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2-ADIC PROPERTIES OF HECKE

TRACES OF SINGULAR MODULI.

Matthew Boylan

Abstract. In [Z], Zagier initiated a study of the function t1(d), the function
which gives the trace of a singular modulus of discriminant −d < 0. Ahlgren
and Ono [A-O, Theorem 1 (1)] proved that if p is an odd prime which splits in

Q(
√
−d), then t1(p2d) ≡ 0 (mod p). A question of Ono [O, Problem 7.30] asks for

generalizations modulo arbitrary prime powers. We provide the answer for p = 2.
In particular, we show, for all positive integers n and d, that t1(4n · (8d + 7)) ≡ 0
(mod 2 · 16n).

1. Introduction and statement of results.

An important function in number theory is the elliptic modular invariant,

j(z) := q−1 + 744 + 196884q + 21493760q2 + · · · ∈ 1
q

Z[[q]],

where throughout, z ∈ h, the complex upper half-plane, and q := e2πiz. Of
particular interest are singular moduli, values of j at quadratic irrationalities in
h. These values are algebraic integers which generate ring class field extensions
of imaginary quadratic number fields.

We begin by fixing notation. If d ≡ 0, 3 (mod 4) is a positive integer (so that
−d is the discriminant of an order in an imaginary quadratic field), we define Qd

to be the set of positive definite integral binary quadratic forms Q(x, y) = ax2 +
bxy + cy2 with discriminant −d = b2 − 4ac. The modular group Γ := PSL2(Z)
acts on Qd in the usual way. For each Q ∈ Qd, we define αQ to be the unique
solution in h to the equation Q(x, 1) = 0. The value of the singular modulus
j(αQ) depends only on the Γ-equivalence class of Q.

When −d < 0 is a fundamental discriminant, Qd consists of primitive forms.
In this case, the number of equivalence classes of forms of discriminant −d is
equal to h(−d), the class number of Q(

√
−d). As Q runs through a complete set

of representatives of Qd/Γ, the corresponding singular moduli j(αQ) run through
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a complete set of algebraic conjugates. Therefore j(αQ) has degree h(−d) over
Q, and the sum

(1.1)
∑

Q∈Qd/Γ

j(αQ)

is its absolute algebraic trace.
Following Zagier [Z], we study a modified form of (1.1). We define

ωQ :=




3 if Q ∼Γ [a, a, a],
2 if Q ∼Γ [a, 0, a],
1 otherwise.

If m and d are positive integers with d ≡ 0, 3 (mod 4) (we do not require that
−d be fundamental), and if T0(m) is the normalized weight zero Hecke operator
of index m, then the mth Hecke trace of the singular modulus of discriminant
−d is

tm(d) :=
∑

Q∈Qd/Γ

((j(z) − 744) | T0(m)) (αQ)
ωQ

.

Using the Shimura Correspondence and �-adic Galois representations, Ahlgren
and Ono recently proved striking congruences of several types for the functions
tm(d). One of these [A-O, Theorem 1 (1)] states that if p � m is an odd prime
which splits in Q(

√
−d), then tm(p2d) ≡ 0 (mod p). Problem 7.30 of Ono’s

CBMS monograph [O] asks for natural generalizations modulo arbitrary prime
powers. As a special case of a more general theorem, we provide the answer for
the case of p = 2.

Theorem 1. Suppose that d, n, and m are positive integers with m odd. If
d ≡ 7 (mod 8), then we have

tm(4nd) ≡ 0 (mod 2 · 16n).

Remarks.
(1) If we keep the hypotheses in Theorem 1 and denote by h(−d) the class

number of the order of discriminant −d, then by Gauss’ genus theory,
we have

h(−4nd) ≡ 0 (mod 2n−1).

It is interesting to note the similarity between these congruences and the
congruences in Theorem 1.

(2) The congruences in Theorem 1 are reminiscent of the famous Ramanu-
jan congruences for the ordinary partition function p(n) modulo powers
of 5, 7, and 11 (see, for example [A] and [Kn, §7, 8]). However, the
proofs of these congruences and the proof of Theorem 1 differ in several
fundamental ways.
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(3) There are many other divisibility results for singular moduli in the litera-
ture. The most famous 2-divisibility result is the congruence of Gross and
Zagier [G-Z, Cor. 2.5] which states that if α is an imaginary quadratic
argument of discriminant −d ≡ 5 (mod 8), then j(α) ≡ 0 (mod 215).

(4) Since the writing of this paper, corresponding congruences modulo ar-
bitrary powers of odd primes have been proved independently by Edix-
hoven [E], Jenkins [J], and Guerzhoy [G]. Moreover, Bruinier, Jenkins,
and Ono [B-J-O] have proved explicit formulas for traces using weak
Maass Poincaré series.

Theorem 1 is a consequence of the following general theorem. The cube of

the ordinary theta function is θ(z)3 =
(∑

n∈Z
qn2

)3

, a holomorphic modular

form of weight 3
2 on the congruence subgroup Γ0(4) of SL2(Z). We denote by

T 3
2
(m2) the usual weight 3

2 Hecke operator of index m2. Since θ(z)3 lies in a
one-dimensional space and since the Hecke operators preserve spaces of modular
forms, we find that for every integer m ≥ 1, there is an integer αm for which

θ(z)3 | T 3
2
(m2) = αmθ(z)3.

For example, when m is an odd prime, αm = m + 1. Our general theorem is

Theorem 2. Suppose that n and m are positive integers with m odd. Then we
have ∞∑

d=0

tm(4nd)qd ≡ 2αmθ(z)3 (mod 2 · 16n).

If d ≡ 0, 3 (mod 4) is a positive integer, we recall that the Hurwitz-Kronecker
class number of discriminant −d is

H(−d) :=
∑

Q∈Qd/Γ

1
ωQ

.

As a consequence of Theorem 2 and Gauss’ formula for the coefficients of θ(z)3

in terms of Hurwitz-Kronecker class numbers, we obtain

Theorem 3. Suppose that d, n, and m are positive integers with 4 � d and m
odd. Then we have

tm(4nd) ≡




24αmH(−4d) (mod 2 · 16n) if d ≡ 1, 2 (mod 4),
48αmH(−d) (mod 2 · 16n) if d ≡ 3 (mod 8),
0 (mod 2 · 16n) if d ≡ 7 (mod 8).

Since Theorems 1 and 3 are immediate corollaries of Theorem 2, Sections
2-5 of this paper are devoted to the proof of Theorem 2. The proof involves a
detailed study of the action of the U4n operator, where n is a positive integer, on
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a certain weakly holomorphic modular form whose coefficients interpolate Hecke
traces. In particular, we carefully study the 2-divisibility of the coefficients of
the form resulting from this action.

The proof is organized as follows. In Section 2, we briefly record some facts
about modular forms. In Section 3, we state Theorem 3.1 and show that it
implies Theorem 2. In Sections 4 and 5, we prove Theorem 3.1.

2. Preliminaries on modular forms.

In this section we record some facts about modular forms. For more details,
see for example [K] or [O]. If N > 0 is an integer, k > 0 is an integer or half-
integer, and χ is a Dirichlet character modulo N , then we define Mk(Γ0(N), χ) to
be the complex vector space of weakly holomorphic modular forms of weight k on
the congruence subgroup Γ0(N) with character χ. These forms are holomorphic
on h and meromorphic at the cusps of Γ0(N). We let Mk(Γ0(N), χ) denote the
finite-dimensional subspace of forms which are holomorphic at the cusps.

The Dedekind eta-function,

η(z) := q
1
24

∞∏
n=1

(1 − qn),

is an important building block for modular forms. We also define

(2.1) E4(z) := 1 + 240
∞∑

n=1

∑
d|n

d3qn =
η16(z)
η8(2z)

+ 28 · η16(2z)
η8(z)

=

1 + 240q + 2160q2 + · · · ∈ M4(Γ0(1)),

∆(z) := η24(z) = q − 24q2 + 252q3 + · · · ∈ M12(Γ0(1)),

(2.2) F (z) :=
η8(4z)
η4(2z)

= q + 4q3 + 6q5 + · · · ∈ M2(Γ0(4)),

and

(2.3) θ(z) := 1 + 2
∞∑

n=1

qn2
=

η5(z)
η2(z)η2(4z)

∈ M 1
2
(Γ0(4)).

If m ≥ 1 is an integer, we recall that the usual Um operator acts on formal power
series by ( ∞∑

n=n0

a(n)qn

)
| Um =

∑
mn=n0

a(mn)qn.

For more details concerning how this operator acts on spaces of holomorphic
modular forms, see for example, [A-L] or [S-S].
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Next, we define the function v2 on Q by

v2

(m

n

)
:= ord2(m) − ord2(n).

We also set v2(0) := ∞. If f =
∑∞

n=n0
a(n)qn ∈ Z[[q]], then we define

v2(f) := infn≥n0{v2(a(n))}.

3. A reduction.

In this section, we prove that Theorem 2 follows from

Theorem 3.1. Suppose that n ≥ 1 is an integer. For every integer m =
1, 2, . . . , 4n−1, there are integers cn(m) such that

F (z)
θ(z) | U4n

θ(z)3
=

4n−1∑
m=1

cn(m)
(

η8(4z)
η8(z)

)m

and such that
v2(cn(m)) ≥ 4n + 4m − 4.

We begin by relating Hecke traces to modular forms. We define

g1(z) :=
η2(z)
η(2z)

· E4(4z)
η6(4z)

∈ M 3
2
(Γ0(4)).

In [Z, Theorem 1], Zagier showed that

g1(z) = q−1 − 2 −
∑

d≡0,3 (mod 4)
d>0

t1(d)qd.

If m ≥ 1 is an odd integer, we define a weakly holomorphic modular form gm(z)
with coefficients bm(d) by

gm(z) := g1(z) | T 3
2
(m2) =

∑
d≡0,3 (mod 4)

bm(d)qd ∈ M 3
2
(Γ0(4)).

By [Z, Theorem 5], for every positive integer d ≡ 0, 3 (mod 4), we find that
tm(d) = −bm(d). Now we suppose that n ≥ 1 is an integer. Since

gm(z) | U4n = (g1(z) | T 3
2
(m2)) | U4n = (g1(z) | U4n) | T 3

2
(m2),

to prove Theorem 2 it suffices to prove that

(3.1) g1(z) | U4n ≡ −2θ(z)3 (mod 2 · 16n).
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In particular, we will show that Theorem 3.1 implies (3.1).
If Theorem 3.1 holds, then for every integer n ≥ 1, we have that

v2


 F (z)

θ(z) | U4n

θ(z)3


 = v2

(
F (z)
θ(z)

| U4n

)
≥ 4n.

Hence, Theorem 3.1 implies that

F (z)
θ(z)

| U4n ≡ 0 (mod 16n).

Therefore, (3.1) will follow from

Lemma 3.2. Suppose that n ≥ 1 is an integer. If we have

F (z)
θ(z)

| U4n−1 ≡ 0 (mod 16n−1),

then
g1(z) | U4n ≡ −2θ(z)3 (mod 2 · 16n).

To prove Lemma 3.2, we require an auxiliary proposition. For convenience,
we define

(3.2) g(z) :=
η8(4z)
η8(z)

= q + 8q2 + 44q3 + · · · ∈ M0(Γ0(4)).

We remark that g(z) is a generator of the modular function field of Γ0(4).

Proposition 3.3. The following are true.
(1)

g1(z) | U4 = −2 · θ(z)3F (z)E4(z)
η12(2z)

.

(2)
F (z)
θ(z)

| U4 = −24θ(z)3g(z).

(3)
η16(z)
η8(2z)

=
η16(2z)
η8(4z)

− 24 · η8(4z)η8(z)
η8(2z)

.

Proof. To prove (1), we see by a standard calculation using facts about modular
forms that

θ(4z)η12(8z)g1(z) ∈ M8(Γ0(16)).
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Hence, we have

(θ(4z)η12(8z)g1(z)) | U4 = θ(z)η12(2z) · (g1(z) | U4) ∈ M8(Γ0(4)).

Using a suitable basis for this space, we verify that

θ(z)η12(2z) · (g1(z) | U4) = −2θ(z)4F (z)E4(z),

from which (1) follows. Part (2) follows in a similar way, by verifying that(
θ(4z)η12(8z) · F (z)

θ(z)

)
| U4 = −24θ(z)8F (z)2 ∈ M8(Γ0(4)).

One easily verifies (3) since both forms lie in M4(Γ0(4)), a space of dimension
3. �

We now use Proposition 3.3 to prove Lemma 3.2. An application of Proposi-
tion 3.3.1 and (2.1) gives

g1(z) | U4 = −2 · θ(z)3F (z)
η12(2z)

·
(

η16(z)
η8(2z)

+ 28 · η16(2z)
η8(z)

)
.

Then using Proposition 3.3.3, (2.2), (2.3), (3.2), and Proposition 3.3.2, we deduce
that

g1(z) | U4 = −2θ(z)3 + 25 · F (z)
θ(z)

+ 25 ·
(

F (z)
θ(z)

| U4

)
.

If for a fixed integer n ≥ 1, we assume that F (z)
θ(z) | U4n−1 ≡ 0 (mod 16n−1), then

the above calculation together with the fact that θ(z)3 | U4 = θ(z)3 gives

g1(z) | U4n = −2θ(z)3 | U4n−1 + 2 · 16 ·
(

F (z)
θ(z)

| U4n−1 +
F (z)
θ(z)

| U4n

)
≡ −2θ(z)3 (mod 2 · 16n).

This proves Lemma 3.2, and with it, Theorem 2. �

4. Proof of Theorem 3.1.

The proof of Theorem 3.1 proceeds by induction on n. By Proposition 3.3,
part 2, we find that

(4.1)
F (z)
θ(z) | U4

θ(z)3
= −24g(z),

which proves the base case of the induction. For integers n ≥ 1, we define

Ln(z) :=
F (z)
θ(z) | U4n

θ(z)3
.
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Before proceeding with the induction step, we make the vital observation that
(4.2)(

θ(z)3

θ(4z)3
· Ln(z)

)
| U4 =


 θ(z)3

θ(4z)3
·

F (z)
θ(z) | U4n

θ(z)3


 | U4 =

F (z)
θ(z) | U4n+1

θ(z)3
= Ln+1(z).

We first show that the case of n = 1 implies the case of n = 2. By (4.1) and
(4.2), we calculate

(4.3) L2(z) =
(

θ(z)3

θ(4z)3
· L1(z)

)
| U4 = −24 ·

(
θ(z)3

θ(4z)3
· g(z)

)
| U4.

Using standard facts about modular forms, we verify that(
∆(4z)2 · θ(z)3

θ(4z)3
· g(z)

)
| U4 = ∆(z)2 ·

(
θ(z)3

θ(4z)3
· g(z)

)
| U4

= ∆(z)2 · (24 · 35g(z) + 212 · 23g(z)2 + 218 · 13g(z)3 + 225g(z)4) ∈ M24(Γ0(4)),

which implies that

(4.4)
(

θ(z)3

θ(4z)3
· g(z)

)
| U4 = 24 ·35g(z)+212 ·23g(z)2 +218 ·13g(z)3 +225g(z)4.

Combining (4.3) and (4.4), we find that

L2(z) = −28 · 35g(z) − 216 · 23g(z)2 − 222 · 13g(z)3 − 229g(z)4,

which verifies the case of n = 2.
We now suppose, for some integer n ≥ 2, that

(4.5) Ln(z) =
4n−1∑
m=1

cn(m)g(z)m,

where

(4.6) v2(cn(m)) ≥ 4n + 4m − 4.

To finish the induction, we must establish (4.5) and (4.6) with n replaced by
n + 1. Using (4.2) and (4.5), we calculate

(4.7) Ln+1(z) =
(

θ(z)3

θ(4z)3
· Ln(z)

)
| U4 =

4n−1∑
m=1

cn(m) ·
(

θ(z)3

θ(4z)3
· g(z)m

)
| U4.

Given (4.7), we will show that Theorem 3.1 follows from
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Theorem 4.1. Suppose that m ≥ 1 is an integer. Then for every integer s =⌊
m+3

4

⌋
, . . . , 4m, there are integers bm(s) such that

(
θ(z)3

θ(4z)3
· g(z)m

)
| U4 =

4m∑
s=�m+3

4 �
bm(s)g(z)s,

and such that
v2(bm(s)) ≥ max(0, 5s − 2m).

If we suppose that Theorem 4.1 holds (we defer the proof to Section 5), then
combining it with (4.7) gives

(4.8) Ln+1(z) =
4n−1∑
m=1

cn(m) ·


 4m∑

s=�m+3
4 �

bm(s)g(z)s


 .

If n ≥ 2, we express (4.8) as

Ln+1(z) =

4n−2∑
s=1


 4s∑

m=� s+3
4 �

cn(m)bm(s)


 g(z)s +

4n∑
s=4n−2+1


 4n−1∑

m=� s+3
4 �

cn(m)bm(s)


 g(z)s.

Hence, for n ≥ 2, we find that

(4.9) cn+1(s) =




∑4s
m=� s+3

4 � cn(m)bm(s) if 1 ≤ s ≤ 4n−2,∑4n−1

m=� s+3
4 � cn(m)bm(s) if 4n−2 + 1 ≤ s ≤ 4n.

To finish the proof of Theorem 3.1, we must show for all integers s ≥ 1, that

(4.10) v2(cn+1(s)) ≥ 4(n + 1) + 4s − 4 = 4n + 4s.

First, we settle the case of s = 1. Since n ≥ 2, (4.9) gives

(4.11) cn+1(1) =
4∑

m=1

cn(m)bm(1).

By (4.4), we know that

(4.12) v2(b1(1)) = 4,

while by Theorem 4.1, we know that

(4.13) v2(b2(1)), v2(b3(1)), v2(b4(1)) ≥ 0.
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Using (4.11), (4.6), (4.12), and (4.13), it follows that

v2(cn+1(1)) ≥ min(v2(cn(m)) + v2(bm(1)))

≥ min(4n + 4m − 4 + v2(bm(1)))
≥ 4n + 4

which establishes (4.10) when s = 1.
We now suppose that s ≥ 2. By (4.9), (4.6), and Theorem 4.1, we find that

v2(cn+1(s)) ≥ min(v2(cn(m)) + v2(bm(s))) ≥ 4n + 5s − 4 + min(2m)
(4.14)

≥ 4n + 5s − 4 + 2 ·
⌊

s + 3
4

⌋
,

where the minimum in (4.14) is taken over m in the intervals specified in (4.9).
Moreover, we find that

4n + 5s − 4 + 2 ·
⌊

s + 3
4

⌋
≥ 4n + 4s

if and only if s ≥ 2. This establishes (4.10) for s ≥ 2, and with it, Theorem
3.1. �

5. Proof of Theorem 4.1.

We first note that (4.4) verifies the m = 1 case of Theorem 4.1. A similar
computation shows that

(
θ(z)3

θ(4z)3
· g(z)2

)
| U4 = 22 · 65g(z) + 28 · 17303g(z)2 + 214 · 7085g(z)3+

221 · 5305g(z)4 + 228 · 1855g(z)5 + 236 · 165g(z)6 + 242 · 29g(z)7 + 249g(z)8,

verifying the m = 2 case.
The first step toward verifying the cases where m ≥ 3 is to show that the

modular function θ(z)3

θ(4z)3 · g(z)m on Γ0(16) is expressible as a polynomial with
integer coefficients in a suitably chosen generator of the modular function field
of Γ0(16). We then obtain lower bounds on the 2-divisibility of the coefficients
of this polynomial. For our purpose, we choose the generator

(5.1) h(z) :=
η2(16z)η(2z)
η(8z)η2(z)

= q + 2q2 + 4q3 + · · · .

Theorem 4.1 follows by applying the next two lemmas together.
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Lemma 5.1. Suppose that m ≥ 3 is an integer. Then for t = m, . . . , 4m, there
are integers dm(t) such that

θ(z)3

θ(4z)3
· g(z)m =

4m∑
t=m

dm(t)h(z)t,

and such that
v2(dm(t)) ≥ t − m.

Lemma 5.2. Suppose that t ≥ 1 is an integer. Then for s =
⌊

t+3
4

⌋
, . . . , t, there

are integers at(s) such that

h(z)t | U4 =
t∑

s=� t+3
4 �

at(s)g(z)s,

and such that

v2(at(s)) ≥ 5s − t −
⌊

t + 3
4

⌋
.

Proof that Lemma 5.1 and Lemma 5.2 =⇒ Theorem 4.1.

Calculating directly using Lemmas 5.1 and 5.2, we obtain

(
θ(z)3

θ(4z)3
· g(z)m

)
| U4 =

4m∑
t=m

dm(t) ·
(
h(z)t | U4

)

=
4m∑

t=m

dm(t) ·


 t∑

s=� t+3
4 �

at(s)g(z)s


 .

We rewrite this sum as(
θ(z)3

θ(4z)3
· g(z)m

)
| U4 =

m∑
s=�m+3

4 �

(
4s∑

t=m

dm(t)at(s)

)
g(z)s +

4m∑
s=m+1

(
4m∑
t=s

dm(t)at(s)

)
g(z)s.

Therefore, we find that

(5.2) bm(s) =

{ ∑4s
t=m dm(t)at(s) if

⌊
m+3

4

⌋
≤ s ≤ m,∑4m

t=s dm(t)at(s) if m + 1 ≤ s ≤ 4m.
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By Lemmas 5.1 and 5.2, it follows that

v2(bm(s)) ≥ min(v2(dm(t)) + v2(at(s))) ≥ 5s − m + min
(
−

⌊
t + 3

4

⌋)(5.3)

≥
{

5s − m −
⌊

4s+3
4

⌋
= 4s − m if

⌊
m+3

4

⌋
≤ s ≤ m,

5s − m −
⌊

4m+3
4

⌋
≥ 5s − 2m if m + 1 ≤ s ≤ 4m,

where the minimum in (5.3) is taken over t in the intervals specified by (5.2).
Since all the bm(s) are integral and since 4s−m ≥ 5s−2m when

⌊
m+3

4

⌋
≤ s ≤ m,

the theorem follows. �
Proof of Lemma 5.1.

The key ingredients in the proof of Lemma 5.1 are the next two propositions.

Proposition 5.3. If m ≥ 1 is an integer, then

θ(z)3

θ(4z)3
· g(z)m = h(z)m · (1 + 4h(z))3 · (1 + 2h(z))m−3 · (1 + 4h(z) + 8h(z)2)m.

Proof. First, we find that

∆(z)g(z) = ∆(z)h(z) · (1 + 2h(z)) · (1 + 4h(z) + 8h(z)2) ∈ M12(Γ0(16)),

which implies that

(5.4) g(z)m = h(z)m · (1 + 2h(z))m · (1 + 4h(z) + 8h(z)2)m.

A similar calculation shows that

θ(z)4η12(8z) · (1 + 2h(z)) = θ(z)3η12(8z)θ(4z) · (1 + 4h(z)) ∈ M8(Γ0(16)),

from which it follows that

(5.5)
θ(z)3

θ(4z)3
=

(
1 + 4h(z)
1 + 2h(z)

)3

.

The proposition follows from (5.4) and (5.5). �
For m ≥ 3, we define polynomials Pm(x) and Qm(x) with coefficients wm and

um, respectively, by

Pm(x) :=
m∑

j=0

wm(j)xj = (1 + 4x)3 · (1 + 2x)m−3,

Qm(x) :=
2m∑
k=0

um(k)xk = (1 + 4x + 8x2)m.
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Proposition 5.4. If m ≥ 3 is an integer, then for every integer j ≥ 0, we have

(5.6) v2(wm(j)) ≥ j,

and for every integer k ≥ 0, we have

(5.7) v2(um(k)) ≥ 2k −
⌊

k

2

⌋
.

Proof. Expanding Pm(x) gives

Pm(x) = ((1 + 2x) + 2x))3 · (1 + 2x)m−3 =

(1 + 2x)m + 3 · 2x · (1 + 2x)m−1 + 3 · 4x2 · (1 + 2x)m−2 + 8x3 · (1 + 2x)m−3 =
m∑

j=0

(
m

j

)
2jxj + 3

m∑
j=1

(
m − 1
j − 1

)
2jxj + 3

m∑
j=2

(
m − 2
j − 2

)
2jxj +

m∑
j=3

(
m − 3
j − 3

)
2jxj ,

which implies (5.6).
Expanding Qm(x) gives

Qm(x) =
∑

a+b+c=m
a,b,c≥0

m!
a!b!c!

(4x)a(8x2)b.

If we set r = a + b, then we obtain

Qm(x) =
m∑

r=0

∑
a+b=r
a,b≥0

m!
(m − r)!a!b!

· (4x)a(8x2)b

=
m∑

r=0

r∑
b=0

m!
(m − r)!(r − b)!b!

· 22r+bxr+b =
m∑

r=0

r∑
b=0

(
m

r

)(
r

b

)
· 22r+bxr+b.

Next, setting k = r + b gives

(5.8) Qm(x) =
m∑

k=0


� k

2 �∑
b=0

(
m

k − b

)(
k − b

b

)
22k−b


 xk+

2m∑
k=m+1


 � k

2 �∑
b=k−m

(
m

k − b

)(
k − b

b

)
22k−b


 xk,

from which (5.7) follows by calculating

v2(um(k)) ≥ min(2k − b) ≥ 2k −
⌊

k

2

⌋
,



606 MATTHEW BOYLAN

where the minimum is taken over b in the intervals specified by (5.8). �
We now turn to the proof of Lemma 5.1. For every integer m ≥ 3, we define

a polynomial Rm(x) with coefficients ym by

Rm(x) := Pm(x)Qm(x) =
3m∑
�=0

ym(�)x�.

By Proposition 5.3, for every integer m ≥ 3 we have that

h(z)m · Rm(h(z)) =
θ(z)3

θ(4z)3
· g(z)m.

Hence, for t = m, . . . , 4m, we see that ym(t − m) = dm(t). Therefore, to prove
Lemma 5.1, it suffices to show, for all integers � ≥ 0, that v2(ym(�)) ≥ �.

Expanding Rm(x), we find that

(5.9)

Rm(x) =


 m∑

j=0

wm(j)xj


 ·

(
2m∑
k=0

um(k)xk

)
=

m∑
�=0

(
�∑

k=0

wm(� − k)um(k)

)
x�+

2m∑
�=m+1

(
�∑

k=�−m

wm(� − k)um(k)

)
x� +

3m∑
�=2m+1

(
2m∑

k=�−m

wm(� − k)um(k)

)
x�.

Therefore, for a fixed �, we have by Proposition 5.4 that

v2(ym(�)) ≥ min(v2(wm(� − k)) + v2(um(k))) ≥ min
(

� + k −
⌊

k

2

⌋)
≥ �,

where the minimum is taken over k in the intervals specified in (5.9). �
Proof of Lemma 5.2.

Before proving Lemma 5.2, we state a proposition.

Proposition 5.5. If g(z) is as in (3.2) and h(z) is as in (5.1), then

(5.10) h(z)4 − g(4z) · (25h(z)3 + 23 · 3h(z)2 + 23h(z) + 1) = 0.

Proof. We find that

∆(z) · (h(z)4 − g(4z) · (25h(z)3 + 23 · 3h(z)2 + 23h(z) + 1)) ∈ M12(Γ0(16)).

This space has dimension 25. It is therefore easy to verify that this form is
identically zero. �
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For a fixed integer t ≥ 1, we want to express h(z)t | U4 as a polynomial in g(z).
Equation (5.10) is an identity in the variable z, so for any integer k, replacing
z by z+k

4 in (5.10) and using the fact that g
(
4 ·

(
z+k
4

))
= g(z + k) = g(z), we

find that

(5.11) h

(
z + k

4

)4

−

g(z) ·
(

25h

(
z + k

4

)3

+ 23 · 3h

(
z + k

4

)2

+ 23h

(
z + k

4

)
+ 1

)
= 0.

We now consider the polynomial T (u) in the variable u defined by

T (u) := u4 − g(z) · (25u3 + 23 · 3u2 + 23u + 1).

By (5.11), we see that h
(

z
4

)
, h

(
z+1
4

)
, h

(
z+2
4

)
, and h

(
z+3
4

)
are roots, and by

comparing q-expansions, that these four roots are distinct.
For every integer t ≥ 1, we define St(z) to be the sum of the t-th powers of

the roots of T (u), and note that

(5.12) St(z) :=
3∑

k=0

h

(
z + k

4

)t

= 4h(z)t | U4.

Using Newton’s Formula, we obtain

S1(z) = 25g,

S2(z) = 24 · 3g + 210g2,

S3(z) = 23 · 3g + 28 · 32g2 + 215g3,(5.13)

S4(z) = 22g + 27 · 17g2 + 215 · 3g3 + 220g4,

and for all t ≥ 5,

(5.14) St(z) = 25gSt−1 + 23 · 3gSt−2 + 23gSt−3 + gSt−4.

By (5.13) and (5.14), we see for all positive integers t, that there are integers
αt(s) ≡ 0 (mod 4) for which

(5.15) St(z) =
t∑

s=� t+3
4 �

αt(s)g(z)s.

Therefore, by (5.12) and (5.15), there are integers at(s) = αt(s)
4 for which

h(z)t | U4 =
t∑

s=� t+3
4 �

at(s)g(z)s.
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We now prove Lemma 5.2. Since αt(s) = 4at(s), it suffices to show that

(5.16) v2(αt(s)) ≥ 5s + 2 − t −
⌊

t + 3
4

⌋
.

The proof is by induction on t. The explicit formulas in (5.13) show that the
proposition is true for 1 ≤ t ≤ 4.

We fix an integer T ≥ 4 and suppose that (5.16) holds for all t < T . We will
show that it holds for T . The formula (5.14) gives

αT (s) = 25αT−1(s − 1) + 23 · 3αT−2(s − 1) + 23αT−3(s − 1) + αT−4(s − 1).

Therefore, we have

(5.17) v2(αT (s)) ≥ min(5 + v2(αT−1(s − 1)),

3 + v2(αT−2(s − 1)), 3 + v2(αT−3(s − 1)), v2(αT−4(s − 1))).

Lemma 5.2 follows by using the inductive hypothesis to bound each of the terms
in (5.17) from below. This concludes the proof of Theorem 4.1. �
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