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CONVERGENCE OF A KÄHLER-RICCI FLOW

Natasa Sesum

Abstract. In this paper we prove that for a given Kähler-Ricci flow with uni-
formly bounded Ricci curvatures in an arbitrary dimension, for every sequence of
times ti converging to infinity, there exists a subsequence such that (M, g(ti+t)) →
(Y, ḡ(t)) and the convergence is smooth outside a singular set (which is a set of
codimension at least 4) to a solution of a flow. We also prove that in the case of
complex dimension 2, we can find a subsequence of times such that we have a con-
vergence to a Kähler-Ricci soliton, away from finitely many isolated singularities.

1. Introduction

Let M be a compact Kähler manifold of dimension n with the Kähler metric
ds2 = gij̄dzidz̄j . The Ricci curvature of this metric is given by the formula

Rij̄ =
−∂2

∂zi∂z̄j
ln det(gij̄).

This implies that
√−1
2π Rij̄dzianddz̄j is closed and its cohomology class is equal

to the first Chern class c1(M) of M . We will assume that c1(M) is positive and
that it is represented by a Kähler form. We will consider the complex version of
Hamilton’s Ricci flow equation of the following type:

(gij̄)t = gij̄ − Rij̄ = ∂i∂̄ju,(1)

where gij̄(t) = gij̄(0)+∂i∂̄jφ and d
dtφ = u. In [2] H.D. Cao proved that a solution

of (1) exists for all times t ∈ [0,∞). A natural question that one can ask is what
happens to a flow when time approaches infinity. Under which conditions will it
converge? How can we describe the objects that we get in a limit? In this paper
we will give partial answers to these questions.

In section 3 we will consider a Kähler-Ricci flow (1) with uniformly bounded
Ricci curvatures. Our goal is to prove the following theorem.

Theorem 1. Assume we are given a flow (1) in an arbitrary dimension. Assume
that the Ricci curvatures are uniformly bounded, i.e. |Ric| ≤ C for all t. Then
for every sequence ti → ∞ there exists a subsequence such that (M, g(ti + t)) →
(Y, ḡ(t)) and the convergence is smooth outside a singular set S, which is at least
of codimension four. Moreover, ḡ(t) solves the Kähler-Ricci flow equation off the
singular set.
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In section 4 we will restrict ourselves to complex dimension 2. We are inter-
ested in proving the convergence of a Kähler Ricci flow, under some reasonable
assumptions, to Kähler Ricci solitons. It may happen that a Kähler Ricci soli-
ton arising as a limit of the flow has singularities. A lot of progress has been
made in studying the limits of a Kähler Ricci flow. It is especially important to
know when we can expect to get Kähler Einstein metrics in a limit. Among first
works on that topic is the work by Chen and Tian ([4], [5]) where they proved
that if M admits a Kähler Einstein metric with positive scalar curvature and
if an initial metric has a nonnegative bisectional curvature that is positive at
least at one point, then the Kähler Ricci flow converges exponentially fast to a
Kähler Einstein metric with constant bisectional curvature. In [12], Phong and
Sturm recently gave also some sufficient conditions for having a flow converge
exponentially to a Kähler Einstein metric. In general, if a flow converges at
least sequentially to Kähler Ricci solitons, it would be nice to see when we get
a unique limit. A very important question of the uniqueness of Kähler Ricci
solitons has been studied by Tian and Zhu in [14] and [15].

In this paper we also want to prove the following theorem.

Theorem 2. Let gkj̄(t) = gkj̄ − Rkj̄ be a Kähler-Ricci flow on a 2 dimensional
complex, Kähler manifold with uniformly bounded Ricci curvatures. Then for
every sequence ti → ∞ there exists a subsequence so that (M, g(ti + t)) →
(Y, ḡ(t)), where Y is a smooth manifold outside finitely many isolated points
and ḡ(t) is a Kähler-Ricci soliton away those bad points.

2. Background and notation

First of all, let us recall the definitions of Ricci solitons.

Definition 3. A solution gij̄ to equation (1) on M is called Kähler-Ricci soli-
ton if it moves along (1) under one-parameter family of automorphisms of M
generated by some holomorphic vector field.

This means that

gij̄ − Rij̄ = Vi,j̄ + Vj̄,i,

for some holomorphic vector field V = (V i). In the case of limit solitons in The-
orem 2, we will show that the vector fields come from the gradients of functions
on M , i.e. that

gij̄ − Rij̄ = f,ij̄ ,

and f,ij = 0 for some real valued function f on M . This condition is equivalent
to a fact that V = ∇f is a holomorphic vector field.

Perelman’s functional W for a flow (1) is

W(g, f, τ) = (4πτ)−n

∫
M

e−f [2τ(R + |∇f |2) + f − 2n]dVg,
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with a constraint that (4πτ)−n
∫

M
e−fdVg = 1. Perelman has proved some very

interesting properties of flow (1). We will list them in the following theorem.

Theorem 4 (Perelman). If (1) is a flow on a complex, Kähler, closed manifold
M , then

1. C1,α norms of functions u(t) are uniformly bounded along the flow,
2. the scalar curvatures R(t) and the diameters diam(M, g(t)) are uniformly

bounded along the flow,
3. a volume noncollapsing condition holds along the flow, i.e. there exists

C = C(g(0)) such that Volt(B(p, r)) ≥ Crn.

We will need a theorem proved by Cheeger, Colding and Tian ([15]) in our
further discussion and we will state it below for a reader’s convenience.

Theorem 5 (Cheeger, Colding, Tian). If {Mi, gi, pi)} converges to (Y, d, y) in
pointed Gromov-Hausdorff topology, if |Ric|Mi ≤ C and if Vol(B1(pi)) ≥ C for
all i, then the regular part R of Y is a C1,α-Riemannian manifold and at points
of R, the convergence is C1,α. Moreover the codimension of the set of singular
points (which is a closed set in Y ) is at least 4.

In the proof of Theorem 1 we will use Perelman’s pseudolocality theorem
([11]).

Theorem 6 (Perelman). For every α > 0 there exist δ > 0, ε > 0 with the
following property. Suppose we have a smooth solution to the Ricci flow and
assume that at t = 0 we have R(x) ≥ −r−2

0 and Vol(∂Ω)n ≥ (1− δ)cnVol(Ω)n−1

for any x,Ω ⊂ B(x0, r0), where cn is the euclidean isoperimetric constant. Then,
|Rm|(x, t) ≤ αt−1 + (εr0)−2 whenever 0 < t ≤ (εr0)2 and distt(x, x0) < εr0.

Perelman proved this theorem for a case of unnormalized Ricci flow, but it
can be easily modified for the case of a normalized Kähler-Ricci flow.

3. Kähler-Ricci flow with uniformly bounded Ricci curvatures

In this section we will consider a flow (1), with uniformly bounded Ricci
curvatures. For any sequence ti → ∞, if gi(t) = g(ti + t), the metrics gi(t) are
uniformly equivalent to metrics gi(s) for s, t belonging to an interval of finite
length. Moreover, the following proposition (in [7]) applies to metrics gi(t).

Proposition 7 (D. Glickenstein). Let {(Mi, gi(t), pi)}∞i=1, where t ∈ [0, T ], be
a sequence of pointed Riemannian manifolds of dimension n which is continuous
in the t variable in the following way: for each δ > 0 there exists η > 0 such
that if t0, t1 ∈ [0, T ] satisfies |t0 − t1| < η then

(1 + δ)−1gi(t0) ≤ gi(t1) ≤ (1 + δ)gi(t0),(2)

for all i > 0, and such that Ric(gi(t)) ≥ cgi(t), where c does not depend on t
or i. Then there is a subsequence {(Mi, gi(t), pi)}∞i=1 and a 1-parameter family
of complete pointed metric spaces (X(t), d(t), x) such that for each t ∈ [0, T ]
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the subsequence converges to (X(t), d(t), x) in the pointed Gromov-Hausdorff
topology.

(Mi, gi(t)) and (Mi, gi(0)) are homeomorphic by Lipschitz homeomorphisms,
and in [7] it has been showed be showed that X(t) is homeomorphic to X(0). If
ti is any sequence such that ti → ∞, Proposition 7 applies to (M, g(ti + t)) for
all i and all t belonging to a time interval of finite length.

For the moment we will restrict ourselves to the case of Kähler manifolds of
complex dimension 2, and later we will show how it can be generalized to an
arbitrary dimension. In the case of complex dimension 2, for every sequence
ti → ∞ there is a subsequence {(M, g(ti + t))} converging to a compact orbifold
(Y, ḡ(t)) with isolated singularities. This is due to the fact that L2 norm of the
curvature operator in the Kähler case can be uniformly bounded in terms of the
first and the second Chern class of a manifold and its Kähler class. Combining
Proposition 7 and Theorem 5 gives that (Y, ḡ(t)) is an 1 parameter family of
orbifolds (it is even a Lipschitz family for t belonging to an interval of finite
length), such that a regular part of (Y, ḡ(t)) is C1,α manifold and the convergence
(M, g(ti + t)) → (Y, ḡ(t)) takes place in C1,α topology, away from the set of
singular points (which is common for all orbifolds (Y, ḡ(t))). In the case of
higher dimensions, again by Proposition 7 and Theorem 5 we will have that
{(M, g(ti + t))} converge to (Y, ḡ(t)) with a singular set S ⊂ Y of codimension
at least 4. R = Y \S is an open C1,α manifold and the convergence on R is in
C1,α norm. We will show later that the set S is common for (Y, ḡ(t)) for all t.
The main tools in the proof of Theorem 1 will be Theorem 6 and Theorem A.1.5
of Cheeger and Colding that can be found in the appendix of [6].

We will now prove Theorem 1.

Proof. If the curvature does not blow up, we are done. Therefore, assume that
the curvature does blow up. Let ti → ∞ be such that Qi = |Rm|(pi, ti) ≥
maxM×[0,ti] |Rm|(x, t) and Qi → ∞. We already know that since |Ric|(g(t)) ≤
C, there exists a subsequence (M, g(ti + t)) converging to orbifolds (Y, ḡ(t)) in
C1,α norm off the set of singular points. Moreover, metrics ḡ(t) are C1,α off the
singular set. We may assume that Sing(Y ) = {p}. Our goal is to show that we
actually have C∞ convergence off the singular point p, due to the fact that our
metrics are changing with the Kähler-Ricci flow.

Adopt the notation of [15]. In general, a point y ∈ Y is called regular, if for
some k, every tangent cone at y is isometric to Rk. Denote a set of those points by
Rk and let R = ∪kRk. Because of the noncollapsing condition that we have be-
cause of Theorem 4, we have that R = Rn. Let Rε = {y |dGH(B1(y∞), B1(0)) <
ε for every tangent cone (Yy, y∞)} , where B1(0) is a unit ball in Rn. Let Rε,r be
a set of all points y ∈ Y such that there exists x such that (0, x) ∈ R4 ×{x} and
for some u > r and every s ∈ (0, u] dGH(Bs(y), Bs((0, x))) < εs. Rε = ∪rRε,r.

Choose εP and δP as in Perelman’s pseudolocality theorem. Choose ε′ > 0
such that δP > ε′ and ε′ ≤ ε0, where ε0 is such that R = Rε for all ε ≤ ε0 (the
existence of such an ε0 is proved in section 7 of [6].
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Fix a time t = t0. Pick up any point q ∈ Y \{p}. Then q ∈ ∩ε≤ε0Rε. Let
d = distḡ(t0)(p, q).

Claim 8. There exist η > 0 and a sequence qi ∈ M such that qi → q, while
(M, g(ti + t)) → (Y, ḡ(t)) as i → ∞ for all t.

Proof. Assume that q ∈ K ⊂ Y \{p}, where K is a compact set and let r =
dist(K, p). For every t, g(ti+t) uniformly converge to ḡ(t) on K. Let φ : K → Ki

be diffeomorphisms as in a definition of convergence of (M, g(ti + t)) to (Y, ḡ(t)).
Let qi(t0) ∈ M be such that distg(ti+t0)(qi(t0), φi(q)) < ε, for i ≥ i0. Since
the Ricci curvatures of g(t) are uniformly bounded, there exists η > 0 so that
|t − s| < η implies that |distg(ti+s)(x, y) − distg(ti+t)(x, y)| < ε, for all x, y ∈ M .
Therefore,

distg(ti+t)(qi(t0), φi(q)) ≤ distg(ti+t0)(qi(t0), φi(q)) + ε < 2ε,

for i ≥ i0 and for all t ∈ [−η, η]. Notice that η does not depend either on t0 or
q, but it depends on K, i.e. on its distance from p. Therefore, if we continue
this process infinitely many times, considering t0 + η instead of t0, etc. we get
that the sequence {qi} will work for all times t ≥ 0.

Lemma 9. For any regular point q ∈ R there exists i0, η and r > 0 such that for
all Bg(ti+t)(s, q′) ⊂ Bg(ti+t)(r, qi(t)) we have Volg(ti+t)Bg(ti+t)(s, q′) ≥ (1−ε′)sn,
for all i ≥ i0 and all t ∈ [t0 − η, t0 + η], where qi ∈ M is a sequence of points
converging to q, while (M, g(ti + t)) → (Y, ḡ(t)).

Proof. For ε′ find r and δ as in Theorem A.1.5 (i) and (ii) in [6]. For this δ (that
now plays the role of ε in Theorem A.1.5 in [6]) find δ1 and r1 (by part (iii) of
the same theorem), such that x ∈ (WR)8δ1,r′ implies that

y ∈ Rδ,s ∀y ∈ Br′(x) ∀s ≤ (1 − δ)r′ − dist0(x, y), r′ ≤ r1,(3)

where a distance is measured in metric ḡ(t0). We may assume that r1 < d,
because otherwise we can decrease r1. Take any sequence δi → 0 as i → ∞. We
can choose a sequence ri such that q ∈ Rδi,ri

, since q ∈ Rδi
. We claim that

q ∈ Rδ1,r, for some r < r1. In order to prove that, we may assume ri → 0
(otherwise if ri ≥ κ for all i, dGH(Bl(q), Bl(0)) ≤ lδi → 0 for all l ≤ κ and
therefore we would have VolBl(q) = VolBl(0) for all l ≤ κ, and q ∈ Rδ1,s for
some s < r1, by Theorem A.1.5, part (i) in [6]. Therefore, there exist δ′′ < δ1

and r′′ < r1 such that q ∈ Rδ′′,r′′ . This implies q ∈ Rδ1,r′′ , since δ′′ < δ1. This
is true in metric ḡ(t0).

Claim 10. There exist η > 0 and i0 such that qi ∈ Rδ1,r′′ for all metrics g(ti+t)
for i ≥ i0 and t ∈ [t0 − η, t+η].

Proof. q ∈ Rδ1,r′′ and therefore,

dGH(Bs(x, 0), Bs(q, t0)) < sδ1,(4)
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for some s < r′′. We can substitute space {x}×R4 by R4 only and therefore we
can write just Bs(0) instead of Bs(x, 0). Since the Ricci curvatures of g(t) are
uniformly bounded, there exists η such that |t − t0| < η implies that

dGH(Bg(ti+t)(qi, s), Bg(ti+t0)(qi, s)) < δ1s.(5)

Since g(ti + t0) converges to ḡ(t0) uniformly, away from a singular point p, there
exists i0 (depending on δ1s and a compact set K) such that for i ≥ i0

dGH(Bg(ti+t0)(qi, s), Bḡ(t0)(q, s)) < δ1s.(6)

Combining estimates (4), (5) and (6), together with an approximate triangle
inequality for Gromov-Hausdorff distance we get

dGH(Bg(ti+t)(qi, s), Bs(0)) < 4δ1s,

for all i ≥ i0 and all t ∈ [t0 − η, t0 + η]. This implies that qi ∈ WR8δ1,r′′ , for all
i ≥ i0 and all t ∈ [t0 − η, t0 + η].

Combining Claim 10 and part (iii) of Theorem A.1.5 in [6], we get that q′ ∈
Rδ,s, for all q′ ∈ Bg(ti+t)(qi, r

′′), s ≤ (1− δ)r′′−distti+t(qi, q
′), for all i ≥ i0 and

t ∈ [t0 − η, t0 + η]. Part (ii) of Theorem A.1.5 in [6] gives that

VolBg(ti+t)(s, q′) ≥ (1 − ε′)VolBs(0),(7)

for all q′ ∈ Bg(ti+t)(r′′, q) and s ≤ (1 − δ)r′′ − distg(ti+t)(qi, q
′). By reducing

r′′ we get that there exists r′′ such that the estimate (7) holds for all q′ ∈
Bg(ti+t)(r′′, q) and all s such that Bg(ti+t)(s, q′) ⊂ Bg(ti+t)(r′′, q), for i ≥ i0 and
t ∈ [t0 − η, t0 + η].

Choose r, i0 and η as in the claim above (for our regular point q that we
have fixed earlier). Reduce r′′ if necessary, so that (ε′r′′)2 < η. Since 1 − ε′ >
1−δP , and since for every ball Bg(ti−(ε′r′′)2/2)(q′, s) ⊂ Bg(ti−(ε′r′′)2/2)(qi, r

′′), we
have that Volg(ti−(ε′r′′)2/2)Bs(q′) ≥ (1 − δP )sncn, by Perelman’s pseudolocality
Theorem 6

|Rm|(x, t) ≤ 1
(ε′r′′)2

+ (ε′r′′)2,

for all x ∈ Bg(t)(qi, ε
′r′′) and for every t ∈ [ti − (ε′r′′)2/2, ti + (ε′r′′)2/2]. We

have that gi(t) = g(ti + t) is a sequence of Ricci flows with uniformly bounded
curvatures for t ∈ [−(ε′r′′)2/2, (ε′r′′)2/2] on balls Bgi(t)(qi, ε

′r′′). This together
with the volume noncollapsing condition and Hamilton’s compactness theorem
give that the convergence of the sequence of our metrics is smooth, and ḡ(t) are
smooth metrics on Bḡ(t)(q, ε′r′′), for t ∈ [0, (ε′r′′)2/2]. Repeating the procedure
described above infinitely many times, to time intervals translated by (ε′r′′)2/2
(considering t0 + (ε′r′′)2/2 instead of t0, etc.) and applying diagonalization
method to a sequence of times ti (since for every step of length (ε′r′′)2/2 we have
to extract a subsequence of a subsequence), we get that ḡ(t) are smooth metrics
on B(q, ε′r′′) for all times t ≥ 0 (we can take t0 = 0) and that g(ti + t) → ḡ(t)
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smoothly on Bḡ(t)(q, ε′r′′
2 ) for all times t ≥ 0. We will use the fact that the Ricci

tensor is uniformly bounded to show that we can extend the previous result from
a ball to any compact set K ⊂ Y . By a definition of convergence, that will mean
(M, g(ti + t)) → (Y, ḡ(t)) smoothly, away from the set of singular points.

Take a compact set K ⊂ Y \S, where S is a set of singular points on (Y, ḡ(t)).
It is the same set for all singular metrics ḡ(t). Let φi : K → Ki be a sequence
of diffeomorphisms from a definition of convergence of metrics gi(0) to a metric
ḡ(0).

|Ric|(t) ≤ C for all t by the assumtion of the main theorem. We have proved
that ḡ(t) is 1-parameter family of metrics on Y . Moreover, ḡ(t) satisfies the
Kähler-Ricci flow equation away from the singular points.

Claim 11. There exist δ > 0, a subsequence ti and C1 = C1(K) such that
|Rm|(g(ti + t)) ≤ C on Ki for all t ∈ [t0, t0δ] and all t0.

Proof. Fix t0. For every q ∈ Y we can choose rq > 0, ηq and iq as in Lemma
9. Look at the collection of balls Bḡ(t0)(q, (ε

′rq)/4) covering K. Since K
is compact we can consider only finitely many of them covering K. Denote
their centres by q1, q2, . . . qN . Since ḡ(t) solves the equation (1) and since the
Ricci curvatures of ḡ(t) are uniformly bounded on Y \{p}, there exists A > 0
so that the balls Bḡ(t)(qi, (ε′rqi)/2) cover K, for t ∈ [t0 − A, t0 + A]. Let
r1 = min{rq1 , rq2 , . . . , rqN

}, η1 = min{ηq1 , . . . , ηqN
} and i1 = max{iq1 , . . . iqN

}.
Then |Rm|(x, t + ti) ≤ 1

(ε′r1)2
+ (ε′r1)2 = C1(K) for all x ∈ Bg(ti+t)(q

j
i , ε

′rqj ),

all i ≥ i1 and all t ∈ [0,min{η1, (ε′r1)2/2}], where qj
i are the sequences of points

such that Bg(ti+t)(q
j
i , rqj ) → Bḡ(t)(qj , rqj ) while (M, g(ti + t)) → (Y, ḡ(t)). Let

δ = min{η1, (ε′r1)2/2, A}].
The balls Bḡ(t)(qj , (ε′rqj )/2) for 1 ≤ j ≤ N cover K. A definition of con-

vergence gives that there exists i0 ≥ i1 so that Bg(ti)(q
j
i ,

2ε′rqj

3 ) cover Ki for all
i ≥ i0. We can assume that δ is small enough so that

Bg(ti)(q
j
i , (rqj − a)ε′) ⊂ Bg(ti+s)(q

j
i , rqj ε

′/2),

for a < r1
3 so that rqj −a > rqj − r1

3 >
2rqj

3 and therefore Bg(ti)(q
j
i , (ε

′(2rqj )/3) ⊂
Bg(ti)(q

j
i , (rqj

i
− a)ε′). Since the balls Bg(ti)(q

j
i , (2rqj ε

′)/3) cover Ki, so do balls

Bg(ti+s)(q
j
i , rqj ) for all i ≥ i0 and all s ∈ [t0−δ, t0+δ]. Therefore, |Rm|(x, ti+s) ≤

C1 for all i ≥ i1 and all x ∈ Ki and all s ∈ [t0 − δ, t0 + δ]. Therefore we actually
can extract a subsequence ti such that the pullbacks of metrics g(ti +s) converge
to a solution of the Kähler-Ricci flow uniformly on K × [t0 − δ, t0 + δ].

Applying the method from the previous claim to a sequence ti + δ instead of
a sequence ti we can find a subsequence such that g(ti +s) → ḡ(t) smoothly and
uniformly on K × [t0, t0 +2δ], since our choice of δ does not depend on an initial
time, but on a chosen compact set K ⊂ Y and a uniform bound on the Ricci
tensor. Repeating this infinitely many times and diagonalizing the sequence
ti, we get a sequence ti such that g(ti + s) → ḡ(t) smoothly converge on all
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compact subsets of K × [0,∞). We can choose a countable sequence of compact
sets Lk exhausting Y \S. We can find a subsequence of ti for each Lk, so that the
above that we have proved for any compact set K ⊂ Y \S, applies to Lk as well.
By a diagonalization procedure applied to ti we can get a subsequence so that
(M, g(ti + t) → (Y, ḡ(t)) for all t ≥ 0, where ḡ(t) is a solution to the Kähler-Ricci
flow away from the set of singular points. The convergence is in the sense that
for every compact set K ⊂ Y \S there exist diffeomorphisms φi : K → Ki, where
Ki ⊂ M are compact and φ∗

i g(ti + t) → ḡ(t), uniformly and smoothly on all
compact subsets of K × [0,∞).

In the proof of Theorem 1 we assumed that the complex dimension was 2. The
proof above generalizes to an arbitrary dimension easily. Since the Ricci tensor
is uniformly bounded along the flow, for every sequence ti → ∞ there exists a
subsequence so that (M, g(ti + t)) → (Y (t), ḡ(t)) and the convergence is smooth
outside a set S(t) of codimension at least 4. As above, it easily follows that
Y = Y (t) for all t. We should only check that S(t) = S(s) for any s, t ∈ [0,∞).

Lemma 12. S(s) = S(t) for any s, t ∈ [0,∞).

Proof. It is enough to prove: ∃a > 0 such that for |s − t| < a S(s) = S(t).
Choose ε > 0 such that Rε(s) = R(s) and Rε(t) = R(t), for |s − t| < a,

where we will choose a later. Assume there exists q ∈ S(t)\S(s). That implies
q ∈ R(s). For ε > 0 choose ε′ = ε′(ε, n) > 0 and r′ = r′(ε, n) so that Theorem
A.1.5 in [6] holds. Then the following claim holds for q.

Claim 13. There exist i0 and r < r′ such that for all Bg(ti+s)(q′, u) ⊂
Bg(ti+s)(qi, r) we have Volg(ti+s)Bg(ti+s)(q′, u) ≥ cn(1 − ε′/2)un, for all i ≥ i0,
where qi ∈ M is a sequence of points converging to q, while (M, g(ti + s)) →
(Y, ḡ(s)).

The proof of this claim is the same as the proof of Lemma 9.
Since the Ricci tensors are uniformly bounded along the flow, we have a good

control on the volumes and the sizes of balls in metrics at different times, when
the considered time interval is sufficiently small. Similarly as in [8] we can find
sufficiently small a > 0 such that |s − t| < a, for any u < r implies that

Volg(ti+t)Bg(ti+t)(q, u) ≥
√

(1 − ε′

2
)Volg(ti+s)Bg(ti+s)(q, u) ≥ (1 − ε′

2
),

Bg(ti+s)(q, ur̃) ⊂ Bg(ti+t)(q, u),
where r̃ = 1

1+(e2C|s−t|−1)
1
2 )

and we can choose a small enough, so that r̃n >√
1 − ε′

2 . Finally, since Volg(ti+s)Bg(ti+s)(q, u) ≥ cn(1 − ε′
2 )un, we get that

Volg(ti+t)Bg(ti+t)(q, u) ≥ (1 − ε′/2)2uncn ≥ (1 − ε′)cnun,

i.e. q ∈ Rε,r/2 ⊂ Rε = R(t). This means that q can not be in S(t) and we get a
contradiction. We can repeat the procedure above infinitely many times to get
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that S(t) = S(s) for all s, t ∈ [t0, t0 + a] and all t0 ≥ 0, i.e. S(t) = S for all
t ≥ 0.

Having Lemma 12 we can repeat the proof of Theorem 1 for complex dimen-
sion 2, to get that theorem is actually true for all dimensions.

4. Kähler-Ricci soliton as a limit

In this section we want to prove Theorem 2. By Theorem 1 we can find a
subsequence ti so that (M, g(ti + t)) → (Y, ḡ(t)), where Y is a smooth manifold
outside a closed set S of codimension 4. Since we are in complex dimension 2,
a set of codimension four is a set of points and since it is a closed subset of a
compact set Y (Y is compact, since it comes from a limit of compact manifolds
with uniformly bounded diameters), S is just a set of finitely many singular
points.

Claim 14. There is a finite limt→∞ µ(g(t), 1/2).

Proof.

µ(g(t), 1/2) ≤ (2π)−n

∫
M

e−u(|∇u|2 + R + u − 2n)dVg(t) ≤ C,

for a uniform constant C, since scalar curvature and C1 norm of Ricci potentials
u(t) are uniformly bounded along the Kähler Ricci flow by results of Perelman.
He also proved that µ(g(t), 1/2) is a monotone quantity along the flow and
therefore there is a finite limt→∞ µ(g(t), 1/2) as claimed.

By results from [3] we have that

µ(g(ti + A), 1/2) − µ(g(ti), 1/2)

=
∫ A

0

d

dt
µ(g(ti + t), 1/2)dt

= (2π)−n

∫ A

0

∫
M

|Rjk̄(ti + t) + ∇j∇k̄f(ti + t) − gjk̄|2dVg(ti+t)dt +

2(2π)−n

∫ A

0

∫
M

|∇i∇jf(ti + t)|2dVti+tdt,

where f(ti + t) is a minimizer for W with respect to metric g(t).
Since µ(g(ti + A), 1/2) − µ(g(ti), 1/2) → 0 as i → ∞, we have that

lim
i→∞

Rjk̄(ti + t) + ∇j∇k̄f(ti + t) − gjk̄(ti + t) = 0,

and
lim

i→∞
∇j∇kf(ti + t) = 0,

for almost all t ∈ [0, A] and almost all x ∈ M . Assume we are having only
one singular point, say p. Since the convergence is smooth away from it, by
taking a sequence of radii rk → 0 as k → ∞, since the geometries of g(ti + t)
are uniformly bounded in i, depending on rk only, on M\Bti

(pi, rk), for each k
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we can extract a subsequence such that g(ti + t) → ḡ(t) uniformly on compact
subsets of Y \Bḡ(0)(p, rk) for t ∈ [0, A] and therefore,

Ric(ḡ(t)) + ∇∇̄f̃(t) − ḡ(t) = 0,(8)

and ∇∇f̃ = 0 on Y \Bḡ(0)(p, rk), for t ∈ [0, A], where f̃(t) is a limit of f(ti + t).
By letting k → ∞ and finding a diagonal sequence, we can find a subsequence
ti so that g(ti + t) → ḡ(t) uniformly on compact subsets of Y \{p}, for t ∈ [0, A]
and ḡ(t) satisfies the soliton equation (8) away from sigular points. By taking A
bigger and bigger, again by diagonalizing a sequence ti, by uniqueness of a limit
we get a subsequence ti so that g(ti + t) → ḡ(t) away from sigular points, for
all t ∈ [0,∞) and ḡ(t) satisfies (8) with a soliton potential function f̃ satisfying
f̃ij = f̃j̄k̄ = 0, which tells us that ∇f̃ defines a holomorphic vector field, that is,
ḡ(t) satisfies a Kähler Ricci soliton equation away from singular points.
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