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A SIMPLE ALGEBRAIC PROOF OF THE ALGEBRAIC
INDEX THEOREM

PoNing Chen and Vasiliy Dolgushev

Abstract. In math.QA/0311303 B. Feigin, G. Felder, and B. Shoikhet proposed
an explicit formula for the trace density map from the quantum algebra of func-

tions on an arbitrary symplectic manifold M to the top degree cohomology of M.

They also evaluated this map on the trivial element of K-theory of the algebra of
quantum functions. In our paper we evaluate the map on an arbitrary element

of K-theory, and show that the result is expressed in terms of the Â-genus of
M, the Deligne-Fedosov class of the quantum algebra, and the Chern character

of the principal symbol of the element. For a smooth (real) symplectic manifold

(without a boundary), this result implies the Fedosov-Nest-Tsygan algebraic index
theorem.

1. Introduction

The famous Atiyah-Singer index theorem [2] relates the index of an elliptic
pseudo-differential operator on a compact manifold X to the Todd class of X
and the Chern character of the bundle naturally associated with the symbol of
the pseudo-differential operator. It is well-known that the algebra of pseudo-
differential operators can be viewed as a “quantization” of the cotangent bundle
T ∗X. Starting from this point B. Fedosov [9] proposed a natural analogue of the
Atiyah-Singer index theorem for the deformation quantization of an arbitrary
symplectic manifold. This theorem expresses the index of a compactly supported
element in K-theory of the quantum algebra of functions on a symplectic mani-
fold M via the Â-genus of M, the Deligne-Fedosov class of the quantum algebra,
and the Chern character of the principal symbol of the K-theory element. While
the original index theorem of Atiyah and Singer relates two integers, the Fedosov
index theorem relates two formal power series with complex coefficients.

In paper [16] R. Nest and B. Tsygan proposed a completely different proof of
the algebraic index theorem based on the relations between Hochschild
(co)homology, cyclic (co)homology, and Lie algebra (co)homology. In their next
paper [18] they also showed that the analytic index theorem for a compact man-
ifold (without a boundary) could be derived from the algebraic one. In order
to generalize this result to manifolds with a boundary (or more generally, with
corners) one is in great need of a local version of the algebraic index theorem
which relates De Rham cohomology classes, rather than formal power series of
complex numbers.
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The aim of this paper is to give such a version (see theorem 4 in section
3) using the trace density map proposed in paper [10] by B. Feigin, G. Felder,
and B. Shoikhet. Namely, we show that the Feigin-Felder-Shoikhet (FFS) trace
density map sends an arbitrary element of K-theory of the algebra of quantum
functions on M to the top component of the cup product of the Â-genus of
M, the exponent of the Deligne-Fedosov class of the quantum algebra, and the
Chern character of the principal symbol of the element. Thus, we generalize the
result of [10], in which the trace density map was evaluated at the trivial element
of K-theory. For the case of the cotangent bundle this computation of [10] was
performed in [7].

We have to mention that in [6] another version of the trace density map was
proposed. This map sends a cohomology class of the sheaf of the periodic cyclic
complex CCper• (OquantX ) of the structure sheaf OquantX of quantum functions on
a holomorphic symplectic manifold X to the cohomology of the constant sheaf
on X. In [6] it was proven that the evaluation of this map on an arbitrary
cohomology class of the sheaf of periodic cyclic complex CCper• (OquantX ) can be
expressed in terms of the principal symbol of the class, Â-genus of X and the
Deligne-Fedosov class of the quantum deformation. In [6] the authors refer to
this result as a Riemann-Roch theorem for deformation quantizations. It is not
hard to see that the local version of the algebraic index theorem proven in our
paper follows from the results of P. Bressler, R. Nest and B. Tsygan [6]. However,
our proof is more explicit and straightforward. For this reason we expect that
our technique is more powerful for exploring the parallel analytic results.

We would like to mention an alternative deformation quantization procedure
due to L. Boutet de Monvel and V. Guillemin [4]. This procedure allows us to
quantize an arbitrary compact symplectic manifold with an integral symplectic
form. Recently R. Melrose proposed in [15] a beautiful idea on how one can
relax the integrality condition in the quantization of L. Boutet de Monvel and
V. Guillemin. R. Melrose suggests that using this procedure one could derive
the algebraic index theorem from the analytic one.

The organization of the paper is as follows. In section two, we give a reminder
of Fedosov’s construction [9] of the deformation quantization with twisted co-
efficients on a symplectic manifold. In this section we also recall the necessary
results of Feigin, Felder, and Shoikhet about their trace density map proposed in
[10]. In section three, we prove the local version of the algebraic index theorem
(see theorem 4), using the FFS trace density map. In the concluding section we
make a few remarks about the local algebraic index theorem for symplectic Lie
algebroids and the versions of the local Riemann-Roch-Hirzebruch theorem.

Throughout the paper we assume the summation over repeated indices. We
assume that M is either a smooth real symplectic manifold of dimension 2n
or a smooth affine algebraic variety (over C) of the complex dimension 2n, en-
dowed with an algebraic symplectic form. C(M) stands, respectively, for the
algebra of smooth function or for the algebra of regular functions on M. The
notation Sk is reserved for the group of permutations of k elements. We omit
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the symbol ∧ referring to a local basis of exterior forms, as if we thought of
dxi’s as anti-commuting variables. For a vector space h we denote by Sjh the
subspace of monomials of degree j in the symmetric algebra Sh of h . Finally, we
always assume that a nilpotent linear operator is the one whose second power is
vanishing.

2. Preliminaries

In this section we review the Fedosov deformation quantization of endomor-
phisms of a vector bundle V over a symplectic manifold M (See [9], section 5.3).
We also recall the Felder-Feigin-Shoikhet construction [10] of the trace density
map.

2.1. The Feigin-Felder-Shoikhet cocycles. First, we recall that for any as-
sociative algebra A with a unit over a field K (of characteristic zero) we have a
chain map φN from the Hochschild cochain complex C•(A,A∗) with coefficients
in the dual module A∗ to the Lie algebra cochain complex C•(glN (A); glN (A)∗)
with coefficients in glN (A)∗

φN (ψ)(M1 ⊗ a1, . . . ,Mk ⊗ ak)(M0 ⊗ a0)

(1) =
1
k!

∑
ν∈Sk

(−)νψ(aν(1) ⊗ · · · ⊗ aν(k))(a0) tr(M0Mν(1) . . .Mν(k)) ,

where Ml ∈ glN (K), al ∈ A, and ψ ∈ Ck(A,A∗) .
Let V be a 2n-dimensional vector space (over C) endowed with a symplectic

form B. Let {y1, . . . , y2n} be a basis in V. We denote by ||Bij ||, (i, j = 1, . . . , 2n)
the matrix

Bij = B(yi, yj)

of the form B in this basis. Let ε be the completely antisymmetric Liouville
tensor whose components εi1...i2n are defined in the basis {y1, . . . , y2n} as follows

(2) εi1...i2n =
(−1)n

n!

∑
ν∈S2n

(−)νBiν(1)iν(2) . . . Biν(2n−1)iν(2n) .

Definition 1. The Weyl algebra W associated with the symplectic vector space
V is the vector space C[[V]]((�)) of the formally completed symmetric algebra of
V equipped with the following (associative) multiplication

(3) (a ◦ b)(y, �) = exp
(

�

2
Bij

∂

∂yi
∂

∂zj

)
a(y, �)b(z, �)|y=z.

One can easily see that the multiplication defined by (3) does not depend on
the choice of a basis in V. We view W as an algebra over the field C((�)) .
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The Weyl algebra W is naturally filtered with respect to the degree of mono-
mials 2[�] + [y] where [�] is a degree in � and [y] is a degree in y

(4)

· · · ⊂ W1 ⊂ W0 ⊂ W−1 · · · ⊂ W ,

Wm = {a =
∑

2k+p≥m
�
kak;i1...ipy

i1 . . . yip}

This filtration defines the 2[�] + [y]-adic topology in W.
In [10] Feigin, Felder, and Shoikhet proposed an explicit expression for the

(2n)th Hochschild (continuous) cocycle of the Weyl algebra W with coefficients
in the dual module W∗. Their formula is reminiscent of Kontsevich’s construc-
tion of the structure maps of his celebrated formality quasi-isomorphism [13].
However, unlike the integrals in Kontsevich’s construction [13] the coefficients
entering the formula of Feigin, Felder, and Shoikhet are rational.

Following [10] we start with the 2n-th simplex

∆2n = {(u1, . . . , u2n) ∈ R
2n | 0 ≤ u1 · · · ≤ u2n ≤ 1}

with the standard orientation and denote by Bbc the action of the form B on
the b-th and c-th components of W⊗(2n+1)

Bbc(a0 ⊗ · · · ⊗ a2n) =

Bij(a0 ⊗ · · · ⊗ ∂ab
∂yi

⊗ · · · ⊗ ∂ac
∂yj

⊗ · · · ⊗ a2n) , ab ∈ W .

Furthermore, we denote by π2n the action of the Liouville tensor (2)

π2n(a0 ⊗ · · · ⊗ a2n) = εi1...i2na0 ⊗ ∂a1

∂yi1
⊗ · · · ⊗ ∂a2n

∂yi2n
.

Finally, if we denote by µ the natural projection from (W⊗(2n+1)) onto C((�))

µ(a0 ⊗ · · · ⊗ a2n) = a0(0) . . . a2n(0),

then the Feigin-Felder-Shoikhet formula of the 2n-th Hochschild cocycle
τ2n ∈ C2n(W, (W)∗) can be written as [10]
(5)

τ2n(α)(a0) = µ2n

( ∫
∆2n

∏
0≤b≤c≤2n

e
�

2 (2ub−2uc+1)Bbcπ2n(a0 ⊗ α)du1 ∧ · · · ∧ du2n

)
,

where a0 ∈ W, α ∈ W⊗(2n), and u0 = 0 . It is easy to see that the cocycle τ2n
does not depend on the choice of the basis {y1, . . . , y2n} in V .

Applying the map (1) to (5) we get the 2n-th cocycle in the chain com-
plex C•(glN (W), glN (W)∗) of the Lie algebra glN (W) with values in the dual
module (glN (W))∗

(6) ΘN2n = φN (τ2n) : ∧2n(glN (W)) ⊗ glN (W) �→ C((�)) .

In [10] it was shown that the latter cocycle satisfies remarkable properties which
allow us to construct a trace density map for a quantum algebra of functions
on any symplectic manifold. Before talking about these properties we recall a
necessary construction of the Chern-Weil theory.
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2.2. The Chern-Weil homomorphism. Let g be a Lie algebra and h ⊂ g be
a subalgebra of g. Suppose that there is an h-equivariant projection pr : g �→ h,
that is a map commuting with the adjoint action of h and satisfying the property
pr |h = Idh . The amount by which pr fails to be a Lie algebra homomorphism
is measured by the “curvature” C ∈ Hom(∧2g, h)

(7) C(v, w) = [pr(v), pr(w)] − pr([v, w]) , v, w ∈ g .

Given the “curvature” (7) of the h-equivariant projection pr, it is not hard to
see that for any adjoint invariant form Q ∈ ((Sjh)∗)h the formula
(8)

χ(Q)(v1, . . . , v2j) =
1

(2j)!

∑
ν∈S2j

(−)νQ(C(vν(1), vν(2)), . . . , C(vν(2j−1), vν(2j)))

defines a relative Lie algebra cocycle χ(Q) ∈ C2j(g, h). The standard argument
of the theory of characteristic classes shows that the cohomology class [χ(Q)] of
the cocycle χ(Q) does not depend on the choice of the projection pr. Thus (8)
induces a map from the vector space ((Sjh)∗)h to H2j(g, h). The latter map is
called the Chern-Weil homomorphism.

In our case we set g = glN (W), h = glN ⊕ sp2n and define the projection pr
from g to h by the formula

(9) pr(v) = pr0(v) + pr2(v) ,

pr0(v) = v
∣∣∣
y=0

, pr2(v) =
1
N

σ2(tr(v))IN ,

where σ2 denotes the projection onto the monomials of the second degree in y’s,
tr is the ordinary matrix trace, IN is the identity matrix of size N ×N , and the
Lie algebra sp2n is realized as a subalgebra of scalar matrices in glN (W) with
values in quadratic monomials in W .

Due to [10] we have the following

Theorem 1 (Feigin-Felder-Shoikhet [10]). The Lie algebra cocycle
ΘN2n ∈ C2n(g, g∗) is relative with respect to the subalgebra h = glN ⊕ sp2n. The
evaluation of (6) on the identity matrix IN ∈ g gives a relative Lie algebra cocycle

ϕ ∈ C2n(g, h)

ϕ = ΘN2n(·, . . . , ·, IN ) : ∧2n(g) �→ C((�))
whose cohomology class

(10) [ϕ ] = [χ(Qn)] ,

coincides with the image of the n-th component Qn ∈ ((Snh)∗)h of the adjoint
invariant form Q ∈ ((Sh)∗)h

(11) Q(X, . . . ,X) = det
( X1/2�

sinh (X1/2�)

)1/2

tr exp
(
X2

�

)
,

X = X1 ⊕X2 ∈ sp2n ⊕ glN

under the Chern-Weil homomorphism (8).
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2.3. Fedosov deformation quantization with twisted coefficients. Let
M be a symplectic manifold of dimension 2n. We denote by ω = ωij(x)dxidxj

the corresponding symplectic form and by

ω = ωij(x)
∂

∂xi
∧ ∂

∂xj

the corresponding Poisson tensor. Here xi denote local coordinates and the
indices i, j run from 1 from 2n . For a vector bundle V of rank N over M
we will denote by End(V ) the bundle of endomorphisms of V and by EndV =
Γ(M, End(V )) the algebra of global sections of End(V ) .

If the vector bundle V is endowed with a connection ∂V then

Definition 2. By quantization of the algebra EndV we mean a construction
of an associative C((h))-linear product in EndV ((�)) given by the formal power
series

(12) a ∗ b = ab +
∑
k≥1

�
kBk(a, b) , a, b ∈ EndV

of bidifferential operators Bk : EndV ⊗ EndV �→ EndV such that

B1(a, b) −B1(b, a) = ωij(x)∂Vi (a)∂Vj (b) .

In [9] B. Fedosov proposed a simple procedure for the deformation quantiza-
tion of the algebra of endomorphisms of a vector bundle V over a symplectic
manifold M. The main ingredient of the construction is the Weyl algebra bundle
W (EndV ) whose sections are the following formal power series

(13) a = a(x, y, h) =
∑
k,l

�
kak;i1i2...il(x)yi1 . . . yil ,

where y = (y1 . . . y2n) are fiber coordinates of the tangent bundle TM, ak;i1i2...il
represent sections of End(V )⊗ Sl(T ∗M) and the summation over k is bounded
below.

Multiplication of two sections of W (EndV ) is given by the Weyl formula

(14) a ◦ b(x, y, �) = exp
(

�

2
ωij

∂

∂yi
∂

∂zj

)
a(x, y, �)b(x, z, �)|y=z.

Notice that in the right hand side of (14) the sections of W (EndV ) are multiplied
via the product induced from the algebra EndV .

For any point p ∈ M the fiber Wp(EndV ) of the Weyl algebra bundle at p
is isomorphic to the algebra glN (W) of N ×N -matrices of the Weyl algebra W
associated with the cotangent space T ∗

p (M) at the point p with the symplectic
form ωp . The transition functions are realized by the adjoint action of the group
GLN .
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The filtration (4) of the Weyl algebra gives us a natural filtration of the bundle
W (EndV )

(15)

· · · ⊂ W 1(EndV ) ⊂ W 0(EndV ) ⊂ W−1(EndV ) · · · ⊂ W (EndV ) ,

Γ(Wm(EndV )) = {a =
∑

2k+p≥m
�
kak;i1...ip(x)yi1 . . . yip} .

This filtration defines the 2[�] + [y]-adic topology in the algebra Γ(W (EndV ))
of sections of W (EndV ) .

The vector space Ω•(W (EndV )) of smooth exterior forms with values in
W (EndV ) is naturally a graded associative algebra with the product induced
by (14) and the following graded commutator

[a, b] = a ◦ b− (−)qaqbb ◦ a ,

where qa and qb are exterior degrees of a and b , respectively. The filtration of
W (EndV ) (15) gives us a filtration of the algebra Ω•(W (EndV ))

· · · ⊂ Ω•(W 1(EndV )) ⊂ Ω•(W 0(EndV )) ⊂
⊂ Ω•(W−1(EndV )) ⊂ · · · ⊂ Ω•(W (EndV )) .

In what follows we refer to the algebra Ω•(M) of exterior forms on M as
an algebra embedded into Ω•(W (EndV )) via the natural map ι : Ω•(M) �→
Ω•(W (EndV )) , which sends an exterior form η ∈ Ω•(M) to the scalar matrix
ηIN ∈ Ω•(W (EndV )) .

Let ∂s be a torsion free connection on TM compatible with the symplectic
structure ω. Using the connection ∂s and the connection ∂V on V we define the
following linear operator

∇ : Ω•(W (EndV )) �→ Ω•+1(W (EndV )) ,

(16) ∇ = dxi
∂

∂xi
− dxiΓkij(x)yj

∂

∂yk
+ [ΓV , · ] ,

where Γkij(x) are Christoffel symbols of ∂s and ΓV is the connection form of ∂V .
Thanks to the compatibility of ∂s with the symplectic structure ω the operator

(16) is a derivation of the graded algebra Ω•(W (EndV )) . Furthermore, a simple
computation shows that

∇2a =
1
2
[R + RV , a] , ∀ a ∈ Ω(W (EndV )) ,

where RV ∈ Ω2(EndV ) is the curvature form of ∂V ,

R =
1
2�

ωkm(Rij)ml (x)ykyldxidxj ,

and (Rij)ml (x) is the Riemann curvature tensor of ∂s .
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Definition 3. The Fedosov connection is a nilpotent derivation of the graded
algebra Ω•(W (EndV )) of the following form

(17) D = ∇ +
1
�
[A, · ] , A = −dxiωij(x)yj + r ,

where r is an element in Ω1(W 2(EndV ))

The flatness of D is equivalent to the fact that the Fedosov-Weyl curvature

(18) CW = �(R + RV ) + 2∇A +
1
�
[A,A]

of D belongs to the subspace Ω2(M)((�)) ⊂ Ω2(W (EndV )) . A simple analysis
of degrees in � and y shows that CW is of the form

(19) CW = −ω + Ω� , Ωh ∈ �Ω2(M)[[�]]

whereas the Bianchi identity D(CW ) = 0 implies that Ωh is a series of two-forms
closed with respect to the De Rham differential.

One can observe that the definition of the Fedosov connection depends on
the choice of the symplectic connection ∂s and the connection ∂V on V . The
following proposition shows how this problem can be remedied

Proposition 1. If ∇ and ∇̃ are two operator (16) corresponding to the sym-
plectic connections ∂s, ∂̃s and the connections ∂V , ∂̃V on V , respectively, then
the difference D̃ −D between two Fedosov connections

(20) D̃ = ∇̃ +
1
�
[−dxiωij(x)yj + r̃, · ] , D = ∇ +

1
�
[−dxiωij(x)yj + r, · ] ,

takes the form of the commutator

D̃ −D =
1
�
[∆r, · ] ,

where ∆r ∈ Ω1(W 2(EndV )) . In other words any deviations of the connections
∂s and ∂V can be absorbed into the form r ∈ Ω1(W 2(EndV )) .

Proof. See page 151 in [9] . �
Let us consider the affine subspace IN ⊕Γ(W 1(EndV )) in Γ(W (EndV )) con-

sisting of the sums U = IN + U1 , where IN is the identity endomorphism of V
and U1 is an arbitrary element in Γ(W 1(EndV )). It is straightforward that

Proposition 2. The affine subspace IN ⊕ Γ(W 1(EndV )) ⊂ Γ(W (EndV )) is a
subgroup in the group of invertible elements of Γ(W (EndV )) . �

We are now ready to give the following

Definition 4. Two Fedosov connections

D = ∇ +
1
�
[A, · ] , D̃ = ∇ +

1
�
[Ã, · ]

are called equivalent if there exists an element U ∈ IN⊕Γ(W 1(EndV )) such that

(21) D̃ = D + [U−1 ◦DU, · ]
or equivalently Ã = U−1 ◦A ◦ U + �U−1 ◦ ∇U .
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Let us remark that the Fedosov connection (17) can be rewritten as

(22) D = ∇− δ +
1
�
[r, · ] ,

where

(23) δ =
1
�
[dxiωij(x)yj , · ] = dxi

∂

∂yi

is the Koszul derivation of the algebra Ω•(W (EndV )) .
For our purposes we will need the homotopy operator for the Koszul differ-

ential δ

(24) δ−1a = yki

(
∂

∂xk

) 1∫
0

a(x, �, ty, tdx)
dt

t
,

where i(∂/∂xk) denotes the contraction of an exterior form with the vector field
∂/∂xk , and δ−1 is extended to Γ(W (EndV )) by zero.

Simple calculations show that δ−1 is indeed the homotopy operator for δ,
namely

(25) a = σ(a) + δδ−1a + δ−1δa , ∀ a ∈ Ω(W (EndV ))

where σ is the natural projection

(26) σ(a) = a
∣∣∣
y=0, dx=0

, a ∈ Ω•(W (EndV ))

from Ω•(W (EndV )) onto the algebra of endomorphisms EndV ((�)) .
The proof of the following theorem is contained in section 5.3 of [9]. (More

precisely, see theorem 5.3.3 and remarks at the end of section 5.3)

Theorem 2 (Fedosov, [9]). If ∂s is a symplectic connection on M, ∂V is a
connection on V and Ω� is a series of closed two-forms in �Ω2(M)[[�]] then

(1) One can construct a nilpotent derivation D = ∇+�
−1[r−dxiωij(x)yj , · ]

whose Fedosov-Weyl curvature (18) is equal to CW = −ω + Ω� and the
element r ∈ Ω1(W 2(EndV )) satisfies the normalization condition

(27) δ−1r = 0 .

(2) Given a Fedosov connection (17) one can construct a vector space iso-
morphism λ

(28) λ : EndV ((�)) →̃ ΓD(W (EndV ))

from EndV ((�)) to the algebra ΓD(W (EndV )) of flat sections of
W (EndV ) with respect to D. The product in EndV ((�)) induced via
the isomorphism λ is the desired star-product (12)

(3) Two Fedosov connections D and D̃ whose Fedosov-Weyl curvatures rep-
resent the same De Rham cohomology class in H2

DR(M)[[�]] are equiva-
lent in the sense of definition 4. If the equivalence between D and D̃ is
established by an element U ∈ IN ⊕ Γ(W 1(EndV )) then the map

a �→ U ◦ a ◦ U−1
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gives an isomorphism from the algebra Γ eD(W (EndV )) of flat sections of
D̃ to the algebra ΓD(W (EndV )) of flat sections of D .

Remark 1. The construction of the Fedosov connection is functorial in the
sense that if u is an isomorphism from V to Ṽ then

D̃ = D + [uD(u−1), · ]
is a Fedosov connection in Ω•(W (EndeV )) . Moreover, the corresponding isomor-
phisms

λ : EndV ((�)) →̃ ΓD(W (EndV )) , λ̃ : EndeV ((�)) →̃ Γ eD(W (EndeV ))

are related by the formula

λ̃(a) = uλ(u−1au)u−1 , a ∈ EndeV .

Remark 2. If V is a trivial vector bundle L1 of rank N = 1 then the iso-
morphism λ (28) gives a star-product ∗ in the algebra of functions C(M)((�)) .
Due to the result of P. Xu [19], any star-product in C(M)((�)) is equivalent
to the one obtained via Fedosov’s procedure1. In particular, the cohomology
class of the Fedosov-Weyl curvature (18) is a well-defined characteristic class
of a star-product in C(M)((�)). This characteristic class is referred to as the
Deligne-Fedosov class.

Let us prove here an important technical lemma which might as well have an
independent interest

Lemma 1. Let V be a vector bundle over the symplectic manifold M and D
be a Fedosov connection (17) with the form r = A + dxiωij(x)yj satisfying the
normalization condition (27). If q ∈ EndV is an endomorphism of V then

∂V q = 0 ⇒ Dq = 0 .

In other words, if q is ∂V -flat then the isomorphism λ (28) sends the q to itself.

Proof. Since q does not depend on y′s and ∂V q = 0 we have that ∇q = δq =
0 . Hence, Dq = �

−1[r, q] and it suffices to show that the commutator [r, q] is
vanishing. Since D is nilpotent D[r, q] = 0.

The operator δ−1 (24) is not a derivation of algebra Ω•(W (EndV )). However,
since q does not depend on y′s and δ−1r = 0,

δ−1[r, q] = 0 .

Thus if η = [r, q] ∈ Ω1(W (EndV )) we have

δη = ∇η +
1
�
[r, η] , δ−1η = 0 .

Therefore, applying (25) to η we get

η = δ−1(∇η +
1
�
[r, η]) .

1See paper [8], in which this result was extended to any smooth affine algebraic symplectic

variety.
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The latter equation has the unique vanishing solution since δ−1 raises the degree
in y . Thus the lemma is proven. �

2.4. The Feigin-Felder-Shoikhet trace density map. Let as above V be a
vector bundle of rank N over the symplectic manifold M and ∗ be a star-product
(12) in the algebra EndV ((�)) . Then,

Definition 5. A trace density map trd is a C((�))-linear map

trd : EndV ((�)) �→ H2n(M)((�))

vanishing on commutators

trd(a ∗ b− b ∗ a) = 0 , a, b ∈ EndV ((�)) .

We will show that if the star-product ∗ in EndV ((�)) is obtained via the
Fedosov procedure [9] then the Feigin-Felder-Shoikhet cocycle (6) provides us
with a natural trace density map.

Let as above D be the Fedosov connection (17) and λ be the isomorphism
(28). Since ΘN2n (6) is a cocycle of g = glN (W) relative to h = glN ⊕ sp2n , we
have the following well-defined map

(29) ΨD : EndV ((�)) �→ Ω2n(M)((�)) , ΨD(a) =
1
�n

ΘN2n(A, . . . , A, λ(a)) ,

where A ∈ Ω1(W (EndV )) is the one-form entering the definition of the Fedosov
connection D (17) .

We assemble the required properties of the map ΨD in the following

Theorem 3 (Feigin-Felder-Shoikhet, [10]). With the above notations the follow-
ing statements hold:
i) If V1 and V2 are two vector bundles over M and D1, D2 are Fedosov connec-
tions on W (EndV1) and W (EndV2), respectively, then for any a ∈ EndV1

ΨD1⊕D2(a⊕ 0) = ΨD1(a) ,

where 0 stands for the trivial endomorphism of V2 .
ii) For any pair of endomorphisms a, b ∈ EndV ((�))

ΨD(a ∗ b− b ∗ a) ∈ dΩ2n−1(M)((�)) ,

where d is the De Rham differential.
iii) Let D and D̃ be two equivalent Fedosov connections and
U ∈ IN ⊕ Γ(W 1(EndV )) be the element establishing their equivalence in the
sense of (21). Then for any a ∈ EndV ((�))

Ψ eD(σ(U−1 ◦ λ(a) ◦ U)) − ΨD(a) ∈ dΩ2n−1(M)((�)) ,

where σ is the projection (26) and λ is the isomorphism (28).
iv) For the identity endomorphism IN ∈ EndV

ΨD(IN ) − 1
�n

Qn(C(A,A), . . . , C(A,A)) ∈ dΩ2n−1(M)((�)) ,
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where Qn ∈ ((Snh)∗)h is the n-th component of the adjoint invariant form (11),
A ∈ Ω1(W (EndV )) is the one-form entering the definition of the Fedosov con-
nection D (17) and C is the fiberwise “curvature” (7) of the projection (9) .

Proof. Statement i) is obvious from the construction of the cocycle ΘN2n (1),
(5), (6). Statements ii), iii), and iv) are proven in [10] for the case when the
bundle V is trivial. Statements ii) and iii) follow from the fact ΘN2n is a cocycle
relative to h = glN ⊕ sp2n and statement iv) is a consequence of (10) . These
results of [10] are generalized to the non-trivial bundle V in a straightforward
manner since we always deal with the Lie algebra cochains relative to h = glN ⊕
sp2n . �

As an immediate consequence of this theorem we get that

Corollary 1. If ∗ is the star-product in EndV ((�)) obtained via the isomorphism
λ (28) then

(30) trd(a) = [ΨD(a)] : EndV ((�)) �→ H2n(M)((�))

is a trace density map.

In what follows we refer to (30) as the Feigin-Felder-Shoikhet (FFS) trace
density map.

3. The local version of the algebraic index theorem

Let M be either a smooth real symplectic manifold of dimension 2n or a
smooth affine algebraic variety (over C) of the complex dimension 2n endowed
with an algebraic symplectic form. Let ∗ be a star-product in the vector space
C(M)((�)) of smooth (resp. regular) functions on M. Throughout this section
we denote the algebra (C(M)((�)), ∗) by A and the subalgebra (C(M)[[�]], ∗)
of A by A

+

Due to remark 2 after theorem 2, we may safely assume that ∗ is obtained
by Fedosov’s procedure. Since in this case the vector bundle is trivial the Fe-
dosov star-product depends only on the pair (∂s,Ω�), where ∂s is the symplectic
connection on M and Ω� ∈ �Ω2(M)[[�]] is a series of closed two-forms. Let
D = ∇ + �

−1[A, · ] be the corresponding Fedosov connection.
For any idempotent P in the matrix algebra glN (A+) we assign the top degree

De Rham cohomology class

(31) cl(P ) = [ΨD(P )] ∈ H2n(M)((�)) ,

where D is naturally extended to the Fedosov connection on the Weyl algebra
bundle W (End(LN )) associated with the trivial bundle LN of rank N .

Due to statements i) and ii) (31) gives a well-defined map

cl : K0(A+) �→ H2n(M)((�))

from the K0-group of the algebra A
+ to H2n(M)((�)).

Definition 6. The zeroth term q = P |�=0 of an idempotent P ∈ glN (A+) is
called the principal part of P .
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It is obvious that q is an idempotent in the matrix algebra glN (C(M)) and
the operation of taking the principal part gives a well-defined principal symbol
map

(32) Ξ : K0(A+) �→ K0(C(M)) .

Due to the observation of L. Boutet de Monvel and V. Guillemin [4] for
any idempotent q in the matrix algebra glN (C(M)) there exists an idempotent
P ∈ glN (A+) whose principal part is q. (See the explicit formula for P in [9],
eq. (6.1.4))

Using standard arguments of the index theory we can prove that the coho-
mology class (31) of an idempotent P ∈ glN (A+) depends only on its principal
part. For our purposes we need a slightly more general statement:

Proposition 3. Let V be a vector bundle over M and ∗ be the Fedosov star-
product in EndV [[�]]. Then if two idempotents P1, P2 ∈ (EndV [[�]], ∗) have the
same principal part

P1

∣∣∣
�=0

= P2

∣∣∣
�=0

,

the cohomology classes [ΨD(P1)] and [ΨD(P2)] coincide.

Proof is a straightforward generalization of the arguments in the proof of
theorem 6.1.3 in [9] . �

The precise dependence of the cohomology class cl(P ) on the principal part
q of P is given by the local algebraic index theorem

Theorem 4. For any element Π ∈ K0(A+) the cohomology class cl(Π) coincides
with the top component of the cup product

cl(Π) =
[
Â(M) exp

(
−F

�

)
ch(Ξ(Π))

]
2n

,

of the Â-genus of M, the exponent e−
F
� of the Deligne-Fedosov class

F =
[
− ω + Ω�

]
of the star-product in A

+ and the Chern character ch(Ξ(Π)) of the principal
symbol Ξ(Π) of Π .

Proof. Let P be an idempotent in the matrix algebra glN (A+) and q ∈
glN (C(M)) be the principal part of P . As an idempotent endomorphism of the
trivial bundle LN or rank N , q defines a subbundle E = Im q ⊂ LN .

It suffices to prove that the 2n-form ΨD(P ) has the same cohomology class
as the 2n-th component of the form

det
( R/2
sinh (R/2)

)1/2

exp
(
ω − Ω�

�

)
tr exp(RE) ,

where R is the curvature form of the symplectic connection ∂s, RE is the curva-
ture form of the vector bundle E , and tr stands for the ordinary matrix trace.
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We start with an observation that q is a flat section of End(LN ) with respect
to the connection

(33) ∂LN = d + [q(dq) − (dq)q, · ] .
Let DLN be the Fedosov connection (17) corresponding to the initial sym-

plectic connection ∂s on M, the initial series Ωh of closed two-forms and the
connection (33) on the trivial bundle LN . By claim 3 of theorem 2 there exists
an element U ∈ IN ⊕W 1(EndLN

) which establishes the equivalence between the
connections D and DLN in the sense of definition 4. Therefore, by statement
iii) of theorem 3

ΨD(P ) − ΨDLN (P̃ ) ∈ dΩ2n−1(M)((�)) ,

where P̃ = σ(U−1 ◦P ◦U) is an idempotent in the algebra (EndLN
, ∗̃), with the

star-product ∗̃ corresponding to the Fedosov connection DLN .
Notice that, P̃ and P have the same principal part P̃

∣∣∣
�=0

= P
∣∣∣
�=0

= q. Let

us consider q as an element in the algebra (EndLN
, ∗̃) . By claim 1 of theorem 2

we may assume that DLN satisfies normalization condition (27). Therefore, by
lemma 1 the element q is flat with respect to DLN , and hence q is an idempotent
of the algebra (EndLN

, ∗̃) . By proposition 3 we may safely assume that P̃ = q .
We recall that E = Im q ⊂ LN is the subbundle of LN , corresponding to

the idempotent q and denote by Ẽ the subbundle Ẽ ⊂ LN corresponding to the
complementary idempotent IN − q ∈ EndLN

. Thus, our trivial vector bundle
LN is isomorphic to the direct sum E ⊕ Ẽ . Let us fix an isomorphism u

u : L →̃ E ⊕ Ẽ .

Since qu = uqu−1 ∈ EndE⊕ eE is the projector onto E along Ẽ

(34) qu

∣∣∣
Γ(E)((�))

= Im , qu

∣∣∣
Γ( eE)((�))

= 0 ,

where m is the rank of E and Im is the identity endomorphism of E .
Due to remark 1 after theorem 2

(35) DE⊕ eE = DLN + [uDLN (u−1), · ]
is the Fedosov connection on the Weyl algebra bundle W (EndE⊕ eE).

Furthermore, qu = uqu−1 is flat with respect to DE⊕ eE , and hence the con-
nection DE⊕ eE preserves the following subspaces of EndE⊕ eE((�))

{a ∈ EndE⊕ eE((�)) | a
∣∣∣
Γ(E)((�))

⊂ Γ(E)((�)), a
∣∣∣
Γ( eE)((�))

= 0} ,

{a ∈ EndE⊕ eE((�)) | a
∣∣∣
Γ( eE)((�))

⊂ Γ(Ẽ)((�)), a
∣∣∣
Γ(E)((�))

= 0} .

The latter implies that DE⊕ eE is a direct sum DE⊕D
eE of the Fedosov connections

(36) DE = ∇E +
1
�
[AE , · ] , D

eE = ∇ eE +
1
�
[A eE , · ]
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on the bundles W (EndE) and W (End eE), respectively. Thus, due to (34) and
statement i) of theorem 3 we have

ΨDLN (P̃ ) = ΨDE (Im) ,

where Im is as above the identity endomorphism of the vector bundle E .
Using statement iv) of theorem 3 we get that

(37) ΨDE (Im) − 1
�n

Qn(C(AE , AE), . . . , C(AE , AE)) ∈ dΩ2n−1(M)((�)) ,

where Qn ∈ ((Snh)∗)h is the n-th component of the adjoint invariant form (11),
h = glN ⊕ sp2n , AE ∈ Ω1(W (EndE)) is the one-form of the Fedosov connection
DE (36), and C is the fiberwise “curvature” (7) of the projection (9).

To compute C(AE , AE) we mention that since the Fedosov connection DE⊕ eE

is obtained from the DLN via conjugation (35) the connection DE⊕ eE has the
same Fedosov-Weyl curvature (18)

�(R + RE⊕ eE) + 2∇E⊕ eEAE⊕ eE +
1
�
[AE⊕ eE , AE⊕ eE ] = −ω + Ω� .

Here AE⊕ eE is the one-form of the Fedosov connection DE⊕ eE , ∇E⊕ eE is the
operator (16) corresponding to the symplectic connection ∂s and the connection
∂E⊕ eE on E ⊕ Ẽ obtained from ∂LN via the isomorphism u . Finally, RE⊕ eE is
the curvature form of the connection ∂E⊕ eE .

On the other hand the Fedosov connection DE⊕ eE is a direct sum of the
Fedosov connections DE and D

eE . Hence,

(38) �(R + RE) + 2∇EAE +
1
�
[AE , AE ] = −ω + Ω� ,

where RE is the curvature form of the connection ∂E on E and ∇E is the operator
(16) corresponding to the symplectic connection ∂s on M and the connection
∂E .

Notice that, the projection pr(AE) may be non-zero. However, using the
trick of proposition 1 we can absorb the terms that contribute to pr(AE) into
the operator ∇E . In this way we change both2 the symplectic connection ∂s on
M and the connection ∂E on E , and therefore we change curvature forms R
and RE . It is not hard to show that after this rearrangement equation (38) still
holds.

Since pr(AE) is now vanishing pr∇(AE) = ∇pr(AE) = 0 . Thus, applying pr
to both sides of (38) we get

(39) C(AE , AE) = �
2R + �

2RE − �(−ω + Ω�) .

Substituting (39) into equation (37) we complete the proof of the theorem. �

2Notice that, both the new Christoffel form Γ and the new connection form ΓE become
formal power series in � .
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4. Concluding remarks.

We would like to mention that our result (theorem 4) is derived from the
purely algebraic fact (10) about the cohomology of Lie algebra of matrices over
the Weyl algebra. In this respect our approach is very reminiscent of finding
“local” proofs of the Riemann-Roch-Hirzebruch theorem [1], [3], [5], [6], and [12].
Thus, in [1] and [3] the Riemann-Roch theorem for families of Riemann curves
is deduced from purely algebraic facts about the cohomology of the Lie algebra
of vector fields. In paper [12] this idea is generalized to higher dimensions.

The Bressler-Nest-Tsygan theorem [6] or the Riemann-Roch theorem for de-
formation quantizations, which we already mentioned in the introduction, is
also a local statement based on purely algebraic relations between Hochschild,
cyclic, and Lie algebra (co)homology. It seems that this result is the most gen-
eral Riemann-Roch type theorem which can be proven in the symplectic setting
using the methods of [6].

A very similar statement to our result is proposed in recent paper [11] by B.
Feigin, A. Losev, and B. Shoikhet. In this paper the authors consider the algebra
Diff(E) of holomorphic differential operators acting on sections of a holomorphic
vector bundle E over a compact complex manifold X of the complex dimension
n. They give a tractable notion of Hochschild homology HH• of Diff(E) for
which HH•(Diff(E)) = H2n−•(X,C) and construct a map

(40) Λ : Diff(E) �→ H2n(X,C)

which induces an isomorphism HH0(Diff(E)) ∼= H2n(X,C) . Then, using the
original Riemann-Roch-Hirzebruch theorem and assuming that the Euler char-
acteristic of E is nonzero the authors of [11] deduce that for any D ∈ Diff(E), the
pairing of Λ(D) with the fundamental class [X] coincides with the super-trace
str(D) of D .

We would like mention that the technique used in [11] to define the map (40)
is very similar to the procedure of constructing the Hochschild cocycle (5) . This
technique was originally proposed in paper [14] and we suspect that it has an
independent interest.

Notice that, since our proof of theorem 4 is purely algebraic, it can be gener-
alized in a straightforward manner to the setting of the symplectic Lie algebroids
[17] . In this case the local algebraic index theorem relates the cohomology classes
of the De Rham complex associated with the corresponding Lie algebroid.
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