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ANTICYCLOTOMIC IWASAWA THEORY OF CM ELLIPTIC
CURVES II

Adebisi Agboola and Benjamin Howard

Abstract. We study the Iwasawa theory of a CM elliptic curve E in the an-
ticyclotomic Zp-extension D∞ of the CM field K, where p is a prime of good,

supersingular reduction for E. Our main result yields an asymptotic formula for

the corank of the p-primary Selmer group of E along the extension D∞/K.

1. Introduction

Let E be an elliptic curve over Q. Whilst much is known about the Iwasawa
theory of E for primes of ordinary reduction, the same is unfortunately not true
of Iwasawa theory at supersingular primes, for in this case the Iwasawa mod-
ules that one naturally considers are not torsion, and the obvious candidates for
p-adic L-functions do not lie in the Iwasawa algebra. Nevertheless, there has re-
cently been a great deal of progress in the study of the Iwasawa theory of elliptic
curves at supersingular primes. In particular, S. Kobayashi has recently formu-
lated a cyclotomic main conjecture for E within this framework (see [5]). His
conjecture relates certain restricted ‘plus/minus’ Selmer groups of E to certain
modified p-adic L-functions defined by R. Pollack (see [9]), and it is equivalent
to a cyclotomic main conjecture that was proposed earlier by K. Kato and B.
Perrin-Riou (see [4], [7] [6]). Kobayashi’s conjecture has recently been proved by
Rubin and Pollack (see [15]) when E has complex multiplication, and Kobayashi
himself, using methods of Kato, proves one divisibility of the main conjecture
in the non-CM case. In both cases, the plus/minus Selmer groups are cotorsion
modules over the cylotomic Iwasawa algebra, and so the corank of the p-Selmer
group remains bounded as one ascends the cyclotomic Zp-extension.

Suppose now that E has complex multiplication by the maximal order O of
an imaginary quadratic field K. Let ψ denote the K-valued grossencharacter
associated to E, and write f for the conductor of ψ. Fix once and for all a
rational prime p > 3 at which E has good reduction, and which is inert in K.
Then E has supersingular reduction at p. We write p for the unique prime of K
above p. Let D∞ be the anticyclotomic Zp extension of K, and let Dn ⊂ D∞
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be the subfield such that [Dn : K] = pn. The prime p is totally ramified in D∞,
and we let p also denote the unique place of D∞ above p.

In this paper, we study the Iwasawa theory of E over D∞. We define an-
ticyclotomic versions of Kobayashi’s restricted plus/minus Selmer groups, and
we analyse their structure using the Euler system of twisted elliptic units (cf.
[1]). In contrast to what happens in the cyclotomic case, it turns out that one
of the restricted Selmer groups is a cotorsion Iwasawa module, while the other
is not, and which module is cotorsion is determined by the sign in the functional
equation of L(E/Q, s). Our main result, predicted by R. Greenberg [3, p. 247],
is as follows (somewhat more information is contained in Theorem 5.4).

Theorem A. Let φ be Euler’s function and let ε = ±1 be the sign in the
functional equation of L(E/Q, s). Write Selp∞(E/Dn) for the p-primary Selmer
group of E/Dn, and Op for the local completion of O at p. Then there is an
integer e, independent of n, such that

corankOp Selp∞(E/Dn) = e+
∑

1≤k≤n, (−1)k=ε

φ(pk)

for all n� 0.

The results in this paper may be viewed as a first step towards a supersingular
main conjecture of the same type as that considered in [1]. However, in the
present setting, we do not know how to define suitable anticyclotomic analogues
of Pollack’s plus/minus p-adic L-functions. The essential missing ingredient is a
construction of local elements along the lines of [5, §8.4].

2. Selmer groups

We write
T = Tp(E), W = E[p∞]

for the p-adic Tate module and the goup of p-power torsion points in E(K)
respectively. Let F/K be any finite extension. For any place v of F , we define
H1

f (Fv,W ) to be the image of E(Fv)⊗ (Qp/Zp) under the Kummer map

E(Fv)⊗ (Qp/Zp)→ H1(Fv,W ),

and we write H1
f (Fv, T ) for the orthogonal complement of H1

f (Fv,W ) with
respect to the local Tate pairing. Note that H1

f (Fv,W ) = 0 if v � p. If
c ∈ H1(F,W ), then we write locv(c) for the image of c in H1(Fv,W ).

We define
• the relaxed Selmer group Selrel(F,W ) by

Selrel(F,W ) =
{
c ∈ H1(F,W ) | locv(c) ∈ H1

f (Fv,W ) for all v not dividing p
}

;

• the true Selmer group Sel(F,W ) by

Sel(F,W ) =
{
c ∈ H1(F,W ) | locv(c) ∈ H1

f (Fv,W ) for all v
}

;
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• the strict Selmer group Selstr(F,W ) by

Selstr(F,W ) = {c ∈ Sel(F,W ) | locv(c) = 0 for all v dividing p} .
We also define Selrel(F, T ), Sel(F, T ) and Selstr(F, T ) in a similar way. It

follows from the definitions that there are inclusions

Selstr(F,W ) ⊂ Sel(F,W ) ⊂ Selrel(F,W ),

and similarly with W replaced by T . If F/K is an infinite extension, we define

Sel∗(F,W ) = lim−→Sel∗(F ′,W ) S∗(F, T ) = lim←−Sel∗(F ′, T ),

where the limits are taken with respect to restriction and corestriction, respec-
tively, over all subfields F ′ ⊂ F finite over K.

We now give the definition of a slightly modified (see Remark 3.2 below) form
of Kobayashi’s restricted plus/minus Selmer groups. Let E denote the formal
group of E over Kp. Since E has supersingular reduction at p > 3, it is a
standard fact that E is isomorphic to the unique (up to isomorphism) Lubin-
Tate formal goup over Kp with parameter −p. For n ≥ 0, let Ξ−

n be the set of
characters of Γn of exact order pk with k odd, together with the trivial character.
Let Ξ+

n be the set of characters of Γn of exact order pk with k even, excluding
the trivial character. Define subspaces of E(Dn,p)⊗Op Kp by

E±(Dn,p) =

{
x ∈ E(Dn,p)⊗Kp

∣∣∣∣∣
∑

σ∈Γn

χ(σ)xσ = 0, ∀χ ∈ Ξ∓
n

}
.

Let H1
±(Dn,p,W ) be the image of E±(Dn,p) under the Kummer map

E(Dn,p)⊗Kp −→ E(Dn,p)⊗ (Kp/Op) −→ H1(Dn,p,W )

and let H1
±(Dn,p, T ) be the orthogonal complement of H1

±(Dn,p,W ) with respect
to the local Tate pairing. We define

Sel±(Dn,W ) =
{
c ∈ Selrel(Dn,W ) | locp(c) ∈ H1

±(Dn,p,W )
}

;

Sel±(Dn, T ) =
{
c ∈ Selrel(Dn, T ) | locp(c) ∈ H1

±(Dn,p, T )
}
.

It follows from the definitions that we have inclusions

Selstr(Dn,W ) ⊂ Sel±(Dn,W ) ⊂ Sel(Dn,W ),

Sel(Dn, T ) ⊂ Sel±(Dn, T ) ⊂ Selrel(Dn, T ).

In the limit, we define

Sel±(D∞,W ) = lim−→Sel±(Dn,W ) S±(D∞, T ) = lim←−Sel±(Dn, T ),

where the inverse limits are taken with respect to restriction and corestriction,
respectively.

In order to ease notation, we shall sometimes write

Sel∞∗ = Sel∗(D∞,W ) S∗ = S∗(D∞, T ).
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3. Ranks

Let a be an integral ideal of O coprime to 6pf, and write Ka for the union
of all ray class fields of K of conductor prime to a. Let cell,a denote the Euler
system of elliptic units for (Zp(1), fp,Ka) in the sense of [14]. Twisting cell,a by
the character ω−1

cycψp, where

ψp : Gal(K/K) −→ AutOK
(T ) ∼= O×

p ,

and ωcyc is the cyclotomic character, yields an Euler system ca for (T, fp,Ka)
(see [14, Chapter 6]). Then ca(F ) ∈ Selrel(F, T ) for every F ⊂ Ka finite over K.
For any L ⊂ K∞, let

ca(L) = lim←− ca(F ′) ∈ Srel(L, T ),

where the inverse limit is taken over all subfields F ′ of L that are finite over K.
Let Ca(F ) be the Op[[Gal(F/K]]-submodule of Srel(F, T ) generated by ca(F ),
and write C(F ) for the submodule generated by Ca(F ) as a varies over all ideals
that are coprime to 6pf. We set C = C(D∞).

Define
H1

± = lim←−H
1
±(Dn,p, T ) H1 = lim←−H

1(Dn,p, T )
and

H1
±(D∞,p,W ) = lim−→H1

±(Dn,p,W ).

Let W (ψ) denote the root number of ψ. In particular W (ψ) = ±1 and is
equal to the sign in the functional equation of L(E/Q, s).

Proposition 3.1. The image of C in H1 is nontrivial, and lies in H1
ε if and only

if ε is equal to the sign of W (ψ). In particular C is nontrivial, and is contained
in Sε if and only if ε is the sign of W (ψ).

Proof. Let χ be any primitive character of Gal(Dn/K) for n > 0, and write
W (χψ) for the root number of χψ. The following formula is proved by Greenberg
in [3, page 247]:

(3.1) W (χψ) = (−1)n+1W (ψ).

If (−1)n = W (ψ), the functional equation of L(E/Q, s) forces L(χψ, 1) = 0.
On the other hand, the main result of [10] shows that if (−1)n = −W (ψ),
then L(χψ, 1) �= 0 for all but finitely many χ. The claim now follows from the
reciprocity law of Coates-Wiles, which relates the localization of the elliptic units
to the special value of twists of L(ψ, s) (see [15, Theorem 5.1] for example). �

Remark 3.2. The equality (3.1) (which is visibly incorrect when n = 0) is the
reason for placing the trivial character in Ξ−

n . In particular, our definitions differ
from those of [15, Definition 3.1].

The reader should also note that in [12], the characters of Γn are indexed ac-
cording to the parity of their conductors, while we have indexed them according
to the parity of their orders. Hence our Ξ+ (respectively Ξ−) is denoted by Ξ−

(respectively Ξ+) in [12]. �
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Set Λ = Op[[Gal(D∞/K)]]. For any finitely generated Λ-module M , we write
CharΛ(M) for the characteristic ideal of M in Λ, and rkΛ(M) for the Λ-rank of
M . Define a Λ-module

X∗ = HomZp
(Sel∞∗ ,Qp/Zp).

Let ι : Λ→ Λ denote the canonical involution on Λ which is induced by inversion
on group-like elements. We adopt the convention that Λ acts on X∗ via the rule
(λ · f)(x) = f(λιx) (cf. [1, Remark 1.18]).

The following two propositions are consequences of the work of Rubin.

Proposition 3.3. (i) The Λ-modules Srel and Xstr are torsion-free of rank one,
and torsion, respectively. The Λ-module Xrel has rank one.

(ii) There is an equality of characteristic ideals

CharΛ(Xstr) = CharΛ(Srel/C).
Proof. The fact that Srel is torsion-free of the same rank as Xrel may be proved
exactly as in [1, Lemma 1.1.9] (the proof of which is essentially the same as that of
[8, Proposition 4.2.3]). The remaining claims of (i) follow from the nontriviality
of C using the theory of Euler systems as in [14]. Using (i), (ii) may be deduced
from Rubin’s two variable main conjecture [13, Theorem 4.1(ii)] exactly as in [1,
Proposition 2.4.16]. �

Proposition 3.4. The Λ-module H1 is torsion free of rank 2. The modules
H1

± have Λ-rank 1 and satisfy H1
+ ∩ H1

− = 0. The modules H1
±(D∞,W ) have

Λ-corank one.

Proof. Write H1
f (D∞,p,W ) = lim−→H1

f (Dn,p,W ), where the injective limit is
taken with respect to restriction maps. Let E[p∞] and E[p∞] denote the p-
primary torsion subgroups of E and E respectively, and write K(E[p∞]) for the
field obtained by adjoining the elements of E[p∞] to K. Set

V∞ = HomOp

(
H1

f (D∞,p,W ),E[p∞]
)
,

V ± = HomOp

(
H1

f (D∞,p,W )
H1±(D∞,p,W )

,E[p∞]

)
.

We may view V∞ and V ± as being Λ-modules by identifying Gal(D∞/K) with
a subgroup of Gal(K(E[p∞])/K) in the obvious way. It is shown in [12, Propo-
sitions 1.1 and 8.1] that the Λ-module V∞ is torsion-free of rank 2, while the
Λ-modules V ± are of rank one and satisfy V+ ∩ V− = 0. The proposition now
follows from the fact that fixing an identification of Kp/Op with E[p∞] induces
Λ-module isomorphisms

(3.2) V � H⊗HomOp(Op, T ), V± � H± ⊗HomOp(Op, T ).

�

Conjecture 3.5. (Rubin [12, Conjecture 2.2]) H1 = H1
+ ⊕H1

−.
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Theorem 3.6. We have rkΛ(S±) = rkΛ(X±). If the sign of W (ψ) is ε, then
Xε has Λ-rank one, and X−ε is Λ-torsion. In particular Sstr = S−ε = 0, as Srel

is torsion-free.

Proof. Global duality (see [14, Theorem 1.7.3]) gives the exact sequence

(3.3) 0 −→ S± −→ Srel −→ H1/H1
± −→ X± −→ Xstr −→ 0.

The first claim now follows from Propositions 3.3 and 3.4.
Since S± ⊂ Srel, the Λ-rank of S± is at most one, and as C ⊂ Sε is non-trivial,

we see that the Λ-rank of Sε is in fact equal to one. Next, we observe that if
rkΛ(S−ε) = 1, then rkΛ(S+ ∩ S−) = 1, since both S+ and S− are submodules
of the rank one Λ-module Srel. By Proposition 3.4, S+ ∩ S− ⊂ Sstr, and so also
rkΛ(Sstr) = 1. But then Srel/Sstr is a Λ-torsion module. This quotient injects
into H1 which is torsion-free by Proposition 3.4. We conclude that Sstr = Srel

and that the localization map Srel −→ H1 is trivial, contradicting Proposition
3.1.

It now follows that rkΛ(S−ε) = rkΛ(Sstr) = 0, and since Srel is torsion-free,
this implies that both S−ε and Sstr are equal to zero. �

4. Characteristic ideals

Theorem 4.1. We have the equality of characteristic ideals

CharΛ(Xrel,Λ−tor) = CharΛ(Xstr).

Proof. Let K∞/K denote the unique Z2
p-extension of K, and set Λ(K∞) :=

Op[[Gal(K∞/K)]]. Write X(K∞) := Hom(Sel(K∞),Qp/Zp). It follows from
Rubin’s proof of the main conjecture that rkΛ(K∞)(X(K∞)) = 1 (see e.g. [15,
Remark 2.2] and[13, Theorem 5.3(iii)]). As Xrel = X (see [2, Remark 3.3], for
instance), Proposition 3.3(i) implies that rkΛ(X) = 1 also. Hence, if γ1 is any
topological generator of Gal(K∞/D∞), then, since

X(K∞)
(γ1 − 1)X(K∞)

� X

(see [11, Proposition 1.2 and Theorem 2.1] or [2, p. 364–365]), we deduce that
γ1 − 1 is coprime to CharΛ(K∞)(X(K∞)tor). The theorem now follows directly
from [2, Theorem 3.24] and [1, Lemma 2.1.2] (see also [16, Corollary 6.5] for a
more general result along these lines). �

Theorem 4.2. Suppose that the sign of W (ψ) is equal to ε. Then

(4.1) CharΛ (Xε,Λ−tor) CharΛ

(H1
ε

Sε

)
= CharΛ

(Srel

C
)
.

If we assume that Conjecture 3.5 is true then Sε = Srel and

(4.2) CharΛ (X−ε) = CharΛ

(H1
ε

C
)
.
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Proof. From Proposition 3.1, we see that C ⊂ Sε, and so rkΛ(C) = rkΛ(Sε) = 1.
Via global duality (see [14, Theorem 1.7.3]), together with the fact that Sstr = 0,
we have the exact sequence

(4.3) 0→ Sε → H1
ε → Xrel → Xε → 0.

As H1/Sε is Λ-torsion, it is not hard to check that this in turn yields the exact
sequence

(4.4) 0→ H1
ε/Sε → Xrel,Λ−tor → Xε,Λ−tor → 0.

The equality (4.1) now follows from (4.4) together with Theorem 4.1 and Propo-
sition 3.3(ii).

Now assume Conjecture 3.5. Then (3.3) gives an injection Srel/Sε ↪→ H1/H1
ε

of a torsion module into a torsion-free module. Hence Sε = Srel. In order to
show (4.2), we observe that, as S−ε = 0, (3.3) yields

0→ H1
ε/Sε → X−ε → Xstr → 0.

Combining this with the exactness of

0→ Sε/C → H1
ε/C → H1

ε/Sε → 0

and with Proposition 3.3 proves the equality (4.2). �

Let ε be the sign of W (ψ), and write ψ denote the complex conjugate of the
grossencharacter ψ. Fix a generator cε of Hε.

Theorem 4.3. Assume that Conjecture 3.5 holds. Then there exists a generator
L−ε of CharΛ(H1

ε/C) such that the following statement is true:
Let χ be any character of Γ of order pn, where n > 0 and satisfies (−1)n+1 =

W (ψ). Then

δχ(vε) · χ(L−ε) =
L(ψχ, 1)

ΩE
.

Here ΩE ∈ R+ is the real period of a minimal model of E, vε ∈ Vε is the image
of cε under a fixed choice of the isomorphism (3.2), and δχ is the Coates-Wiles
homomorphism defined in [12, §2]. Furthermore, δχ(vε) is always non-zero.

Proof. This is a direct consequence of [12, §10], once we fix a choice of iso-
morphism (3.2) above. (One must also bear in mind the last part of Remark
3.2.) �

Now Theorems 4.2 and 4.3 imply that if Conjecture 3.5 holds, then

L−εΛ = CharΛ(H1
ε/C) = CharΛ(X−ε).

Hence we see that Conjecture 3.5 implies that CharΛ(X−ε) is generated by an
element which p-adically interpolates suitably normalised special values of twists
of L(ψ, s), and which may therefore be viewed as being a p-adic L-function
attached to E.
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5. Control theorems

Define
Xn,∗ = HomOp(Sel∗(Dn,W ),Kp/Op).

Our goal in this section is to explain how to recover the Op-rank of Xn from the
Λ-modules X±.

Fix a topological generator γ ∈ Gal(D∞/K) and define

ω+
n =

∏
1≤k≤n,k even

Φpk(γ) ω−
n = (γ − 1)

∏
1≤k≤n,k odd

Φpk(γ)

where Φpk is the pk-th cyclotomic polynomial. Since χ(ω±
n ) = 0 for every χ ∈

Ξ±
n , we have

ω∓
n ·E(Dn,p) ⊂ E±(Dn,p)(5.1)

ω∓
n · Sel(Dn,W ) ⊂ Sel±(Dn,W )

and similarly ω±
n · E±(Dn,p) = 0.

Lemma 5.1. The natural map

fn : H1
±(Dn,p,W ) −→ H1

±(D∞,p,W )[ω±
n ]

is injective, and the Op-corank of the cokernel of fn is a bounded, non-decreasing
function of n. If Conjecture 3.5 holds then the cokernel of fn is finite for all n.

Proof. Let L denote the extension of Kp obtained by adjoining E[p] to Kp. Then
it follows from Lubin-Tate theory that L/Kp is a totally ramified extension of
degree p2 − 1. Hence L ∩ D∞,p = Kp, and we deduce that H0(D∞,p,W ) = 0.
From the inflation-restriction sequence we deduce that

H1(Dn,p,W ) −→ H1(D∞,p,W ),

and therefore also fn, is injective. To prove the rest of the lemma, we compare
the Op-coranks of H1

±(Dn,p,W ) and H1
±(D∞,p,W )[ω±

n ].
From Proposition 3.4 and the general structure theory of Λ-modules, we see

that the Op-corank of H1
±(D∞,p,W )[ω±

n ] is equal to rkOp (Λ/ω±
n Λ)+e(n), where

e(n) is a non-decreasing, bounded function of n. If Conjecture 3.5 holds, then
the Λ-module H1

±(D∞,W ) is cotorsion-free, and so e(n) = 0 for all n. On the
other hand, there is an isomorphism of Kp[Gal(Dn,p/Kp)]-modules

(5.2) E(Dn,p)⊗Op Kp � Dn,p � Kp[Gal(Dn,p/Kp)],

in which the first isomorphism is induced by the logarithm of the formal group
E, and the second follows from the normal basis theorem of Galois theory. This
implies that the Op-corank of H1

±(Dn,p,W ) is equal to the Op-rank of Λ/ω±
n .

The result now follows immediately. �

The following result is an anticyclotomic analogue of Kobayashi’s control the-
orem (see [5, Theorem 9.3]).
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Theorem 5.2. The natural map

(5.3) X±/ω±
n X± −→ Xn,±/ω±

n Xn,±
is surjective. The Op-rank of the kernel is a bounded, nondecreasing function of
n. If Conjecture 3.5 holds, then the kernel is finite for all n.

Proof. Write

Ln,± = H1(Dn,p,W )[ω±
n ]
/
H1

±(Dn,p,W ),

L∞,± = H1(D∞,p,W )[ω±
n ]
/
H1

±(D∞,p,W )[ω±
n ].

Let K denote the maximal extension of K unramified outside fp and set

H1(Dn,f,W ) = ⊕v|fH1(Dn,v,W ), H1(D∞,f,W ) = ⊕v|fH1(D∞,v,W ).

Consider the following commutative diagram with exact rows:

0→ Sel±(Dn,W )[ω±
n ] ��

��

H1(K/Dn,W )[ω±
n ] ��

��

H1(Dn,f,W )⊕ Ln,±

��
0→ Sel±(D∞,W )[ω±

n ] �� H1(K/D∞,W )[ω±
n ] �� H1(D∞,f,W )⊕ L∞,±

The left-hand vertical arrow of this diagram is the dual of the map (5.3). Since
H1(K/Dn,W ) ∼= H1(K/D∞,W )[γpn − 1], the middle vertical arrow is an iso-
morphism. To prove the theorem, it therefore suffices (by the Snake Lemma)
to show that the Op-corank of the kernel of the right-hand arrow is a bounded,
non-decreasing function of n, and is finite for all n if Conjecture 3.5 holds.

For any place v of D∞ dividing f, the extension D∞,v/Dn,v is either trivial (in
which case there is nothing to check) or is the unique unramified Zp-extension
of Dn,v. Assume we are in the latter case. The kernel of

H1(Dn,v,W ) −→ H1(D∞,v,W )

is isomorphic to H1(D∞,v/Dn,v, E(D∞,v)[p∞]), which is isomorphic to a quo-
tient of E(D∞,v)[p∞]. Since the Galois module W is ramified at all primes
dividing f, it follows that E(D∞,v)[p∞] is a proper Op submodule of W . This
implies that E(D∞,v)[p∞] is finite, because W is cofree of corank one over Op,
and so any proper submodule of W is finite.

In order to control the kernel of Ln,± −→ L∞,±, we apply the Snake Lemma
to the diagram

0 �� H1
±(Dn,p,W ) ��

��

H1(Dn,p,W )[ω±
n ] ��

��

Ln,±

��

�� 0

0 �� H1
±(D∞,p,W )[ω±

n ] �� H1(D∞,p,W )[ω±
n ] �� L∞,± �� 0.

Just as in the proof of Lemma 5.1, we deduce from the inflation-restriction
sequence that the middle vertical arrow of this diagram is injective; the same
inflation-restriction sequnce also shows that that this arrow is surjective. We



620 ADEBISI AGBOOLA AND BENJAMIN HOWARD

therefore deduce from Lemma 5.1 that the Op-corank of the kernel of the right-
hand vertical arrow of this diagram is a bounded, non-decreasing function of n,
and is finite for all n if Conjecture 3.5 holds. This completes the proof. �

Proposition 5.3. For any n, the natural map

Xn −→ (Xn,+/ω
+
n Xn,+)⊕ (Xn,−/ω−

n Xn,−)

has finite kernel and cokernel.

Proof. Consider the dual map

(5.4) Sel+(Dn,W )[ω+
n ]⊕ Sel−(Dn,W )[ω−

n ] −→ Sel(Dn,W ).

By (5.1) and the equality ω±
n ω

∓
n = γpk − 1, there is an inclusion

ω−
n · Sel(Dn,W ) + ω+

n · Sel(Dn,W ) ⊂ Sel+(Dn,W )[ω+
n ] + Sel−(Dn,W )[ω−

n ].

Since
Sel(Dn,W )/

(
ω−

n · Sel(Dn,W ) + ω+
n · Sel(Dn,W )

)
is a module of cofinite type over the finite ring Λ/(ω+

n , ω
−
n ), it is finite, and there-

fore the same is true of the cokernel of (5.4). The kernel of (5.4) is isomorphic
to

Sel+(Dn,W )[ω+
n ] ∩ Sel−(Dn,W )[ω−

n ]
which is again a cofinite type module over Λ/(ω+

n , ω
−
n ), and is therefore also

finite. �

Combining Theorem 3.6, Theorem 5.2, and Proposition 5.3 we obtain the
following result.

Theorem 5.4. Let ε be the sign of W (ψ). There is an integer e, independent
of n, such that

corankOp(Sel(Dn,W )) = rankOp(Λ/ωε
n) + e

for n� 0. If Conjecture 3.5 holds then the Op-corank of Sel(Dn,W ) is equal to

rankOp(Λ/ωε
n) + rankOp(Y+/ω

+
n Y+) + rankOp(Y−/ω−

n Y−)

for all n, where Y± is the Λ-torsion submodule of X±. �

Theorem A of the Introduction now follows from the first part of Theorem
5.4.
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[8] , Théorie d’Iwasawa et hauteurs p-adiques, Invent. Math. 109 (1992) 137–185.
[9] R. Pollack, On the p-adic L-function of a modular form at a supersingular prime, Duke

Math. J. 118 (2003) 523–558.
[10] D. Rohrlich, On L-functions of elliptic curves and anticyclotomic towers, Invent. Math.

75 (1984) 383–408.

[11] K. Rubin, Elliptic curves and Zp-extensions, Comp. Math. 56 (1985) 237–250.
[12] , Local units, elliptic units, Heegner points and elliptic curves, Invent. Math. 88

(1987) 405–422.

[13] , The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent.
Math. 103 (1991) 25–68.

[14] , Euler Systems, Princeton University Press, 2000.

[15] K. Rubin, R. Pollack. The main conjecture for elliptic curves at supersingular primes,
Ann. Math. 159 (2004), no. 1, 447–464.

[16] K. Wingberg, Duality theorems for abelian varieties over Zp-extensions, Advanced Stud-

ies in Pure Mathematics 17 (1989) 471–492.

Department of Mathematics, University of California, Santa Barbara, CA, 93106

E-mail address: agboola@math.ucsb.edu

Department of Mathematics, Harvard University, Cambridge, MA, 02138
Current address: Department of Mathematics, University of Chicago,, 5734 S. University

Ave., Chicago, IL, 60637
E-mail address: howard@math.uchicago.edu


