation implies that b = aab .

The monodromy of a fishtail fiber can be shown to be equal to the right–
handed Dehn twist along the vanishing cycle corresponding to the given singular
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fiber. An In –fiber can be created by collapsing n parallel (homologically essen-
tial) simple closed curves, therefore the monodromy of such a fiber is equal to
the nth power of the right–handed Dehn twist along one of the parallel curves.

In our constructions we will need the existence of a section, which can also
be read off from the monodromy factorization. In general, a Lefschetz fibration
admits a section if the monodromy factorization induced by it can be lifted
from the mapping class group of its generic fiber to the mapping class group of
the fiber with one marked point. In the case of a genus–1 Lefschetz fibration,
however, the forgetful map f : Γ1

1 → Γ1 mapping from the mapping class group
Γ1

1 of T 2 with one marked point to Γ1 is an isomorphism, implying in particular

Lemma 2.1. Any genus–1 Lefschetz fibration over S2 admits a section. �
2.2. The definition of the 4–manifold Xn . Our first construction of exotic
4–manifolds relies on the following existence result. (For a schematic picture of
the fibration see Figure 1.)

Q

F F F F F

P1
P2

Figure 1. The schematic diagram of the fibration with an I7 fiber

Proposition 2.2. There exists an elliptic fibration CP
2#9CP2 → CP

1 with five
fishtail fibers, an I7–fiber and a section. Furthermore, we can assume that two
of the five fishtail fibers have isotopic vanishing cycles.

Proof. We will show the existence of such fibration by finding an appropriate
factorization of 1 in the mapping class group Γ1 of the torus. Start with the
fibration on CP

2#9CP2 defined by the factorization

(a3b)3
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of 1 ∈ Γ1 . Notice that

(a3b)3 = a7(a−1(a−3ba3)a)(a−1ba)a2b = a7ba
−4
ba

−1
a2b.

Since a7 is the monodromy of an I7 –fiber, its existence in the above fibration
is verified. The term a2 gives rise to two fishtail fibers with isotopic vanishing
cycles in the complement of the I7 –fiber. Finally, Lemma 2.1 shows the existence
of a section in the fibration. �

Suppose now that p > q > 0 are relatively prime integers. Let us define the
4–manifold Cp,q as the result of the linear plumbing with weights specified by the
continued fraction coefficients of − p2

pq−1 . It is known [2] (cf. also [5, 14, 16, 17])
that the boundary ∂Cp,q = L(p2, pq−1) is a lens space which bounds a rational
ball Bp,q . The replacement of an embedded copy of Cp,q ⊂ X with Bp,q is
called the (generalized) rational blow–down of X along Cp,q . This operation
was introduced and successfully applied by Fintushel and Stern [5] in the case
of q = 1 and studied in [14, 17] in the above generality.

Now we are ready to turn to the construction of the 4–manifolds homeomor-
phic but not diffeomorphic to CP

2#5CP2 . Let Kn denote the n–twist knot as
it is depicted in [7]. Let F3, F4 of Figure 1 denote the fishtail fibers with isotopic
vanishing cycles. Following the convention of [7] we denote the result of the knot
surgery in a double node neighborhood containing F3, F4 and with knot Kn by
Yn . Fintushel and Stern [7] prove the existence of a “pseudo–section” S ⊂ Yn

which is an immersed sphere with one positive double point, homological self–
intersection −1, and which transversally intersects F1, F2 and one of the spheres
in the I7 –fiber: The section of the fibration, punctured by the fiber along which
the knot surgery is performed, can be glued to the genus–1 Seifert surface of the
knot Kn . In this way an embedded torus T of self–intersection −1 is found in
Yn . Using the two thimbles of the isotopic vanishing cycles, Fintushel and Stern
find a disk U attached to T with relative self–intersection −1. From T and U
now it is an easy task to find the immersed sphere with a positive double point
and which is homologous to T . For more details of the construction see [7].

Let us blow up Yn in the double point of the pseudo–section, and in the double
points of the fishtail fibers F1 and F2 . After smoothing the intersections P1, P2 ,
we get a sphere of self–intersection −9 intersecting the I7 –fiber transversally at
one point. Now we apply eight infinitely close blow–ups at the point Q as it
is shown by Figure 2. This construction results in a chain of 2–spheres, with a
neighborhood diffeomorphic to the 4–manifold C we get by plumbing along a
linear chain with weights

(−9,−10,−2,−2,−2,−2,−2,−3,−2,−2,−2,−2,−2,−2,−2)

in the eleven–fold blow–up of Yn . Simple computation identifies C with C71,8 .
Define Xn as the (generalized) rational blow–down of Yn along C , that is,

Xn = (Yn#11CP2 − int C) ∪B71,8.

Theorem 2.3. Xn is homeomorphic to CP
2#5CP2 .
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Q

...

....

Figure 2. Infinitely close blow–ups at Q

Proof. The 4–manifold Yn has trivial fundamental group, since the fibration
admits a section and two different vanishing cycles in the complement of the
double node neighborhood. Simple connectivity of Xn follows from the fact
that the complement of C in Yn#11CP2 is simply connected, since the gen-
erator of π1(∂C) can be contracted along the fishtail fiber F0 present in the
fibration but not used in constructing the configuration C and from the surjec-
tivity of the natural map π1(∂B) → π1(B). Now simple Euler characteristic and
signature computation together with Freedman’s Theorem on the classification
of topological 4–manifolds [8] imply the result. �

2.3. Further constructions. Many similar constructions can be carried out
using different elliptic fibrations or different sets of knots. Below we outline
constructions relying on various types of elliptic fibrations.

2.3.1. Another construction using the I7–fiber. A similar argument provides an
embedding of C212,55 into Yn#12CP2 by smoothing only at P2 and keeping the
transverse intersection P1 . In this case one further blow–up of a (−2)–sphere
is necessary, leading to the chain

(−4,−7,−10,−2,−2,−2,−2,−2,−3,−2,−2,−2,−2,−3,−2,−2)

in Yn#12CP2 . Blowing this configuration down we get a sequence of 4–manifolds
with the same properties as Xn . (The hemisphere originated from the excep-
tional sphere of the last blow–up can be used to show that the resulting con-
figuration of spheres in the twelve–fold blow–up of Yn has simply connected
complement.)
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2.3.2. Configurations using the I8–fiber. Many other examples can be given
using the I8 –fiber. To see the existence of the required fibration, we need a
result similar to Proposition 2.2.

Proposition 2.4. There exists an elliptic fibration CP
2#9CP2 → CP

1 with
four fishtail fibers, an I8–fiber and a section. Furthermore, we can assume that
two of the four fishtail fibers have isotopic vanishing cycles.

Proof. Using the braid relation it is fairly easy to see that the expression

a3ba2b2a2ba

is equal to 1 in Γ1
1 , hence defines an elliptic fibration with a section. Since it

can be written as
a8(ba

−2
)b2(ba

2
),

the resulting fibration can be chosen to have an I8 –fiber and two fishtails in its
complement with isotopic vanishing cycles. �

Our further constructions rely on

Proposition 2.5. Let Yn be the 4–manifold defined above.

(1) The 4–manifold C44,9 embeds into Yn#8CP2 ;
(2) C79,44 admits an embedding into Yn#9CP2 ;
(3) C89,9 embeds into Yn#13CP2 ;
(4) C169,89 can be embedded into Yn#14CP2 ;
(5) C301,62 admits an embedding into Yn#14CP2 ; and finally
(6) C540,301 is a submanifold of Yn#15CP2 .

The complements of these configurations are simply connected.

Remark 2.6. Recall that the above 4–manifolds can be given by the linear
plumbings as follows:

C44,9 = (−5,−11,−2,−2,−2,−2,−2,−2,−3,−2,−2,−2),
C79,44 = (−2,−5,−11,−2,−2,−2,−2,−2,−2,−3,−2,−2,−3),

C89,9 = (−10,−11,−2,−2,−2,−2,−2,−2,−3,−2,−2,−2,−2,−2,

− 2,−2,−2),

C169,89 = (−2,−10,−11,−2,−2,−2,−2,−2,−2,−3,−2,−2,−2,−2,−2,

− 2,−2,−3),

C301,62 = (−5,−7,−11,−2,−2,−2,−2,−2,−2,−3,−2,−2,−2,−2,−3,

− 2,−2,−2),

C540,301 = (−2,−5,−7,−11,−2,−2,−2,−2,−2,−2,−3,−2,−2,−2,−2,−3,

− 2,−2,−3).
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Q

Figure 3. A fibration with an I8 –fiber

Proof. We use the configuration of Figure 3 to indicate the embeddings given
above. First of all, perform the knot surgery in the double node neighborhood
of the fishtail fibers F3, F4 with isotopic vanishing cycles and blow up the two
double points of the remaining two fishtail fibers F1, F2 together with the double
point of the pseudo–section. To get the first embedding, smooth the transverse
intersections P2, P3 and apply four infinitely close blow–ups at Q , resulting the
configuration

(−4,−11,−2,−2,−2,−2,−2,−2,−3,−2,−2,−2).

One further blow–up of the (−4)–sphere provides the first embedding. If we blow
up this sphere as instructed by Figure 4, a final blow–up of the last (−2)–sphere
in the chain gives the second embedding.

If we smooth the intersections P1 and P2 then eight infinitely close blow–
ups at Q , together with a final blow–up on any of the former fishtail fibers
F1 or F2 results the third embedding. Once again, the last blow–up can be
performed as in Figure 4, in which case we need to blow up the other end of the
chain, resulting the fourth embedding. Finally, resolving only P2 , eight infinitely
close blow–ups at Q , one further blow–up on the appropriate (−2)–sphere in
the I8 –fiber and one more on the fishtail passing through P1 gives the fifth
configuration. If this last blow–up is performed as in Figure 4, by blowing up
the last (−2)–sphere of the configuration we get the last promised embedding.
Since in any of the above constructions the last blow–up provides an exceptional
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Figure 4. Infinitely close blow–ups at the double point of
the fishtail fiber

divisor transversally intersecting the first or last sphere of the configuration, the
complements of the configurations are obviously simply connected. �

Simple Euler characteristic computation and Freedman’s Theorem imply that
after rationally blowing down any of the configurations presented in Proposi-
tion 2.5 we get further interesting examples of 4–manifolds homeomorphic to
CP

2#5CP2 .

2.3.3. A configuration using the I6–fiber. A slightly different procedure can
be applied if we start with a fibration containing an I6 –fiber and two pairs of
fishtail fibers with isotopic vanishing cycles. This example was also discovered
independently by Fintushel and Stern [7].

Proposition 2.7. There is an elliptic fibration CP
2#9CP2 → CP

1 with an I6–
fiber, six fishtail fibers F1, . . . , F6 and a section. Furthermore we can assume
that the vanishing cycles of F1 and F2 are isotopic, and the vanishing cycles of
F3 and F4 are isotopic.

Proof. Start again with the fibration given by the relation (a3b)3 and notice
that it is equal to a6ba

−3
b2(ab−1

)3 . This expression shows the existence of the
required fibration. �

Consider the 4–manifold VKn1 ,Kn2
we get from CP

2#9CP2 by doing two dou-
ble node surgeries in the neighborhoods of F1, F2 and F3, F4 respectively, using
the knot Kn1 for the first and Kn2 for the second surgery. By choosing Kn1 ,Kn2

to be twist knots (as in [7]) we get a pseudo–section S ⊂ VKn1 ,Kn2
which is now

a sphere with two positive double points and self-intersection −1. Blowing up
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the two self–intersections we get a sphere of square −9 in VKn1 ,Kn2
#2CP2 . Us-

ing five (−2)–spheres of the I6 fiber, we get a chain of spheres according to the
linear plumbing

(−9,−2,−2,−2,−2,−2),
giving rise to an embedding of C7,1 into VKn1 ,Kn2

#2CP2 . We define our 4–
manifolds by rationally blowing down these copies of C7,1 . Simple connectivity
of VKn1 ,Kn2

follows from the presence of two different vanishing cycles and
the pseudo–section, while the complement of C7,1 in VKn1 ,Kn2

#2CP2 is simply
connected because there are two more fishtail fibers in the fibration which we
did not use in the construction. Since VKn1 ,Kn2

is homeomorphic to CP
2#9CP2

and we used two blow–ups to find the above chain of spheres, after rationally
blowing down we get a 4–manifold homeomorphic to CP

2#5CP2 . Recall that
Kn denotes the n–twist knot (as depicted in [7]); let Vn denote VK1,Kn

. The
result of the rational blow–down of C7,1 ⊂ Vn#2CP2 will be denoted by Qn .

3. Seiberg–Witten computations

We will prove Theorem 1.1 by computing Seiberg–Witten invariants of the 4–
manifolds constructed above. We will give details of the computation for the first
construction, resulting the manifolds Xn , very similar ideas work for all the other
manifolds. The argument sketched below is closely modeled on the argument
encountered in [7]. We will finish this section by an explicit computation of the
Seiberg–Witten invariants of the manifolds Qn constructed in Subsection 2.3.3.

It is shown in [6, 18] that Yn has two Seiberg–Witten basic classes ±K ,
moreover |SWYn(±K)| = n . Furthermore, we can choose the sign of K so that
it evaluates on the pseudo–section S as −1. Consequently

(K − e1 − . . .− e11)(ui) = ui · ui + 2

for each sphere ui appearing in the plumbing C . Let L be the extension of
K|Yn−C to Xn . Using the blow–up and the rational blow–down formula together
with the wall–crossing formula we get

Proposition 3.1. The Seiberg–Witten invariant SWXn
(L) is an element of the

set {±n,±n± 1} . Therefore the 4–manifold Xn with n ≥ 2 admits a Seiberg–
Witten basic class. �

This computation leads us to

Corollary 3.2. There exists an exotic smooth structure on CP
2#5CP2 .

Proof. Since the Seiberg–Witten function is a diffeomorphism invariant for man-
ifolds with b+2 = 1 and b−2 ≤ 9, and by the existence of a positive scalar curva-
ture metric we have SW

CP2#5CP2 ≡ 0, we get that Xn is not diffeomorphic to

CP
2#5CP2 , hence the corollary follows. �
Since Yn has exactly two basic classes, the same computation as above actu-

ally shows
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Lemma 3.3. The Seiberg–Witten function of Xn takes its values in a subset of
{0,±1,±n,±n± 1} , and for n ≥ 3 there are exactly two basic classes ±L with
Seiberg–Witten values in {±n,±n± 1} . �
Proof of Theorem 1.1. Combining Proposition 3.1 with Lemma 3.3 it follows
that Xn and Xn+3k are not diffeomorphic once n ≥ 2 and k > 0. This
observation proves the existence of infinitely many distinct smooth structures
on CP

2#5CP2 . The blow–up formula and the fact that for n ≥ 3 there are only
two basic classes of Xn with Seiberg–Witten values in the set {±n,±n ± 1}
show that for n ≥ 3 the manifold Xn is actually minimal. �

The argument above was sufficient for proving Theorem 1.1, but with some
additional work the complete Seiberg–Witten invariants of the 4–manifolds en-
countered above can be determined. We demonstrate this for the 4–manifolds
Qn defined in Subsection 2.3.3 and prove

Theorem 3.4. For n ≥ 1 the 4–manifold Qn admits exactly two basic classes
±L and SWQn

(±L) = ±n . Consequently the manifolds Qn are all minimal
and pairwise nondiffeomorphic.

The heart of the argument is to find a simple way to relate the Seiberg–Witten
invariants of Qn to those of Vn . As a stepping stone we will need the following
construction.

Start with the fibration CP
2#9CP2 → S2 provided by Proposition 2.7. In-

stead of doing the double node surgery, blow up the 4–manifold CP
2#9CP2

twice and in the two new CP2 ’s choose embedded spheres representing twice the
generator of H2(CP2; Z). By tubing these two (−4)–spheres to a fixed section of
CP

2#9CP2 → S2 we get a (−9)–sphere, which, together with five (−2)–spheres
of the I6 –fiber gives rise to an embedded copy of C7,1 in (CP

2#9CP2)#2CP2 =
CP

2#11CP2 . Let R denote the 4–manifold we get by rationally blowing down
this copy of C7,1 .

Proposition 3.5. The Seiberg–Witten invariant SWR is identically zero.

Proof. Note that b−2 (R) = 5, hence the Seiberg–Witten function SWR is well–
defined. Let D ⊂ CP

2#9CP2 denote the tubular neighborhood of the chosen
section and the chain of five (−2)–spheres in the I6 –fiber. Notice that ∂D = S3 .
By performing the blow–ups and the rational blow–down process in D (resulting
in a negative definite 4–manifold W ), we get a decomposition of R as P#W .
Since P#6CP2 = CP

2#9CP2 , the blow–up formula and SW
CP2#9CP2 ≡ 0 imply

that SWP ≡ 0. Now the usual gluing formula along S3 implies the result. �
Notice that by the construction of Vn there is a natural bijection

F : H2(CP
2#9CP2; Z) → H2(Vn; Z)

mapping the chosen section of CP
2#9CP2 → S2 to the pseudo–section in Vn .

The map F induces a natural extension to the double blow–ups

F ′ : H2(CP
2#11CP2; Z) → H2(Vn#2CP2; Z).
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In these double blow–ups we have found copies of C7,1 ; it follows from the
constructions of these submanifolds that F ′ maps the homology classes of the
chains of spheres into each other.

In addition, homology classes of R (resp. Qn ) can be naturally constructed
from homology classes of CP

2#11CP2 (resp. Vn#2CP2 ) by appropriately ex-
tending them to the rational blow–down. In particular, the map F ′ gives rise
to a bijection

F1 : H2(R; Z) → H2(Qn; Z).
Let K ∈ H2(Vn; Z) be a characteristic element. For odd integers a, b we get

extensions K + aE1 + bE2 ∈ H2(Vn#2CP2; Z), where Ei denote the Poincaré
duals of the exceptional divisors of the blow–ups. Suppose that the restriction
of K + aE1 + bE2 to Vn#2CP2 − C7,1 extends to a characteristic cohomology
class to Qn and denote this extension by K(a, b). Suppose furthermore that
the formal dimension d(K + aE1 + bE2) of the Seiberg–Witten moduli space on
Vn#2CP2 corresponding to K + aE1 + bE2 is nonnegative.

Lemma 3.6. Let K, a, b be chosen as above. Then

SWQn
(K(a, b)) − SWVn

(K) = SWR(f1(K(a, b))) − SW
CP2#9CP2(f(K)),

where f and f1 are duals of F and F1 .

Proof. Since the blow–up, wall–crossing and rational blow–down formulae in-
volve only homological computations, and F ′ identifies the two copies of C7,1 ,
the lemma follows. �

Proof of Theorem 3.4. Let L ∈ H2(Qn; Z) be a characteristic element with
SWQn(L) �= 0. By the rational blow–down formula there is a class K + aE1 +
bE2 ∈ H2(Vn#2CP2; Z) with

SWQn
(L) = SWVn#2CP2(K + aE1 + bE2)

where the right–hand side is taken in the appropriate chamber. In particular,
L = K(a, b) for some K ∈ H2(Vn; Z) and d(K+aE1+bE2) ≥ 0. Since SWR ≡ 0
and SW

CP2#9CP2 ≡ 0, Lemma 3.6 implies that SWVn(K) �= 0. On the other
hand, the Seiberg–Witten invariants of Vn are known [6], hence it follows that
K = ±T,±3T where T is the Poincaré dual of the fiber. Since d(T ) = d(3T ) =
0, it follows that a = ±1 and b = ±1. A simple homological computation shows
that in the family {±T ± E1 ± E2, ±3T ± E1 ± E2} ⊂ H2(Vn#2CP2; Z) there
are only two cohomology classes — which are equal to ±(3T − E1 − E2) —
admitting extensions to Qn . Since SWVn

(±3T ) = ±n the theorem follows from
Lemma 3.6. �
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