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HEAT FLOW FOR HORIZONTAL HARMONIC MAPS INTO A
CLASS OF CARNOT-CARATHEODORY SPACES

Jürgen Jost and Yi-Hu Yang

1. Introduction

Let X and B be two Riemannian manifolds with π : X → B being a Riemann-
ian submersion. Let H be the corresponding horizontal distribution, which is
perpendicular to the tangent bundle of the fibres of π. Then X (just considered
as a differentiable manifold), together with the distribution H, forms a so-called
Carnot-Caratheodory space (for details, see [1]), when the Riemannian metric of
X is restricted to H. Considering X as a Carnot-Caratheodory space, one can
then define the notions of Carnot-Caratheodory distance (sometimes called sub-
Riemannian distance), (minimizing) geodesic, completeness (under the Carnot-
Caratheodory distance), etc; a geodesic is actually a horizontal curve which lo-
cally realizes the Carnot-Caratheodory distance. In this note, we always assume
that X is complete, as both a Riemannian manifold and a Carnot-Caratheodory
space; and the Riemannian submersion π : X → B together with its horizontal
distribution H satisfies the following conditions

Condition 1: The Chow condition: the vector fields of H, X1, X2, · · · , and their
iterated Lie brackets [Xi, Xj ], [[Xi, Xj ], Xk], · · · span the tangent space TxX at
every point of X.

Condition 2: The sectional curvature of X (as a Riemannian manifold) is non-
positive in the horizontal distribution H.

Remarks. 1) The Chow condition guarantees that one has the so-called Hopf-
Rinow theorem (cf. [1]): if X is complete under the Carnot-Caratheodory metric,
then any two points can be joined by a minimizing geodesic (under the Carnot-
Caratheodory distance); moreover, in any given homotopic class of horizontal
curves connecting two points, there exists a minimizing geodesic (under the
Carnot-Caratheodory distance) connecting these points. 2) The Riemannian
length of a horizontal curve is equal to the Carnot-Caratheodory length by the
definitions.

In the sequel, unless stated otherwise, we always assume that the Riemannian
submersion π : X → B in question satisfies the above conditions.
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Our interest in this note is to study horizontal maps from a compact Rie-
mannian manifold M into a class of Carnot-Caratheodory spaces (X,H) (see
§2), i.e. the image of the derivative of such a map lies in H. We wish to find
such maps that furthermore satisfy some additional differential equation, like
the harmonic map equation, when X is considered as a Riemannian manifold.
We call a map horizontal harmonic if it is both horizontal and harmonic.

We have the space of smooth maps from M into π : X → B that are horizontal
and horizontally homotopic to a fixed horizontal map g, denoted by B◦

g,H(M ; X).
It is easy to see that, under a certain suitable metric (defined by using some
suitable Sobolev norm), B◦

g,H(M ;X) can be completed into a Banach manifold,
denoted by Bg,H(M ;X), which is obviously an infinite dimensional manifold.
Clearly, its tangent vectors are just horizontal vector fields of X (more precisely,
they are sections of a certain pull-back bundle). Similarly, considering the space
of all maps from M into X (which are not necessarily horizontal), one can
get another Banach manifold, denoted by B(M ;X); and then Bg,H(M ;X) can
be seen as a sub-manifold of B(M ;X). It should be pointed out that these
Banach manifolds may not be connected; it is however clear that they are locally
connected; this is enough for our following discussion.

Corresponding to the horizontal distribution H, one has an orthogonal pro-
jection from the tangent space of B(M ;X) to that of Bg,H(M ;X), still denoted
by H. Given a vector field X of B(M ;X) along Bg,H(M ;X), one can then de-
fine the orthogonal projection of X , denoted by HX , which is a vector field of
Bg,H(M ;X) and the value of which at any point of Bg,H(M ; X) is actually a
horizontal vector field of X (again, it is a section of a certain pull-back bundle).

In this note, we first give some examples of Carnot-Caratheodory spaces in
which we are really interested. These spaces are actually a class of (locally)
complex homogeneous manifolds which fibre over the corresponding symmet-
ric spaces of noncompact type and the fiberations are Riemannian submersions
under the standard invariant metrics. We will show that this class of spaces
satisfy the Conditions 1) and 2) above. On the other hand, this class of ho-
mogeneous spaces, as Riemannian manifolds, are clearly complete, so this class
of homogeneous spaces, as Carnot-Caratheodory spaces, are also complete un-
der the corresponding Carnot-Caratheodory distance, since by the definition of
Carnot-Caratheodory distance the Riemannian distance is not greater than the
Carnot-Caratheodory distance. Thus we can apply the Banach spaces defined
above to this class of homogeneous complex manifolds.

We next consider the following heat flow from M × [0,∞) into π : X → B

(∗) Hτ(u(·, t)) − ∂u(·, t)
∂t

= 0,

with the initial data u(·, 0) = g(·), where τ(u(·, t)) is the usual tension field of
u(·, t) : M → X, g(·) is a smooth horizontal map. We show that one can always
deform horizontally any smooth horizontal map into a horizontal harmonic map.
It is worth noting that the operator Hτ , as applied to the Banach space B(M ;X),
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is not elliptic in general, but if applied to the Banach space Bg,H(M ;X), it is
indeed elliptic, i.e. the symbol of its linearization is an isomorphism from the
horizontal tangent subbundle of X to itself, and hence one can apply the implicit
function theorem to the Banach space Bg,H(M ;X) to obtain the short-time
existence of a solution of (∗) with initial map g.

2. A class of Carnot-Caratheodory spaces

In this section, we will show some concrete examples for Carnot-Caratheodory
spaces, which are actually the objects in which we are really interested. These
examples are a class of (locally) complex homogeneous manifolds [3, 6]: Let G
be a connected noncompact real semi-simple Lie group with a compact Cartan
subgroup; this means that if K is a maximal compact subgroup of G, then
G and K have the same rank; we also assume that G/K is not a Hermitian
symmetric space, although the case of Hermitian symmetric spaces also satisfies
the previous property—this is equivalent to saying that the homogenous complex
manifolds in question are nontrivial fiberation spaces over certain symmetric
spaces of noncompact type, i.e. they have nontrivial vertical fibers, as seen
below. Denoting such a compact Cartan subgroup by H and choosing a suitable
circle subgroup T of H, we can then consider the centralizer Z in G of the circle
subgroup T , which we know by Lie theory is contained in the maximal compact
subgroup K. Taking the quotients G/Z and G/K, G/Z then is a homogeneous
complex manifold [7] and can be considered as a fibration on the symmetric space
G/K of noncompact type with the fiber K/Z. Furthermore, under the standard
invariant metrics, the fibration π : G/K → G/Z is a Riemannian submersion,
and hence it has a horizontal distribution, denoted by H, which satisfies all the
assumptions mentioned in the Introduction, as will be shown in the following
propositions.

Let Γ be a discrete subgroup of G. Due to the discreteness of Γ and the
compactness of K, one can assume that Γ∩K = ∅. Thus by taking quotients by
Γ we also have the Riemannian submersion Γ \ G/Z → Γ \G/K. Similarly, one
also has a horizontal distribution, which is just the quotient by Γ of the above
H, denoted by H′, and hence also satisfies the assumptions in the Introduction.

By the Cartan classification theorem for simple groups [4], the simple Lie
groups G satisfying the conditions stated in the first paragraph of this section
can be listed as follows :

SO(p, 2q) q ≥ 2 e8(8)

Sp(p, q) e8(−24)

e6(2) f4(4)
e7(7) f4(−20)

e7(−5) g2(2)

These groups are called groups of Hodge type but not of Hermitian type in Simp-
son’s paper [10].
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In the remaining part of this section, we will show that the distribution H
and hence H′ do satisfy those assumptions. First, we check the assumption for
sectional curvature in the horizontal direction H. In fact, one has the following
general

Proposition 1. Let π : X → B be a Riemannian submersion. If B has non-
positive sectional curvature, then X also has non-positive sectional curvature in
the horizontal direction H.

Remark. Since G/K is a symmetric space of noncompact type, so it has non-
positive sectional curvature. Therefore by the proposition G/Z also has non-
positive sectional curvature in the horizontal direction H,

Proof of Proposition 1. The proof is a simple consequence of the O’Neill formulae
[8]. To this end, we first recall an idea of B. O’Neill [2, 8]: One can define a type
(2, 1)-tensor field on X, denoted by A, as follows: for any two vector fields Y, Z
on X,

A(Y, Z) = H∇HY VZ + V∇HY HZ,

where H and V mean taking the horizontal part and the vertical part respectively,
and ∇ is the Riemannian connection of X. An easy calculation shows that A
indeed is a tensor field on X, namely, the value of A(Y, Z) at any fixed point x
depends only on the values of Y and Z at x, although its definition does depend
on the values of Y and Z on a small neighborhood of x. Moreover, it has the
following key property (here we state slightly more than we need):

A(Y, Z) = −A(Z, Y ) =
1
2
V[Y, Z]

for any two horizontal vectors Y and Z. The proof of the property is simple:
It is sufficient to show A(Y, Y ) = 0, since if it is the case, A(Y + Z, Y + Z) =
A(Y, Z) + A(Z, Y ) = 0; and, by the definition of A,

V[Y, Z] = V∇Y Z − V∇ZY = A(Y, Z) − A(Z, Y ).

Since A is a tensor, one can take the horizontal vector field Y being the unique
lift of a vector field Y ′ on B, i.e. π∗(Y ) = Y ′. Let U be any vertical vector field
on X. Then we have π∗[Y, U ] = [π∗Y, π∗U ] = 0 since [Y, U ] is a vertical vector
field on X. Thus one has, by the torsion-freeness of the connection ∇,

< A(Y, Y ), U >=< ∇Y Y, U >= − < Y,∇Y U >

= − < Y, [Y, U ] + ∇UY >= − < Y,∇UY >= −1
2
U |Y |2.

Since Y is the lift of a vector field Y of B, so |Y |2 is constant on any fiber of
π : X → B, and hence < A(Y, Y ), U >= 0 for any vertical vector U . On the
other hand, by the definition, A(Y, Y ) is a vertical vector, so A(Y, Y ) = 0.

We now turn to the proof of the proposition. Denoting the curvature tensors
of X and B by R and R′ respectively, one of the O’Neill formulae then says, for
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horizontal tangent vectors Y, Z, U, V of X,

< R(Y, Z)U, V >=< R′(Y, Z)U, V > −2 < A(Y, Z), A(U, V ) >

+ < A(Z, U), A(Y, V ) > − < A(Y, U), A(Z, V ) >,

where Y, Z, U, V are also regarded as tangent vectors of B by π∗. Since A is
skew-symmetric in the horizontal direction, so we have

< R(Y, Z)Y, Z >=< R′(Y, Z)Y, Z > −2 < A(Y, Z), A(Y, Z) > +
< A(Z, Y ), A(Y, Z) >=< R′(Y, Z)Y, Z > −3 < A(Y, Z), A(Y, Z) >≤ 0.

This finishes the proof of the proposition.

In order to show the Chow condition, we can turn the problem into a Lie-
theoretic one. To this end, we first need to give the relation between the Lie
bracket of left invariant vector fields and the Lie bracket of the Lie algebras
in question when considering left invariant vector fields as elements of the Lie
algebra. We always use the notations of [7]. Denoting the Lie algebra of G and Z
by g and z respectively, it is easy to see that we have a direct sum decomposition
of vector spaces

g = z + m

with [z,m] ⊂ m. Here m can be identified with the tangent space of G/Z at the
origin or the set of all G-invariant vector fields on G/Z. Theorem 2.10 of [7] tells
us that there exists a unique torsion-free G-invariant affine connection ∇ with

∇Y Z =
1
2
[Y, Z]m, for Y, Z ∈ m,

here by Y, Z on the left-hand side we mean vector fields on G/Z while Y, Z on
the right-hand side mean elements in g; [Y, Z]m denotes the m-component of
[Y, Z]. Thus, one has

[Y, Z] = [Y, Z]m,

here by the left-hand side we mean the Lie bracket of vector fields, afterwards we
will not point out this since it should be clear from the context. As before, one
has a Cartan subgroup H contained in Z, the Lie algebra of which is a maximal
Abelian subalgebra, denoted by h. Consider the Cartan decomposition g = k+p,
here k is the Lie algebra of K. We then have the relations h ⊂ z ⊂ k ⊂ g and
p ⊂ m. Again, p, as a vector subspace of m, can be identified with the horizon-
tal tangent subspace at the origin with respect to the Riemannain submersion
G/Z → G/K and its left translation forms the horizontal distribution H of
the Riemannian submersion; furthermore, its elements can be identified with
G-invariant horizontal vector fields of G/K. By the previous relation of the two
Lie brackets, in order to show that the horizontal distribution H satisfies the
Chow condition, it is sufficient to show that p and [p, p] span m. To this end, we
use the root system of the complexification gC of g correspoding to the Cartan
subalgebra h.
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Let ∆ be the root system of gC with respect to h, gα the root space cor-
responding to α ∈ ∆, gC = kC + pC the Cartan decomposition, θ the Cartan
involution, σ the conjugation of gC with respect to g. Since h lies in k while
[k, k] ⊂ k and [k, p] ⊂ p, so the root space gα lies in either kC or pC. In the
first case, we call α a compact root, and we denote the set of all compact roots
by ∆(k); in the last case, it is a noncompact root, and we denote the set of
noncompact roots by ∆(p). On the other hand, we also have the direct sum
decomposition for vector spaces g = h + m′, obviously m ⊂ m′; furthermore one
has the direct sum m′ = k′ + p with h + k′ = k. So if we can show that [p, p] = k′,
equivalently [pC, pC] = k′C, then the Chow condition is obtained. From the root
theory, we has

k′C =
∑

α∈∆(k)

gα and pC =
∑

α∈∆(p)

gα.

Note that σ(gα) = g−α while σ(k′C) = k′C and σ(pC) = pC, so if α ∈ ∆(k) (resp.
∆(p)), then so is −α. We now state the following

Proposition 2. For any root α ∈ ∆(k), there exist two noncompact roots β and
γ with β + γ = α.

Remark. Clearly if the proposition is true, then the Chow condition is obtained.
In the following, we will case by case write down compact roots and noncompact
roots of gC for the above simple groups list and then easily check that the above
assertion is true. We believe that the proposition should also have a general
Lie-theoretic proof.

SO(p,2q),q ≥ 2: Here, we have two cases to consider. The first is SO(2p, 2q),
p, q ≥ 2: It is the noncompact real form of SO(2(p + q),C) with the maximal
compact subgroup K = SO(2p)×SO(2q). The root system of so(2(p + q),C) is
Dp+q = {±ei ± ej , 1 ≤ i < j ≤ p + q}, here {ei} is the standard basis of Rp+q,
while the root systems of so(2p,C) and so(2q,C), embedded in Dp+q, are

Dp = {±ei ± ej , 1 ≤ i < j ≤ p}
and

Dq = {±ei ± ej , p + 1 ≤ i < j ≤ p + q}
respectively. Therefore, corresponding to the noncompact real form SO(2p, 2q)
and its compact Cartan subalgebra, so(2(p + q),C) has noncompact roots

{±ei ± ej , 1 ≤ i ≤ p, p + 1 ≤ j ≤ p + q}.
The second case is SO(2p + 1, 2q), p, q ≥ 2: It is the noncompact real form of
SO(2(p + q) + 1,C) with the maximal compact subgroup K = SO(2p + 1) ×
SO(2q). The root system of so(2(p+q)+1,C) is Bp+q = {±ei,±ei±ej , 1 ≤ i, j ≤
p + q, i �= j} while the root systems of so(2p + 1,C) and so(2q,C), embedded in
Bp+q, are

Bp = {±ei,±ei ± ej , 1 ≤ i, j ≤ p, i �= j}
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and

Dq = {±ei ± ej , p + 1 ≤ i < j ≤ p + q}
respectively. Therefore, corresponding to the noncompact real form
SO(2p + 1, 2q) and its compact Cartan subalgebra, so(2(p + q) + 1,C) has non-
compact roots

{±ei ± ej ,±ej , 1 ≤ i ≤ p, p + 1 ≤ j ≤ p + q}.

Sp(p,q): It is the noncompact real form of Sp(p + q,C) with the maximal
compact subgroup K = Sp(p) × Sp(q). The root system of sp(p + q,C) is
Cp+q = {±2ei,±ei ± ej , 1 ≤ i, j ≤ p + q, i �= j}, while the root systems of
sp(p,C) and sp(q,C), embedded in Cp+q, are

Cp = {±2ei,±ei ± ej , 1 ≤ i, j ≤ p, i �= j}
and

Cq = {±2ei,±ei ± ej , p + 1 ≤ i, j ≤ p + q, i �= j}
respectively; therefore, corresponding to the noncompact real form Sp(p, q) and
its compact Cartan subalgebra, sp(p + q,C) has noncompact roots

{±ei ± ej , 1 ≤ i ≤ p, p + 1 ≤ j ≤ p + q}.

e6(2): It is the noncompact real form of e6 with the maximal compact subgroup
K = SU(6) × SU(2). The root system of e6 is

E6 = {ei − ej , i �= j, 1 ≤ i, j ≤ 6} ∪ {±(e7 − e8)} ∪
{1
2
(eσ(1) + eσ(2) + eσ(3) − eσ(4) − eσ(5) − eσ(6) ± (e7 − e8)), σ ∈ P (6)},

where P (6) is the permutation group of {1, 2, 3, 4, 5, 6}. The root system of
sl(6,C) + sl(2,C), embedded in E6, is

A5 + A1 = {ei − ej , i �= j, 1 ≤ i, j ≤ 6} ∪ {±(e7 − e8)}.
Thus, corresponding to the noncompact real form e6(2) and its compact Cartan
subalgebra, e6 has noncompact roots

{1
2
(eσ(1) + eσ(2) + eσ(3) − eσ(4) − eσ(5) − eσ(6) ± (e7 − e8)), σ ∈ P (6)}.

e7(7): It is the noncompact real form of e7 with the maximal compact subgroup
K = SU(8). The root system of e7 is

E7 = {ei − ej , 1 ≤ i, j ≤ 8, i �= j} ∪
{1
2
(eσ(1) + eσ(2) + eσ(3) + eσ(4) − eσ(5) − eσ(6) − eσ(7) − eσ(8)), σ ∈ P (8)},
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here P (8) is the permutation group of {1, 2, 3, 4, 5, 6, 7, 8}. The root system of
sl(8,C), embedded in E7, is

A7 = {ei − ej , i �= j, 1 ≤ i, j ≤ 8}.
Thus, corresponding to the noncompact real form e7(7) and its compact Cartan
subalgebra, e7 has noncompact roots

{1
2
(eσ(1) + eσ(2) + eσ(3) + eσ(4) − eσ(5) − eσ(6) − eσ(7) − eσ(8)), σ ∈ P (8)}.

e7(−5): It is the noncompact real form of e7 with the maximal compact subgroup
K = SO(12) × SU(2). The root system of e7 is

E7 = {ei − ej , 1 ≤ i, j ≤ 8, i �= j} ∪
{1
2
(eσ(1) + eσ(2) + eσ(3) + eσ(4) − eσ(5) − eσ(6) − eσ(7) − eσ(8)), σ ∈ P (8)},

here P (8) is the permutation group of {1, 2, 3, 4, 5, 6, 7, 8}. The root system of
so(12,C) + sl(2,C), embedded in E7, is

D6 + A1 = {ei − ej , 1 ≤ i, j ≤ 6, i �= j} ∪
{±1

2
(eσ(1) + eσ(2) + eσ(3) + eσ(4) − eσ(5) − eσ(6) − e7 − e8)} ∪

{±(e7 − e8)}.
(Note that if letting Rn have the standard basis {f1, · · · fn}, Dn = {±fi±fj , i �=
j}; so we need to construct an isomorphism between D6 and {ei − ej , 1 ≤ i, j ≤
6, i �= j} ∪ {± 1

2 (eσ(1) + eσ(2) + eσ(3) + eσ(4) − eσ(5) − eσ(6) − e7 − e8)}. This
is done by the uniqueness: {ei − ej , 1 ≤ i, j ≤ 6, i �= j} ∪ {±1

2 (eσ(1) + eσ(2) +
eσ(3) + eσ(4) − eσ(5) − eσ(6) − e7 − e8)} indeed is a root system of cardinality 60;
on the other hand, the only root system of cardinality 60 is Dn by the Cartan
classification theorem.)
Therefore, corresponding to the noncompact real form e7(−5) and its compact
Cartan subalgebra, e7 has noncompact roots

{±(ei − e7),±(ei − e8), 1 ≤ i ≤ 6} ∪
{±1

2
(eσ(1) + eσ(2) + eσ(3) − eσ(4) − eσ(5) − eσ(6) + e7 − e8)}.

e8(8): It is the noncompact real form of e8 with the maximal compact subgroup
K = SO(16). The root system of e8 is

E8 = {±ei ± ej ,
1
2

8∑
i=1

(−1)m(i)ei with
∑

m(i) being even, 1 ≤ i, j ≤ 8},

where m(i) is 0 or 1. The root system of so(16,C), embedded in E8, is D8 =
{±ei ± ej , 1 ≤ i, j ≤ 8}. Therefore, corresponding to the noncompact real form



HEAT FLOW FOR HORIZONTAL HARMONIC MAPS 521

e8(8) and its compact Cartan subalgebra, e8 has noncompact roots

{1
2

8∑
i=1

(−1)m(i)ei with
∑

m(i) being even, 1 ≤ i, j ≤ 8}.

e8(−24): It is the noncompact real form of e8 with the maximal compact sub-
group K = e7(−133) × SU(2). The root system of e8 is

E8 = {±ei ± ej ,
1
2

8∑
i=1

(−1)m(i)ei with
∑

m(i) being even, 1 ≤ i, j ≤ 8}.

The root system of e7 + sl(2,C), embedded in E8, is

E7 + A1 = {ei − ej , 1 ≤ i, j ≤ 8, i �= j} ∪
{1
2
(eσ(1) + eσ(2) + eσ(3) + eσ(4) − eσ(5) − eσ(6) − eσ(7) − eσ(8)), σ ∈ P (8)}

∪{±1
2
(e1 + e2 + · · · + e8)}.

Thus, corresponding to the noncompact real form e8(−24) and its compact Cartan
subalgebra, e8 has noncompact roots

{±(ei + ej), 1 ≤ i < j ≤ 8} ∪
{1
2
(eσ(1) + eσ(2) + eσ(3) + eσ(4) + eσ(5) + eσ(6) − eσ(7) − eσ(8)), σ ∈ P (8)}.

f4(4): It is the noncompact real form of f4 with the maximal compact subgroup
Sp(3) × SU(2). The root system of f4 is

F4 = {±ei,±ei ± ej (1 ≤ i, j ≤ 4, i �= j),
1
2
(±e1 ± e2 ± e3 ± e4)};

while the root system of sp(3,C) + sl(2,C), embedded in F4, is

C3 + A1 = {±2fi,±fi ± fj , 1 ≤ i, j ≤ 3, i �= j} ∪ {±(e3 + e4)}
where f1 = 1

2 (e1 − e2), f2 = 1
2 (e1 + e2), f3 = 1

2 (e3 − e4). Thus, corresponding
to the noncompact real form f4(4) and its compact Cartan subalgebra, f4 has
noncompact roots

{±e3,±e4,±ei ± ej , i = 1, 2, j = 3, 4} ∪
{1
2
(±(e1 − e2) ± (e3 + e4)),

1
2
(±(e1 + e2) ± (e3 + e4))}.

f4(−20): It is the noncompact real form of f4 with the maximal compact subgroup
SO(9). The root system of f4 is

F4 = {±ei,±ei ± ej (1 ≤ i, j ≤ 4, i �= j),
1
2
(±e1 ± e2 ± e3 ± e4)};
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while the root system of so(9,C), embedded in F4, is B4 = {±ei,±ei ± ej , 1 ≤
i, j ≤ 4, i �= j}. Therefore, corresponding to the noncompact real form f4(−20)

and its compact Cartan subalgebra, f4 has noncompact roots

{1
2
(±e1 ± e2 ± e3 ± e4)}.

g2(2): It is the noncompact real form of g2 with the maximal compact subgroup
SU(2) × SU(2). The root system of g2 is

G2 = {±α,±β,±(α + β),±(2α + β),±(3α + β),±(3α + 2β)},
where α = e1, β = − 3

2e1 +
√

3
2 e2; while the root system of sl(2,C) + sl(2,C),

embedded in G2, is A1 + A1 = {±β}⋃{±(2α + β)}. Therefore the noncompact
root system is

{±α,±(α + β),±(3α + β),±(3α + 2β)}.
Summing all the above up, it is easy to check that the noncompact roots can gen-
erate the compact roots, i.e. for any compact root α there exist two noncompact
roots β and γ satisfying α = β + γ.

3. Heat flow for horizontal harmonic maps

Let π : X → B be a Riemannian submersion, H the corresponding horizontal
distribution, and M a compact Riemannian manifold. Assume that π : X → B
satisfies the conditions stated in the Introduction, i.e. the Chow condition and
B having non-positive sectional curvature, and assume that X is complete under
both the Carnot-Caratheodory distance and the Riemannian metric. Consider
the following heat equation on M

(∗) Hτ(u) − ∂u

∂t
= 0,

where H represents the projection to H, and τ is the tension field of u. Assume
that u has the initial data u(·, 0) = g(·). We always assume that g is a horizontal
map from M to X and smooth. We wish to obtain some horizontal harmonic
map from M into X by solving the above heat equation under the initial data
g, when X is considered as a Riemannian manifold.

Lemma 1. There exists a positive number T with the property that the equation
(∗) with the initial data g has a smooth solution u(x, t) for t ∈ [0, T ) satisfying
u(·, t) ∈ Bg,H(M ;X). Furthermore, if u(x, t) is a solution of (∗) with u(·, 0) =
g(·) for t ∈ [0, T ′), T ′ > 0, then u(·, t) ∈ Bg,H(M ;X) and hence u(·,t)

∂t is a
horizontal tangent vector field of X for any t ∈ [0, T ′).

Proof. The first part of the lemma is essentially a standard result if one restricts
the problem to the space Bg,H(M ;X): The symbol of the linearization of the
operator Hτ is just an isomorphism from the horizontal tangent subbundle of
X to itself, so Hτ is elliptic. Thus one can still apply the implicit function



HEAT FLOW FOR HORIZONTAL HARMONIC MAPS 523

theorem to the present case, as one applies the implicit function theorem to the
usual harmonic map heat flow, to obtain the short-time existence. As for the
second part, it is also easy to see from the following discussion. Since Hτ(u)
is a horizontal vector on B(M ;X), i.e. a horizontal vector field on X, so ∂u

∂t is
also horizontal. Fix a point x ∈ M and take arbitrarily a curve γ(s) starting
from x for s ∈ [0, s0] and a vertical tangent vector V at g(x), translate parallelly
V along the t-curve u(x, t) and then the s-curves u(γ(s), t), still denoted by V .
Note that V is not necessarily parallel, even not continuous, along the t-curves
u(γ(s), t) for s �= 0. Compute ∂

∂t < ∂
∂su(γ(0), t), V >

∂

∂t
<

∂

∂s
u(γ(0), t), V >=< ∇ ∂

∂t

∂

∂s
u(γ(0), t), V >

= < ∇ ∂
∂s

∂

∂t
u(γ(0), t), V >=

∂

∂s
<

∂

∂t
u(γ(0), t), V >= 0.

Since < ∂
∂su(γ(0), t), V > |t=0 =< ∂

∂sg(γ(0)), V >= 0, so < ∂
∂su(γ(0), t), V >=

0. Thus u(·, t) is horizontal. Then, the horizontality of u(·,t)
∂t implies u(·, t) ∈

Bg,H(M ;X). The lemma is obtained.

Let e(u)(x, t) = 1
2 |∇u|2(x, t) be the energy density of u(·, t) for t ∈ [0, T ).

Denote the Laplace operator of M by ∆ and take {ei} as a normal frame of
M ; denote the Ricci tensor of M by RicM and the curvature tensor of X by
RX . By V we mean taking the vertical components of vectors. Then computing
(∆ − ∂

∂t )e(u), we obtain

(∆ − ∂

∂t
)e(u) = < ∇ei∇eidu, du > +|∇du|2− < ∇∂u

∂t
, du >

= < ∇(Vτ(u)),du > +|∇du|2+ < RicM (du(ei), du(ei)) >

− < RX(du(ei),du(ej))du(ei),du(ej) >

= −|Vτ(u)|2 + |∇du|2+ < RicM (du(ei),du(ei)) >

− < RX(du(ei),du(ej))du(ei),du(ej) > .

In the second equality above we used the Weitzenböck formula and the equation
(∗); in the last equality we used the horizontality of u. The following observation
is important for the present study.

Lemma 2. Let π : X → B be a Riemannian submersion. Then, for any hor-
izontal map u from a Riemannian manifold M into X, the vertical part Vτ(u)
of its tension field τ(u) vanishes.

Remark. Since the horizontal distribution H is generally not integrable, so the
vertical part of the Hessian of a horizontal map u does not necessarily vanish.

Proof of Lemma 2. To prove Lemma 2, we need to use some arguments from
the proof of Proposition 1, namely the definition of the tensor A and its skew-
symmetry. Take a normal frame {ei} of M and an orthogonal frame of X as
follows: {eα, eβ , eγ , · · · , eµ, eν , · · · } with the properties {eα, · · · } being horizontal
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and {eµ, · · · } vertical (note that, under such a restriction, one cannot get a
normal frame in general). Then, under these frames, the tension field of the
horizontal map u can be written as

τ(u) =
∑

i

∇du(ei, ei) =
∑
i,α

uα
iieα +

∑
i,α,β

uα
i uβ

i ∇eβ
eα,

and hence its vertical part is
∑

i,α,β uα
i uβ

i V∇eβ
eα, which, by the definition of

the tensor A and its skew-symmetricity, is just

Vτ(u) =
∑
i,α,β

uα
i uβ

i A(eα, eβ) =
∑

i

A(du(ei),du(ei)) = 0.

This completes the proof of the lemma.

Lemma 1 tells us that the solution u(·, t) to (∗) is horizontal for any t ∈ [0, T ),
so Vτ(u(·, t)) = 0 for t ∈ [0, T ). Thus, by the previous computation, we actually
obtain

(∆ − ∂

∂t
)e(u) = |∇du|2+ < RicM (du(ei),du(ei)) >

− < RX(du(ei),du(ej))du(ei),du(ej) > .

By the assumption on π : X → B, X has non-positive sectional curvature in the
horizontal direction, so we have

(∆ − ∂

∂t
)e(u) ≥ ce(u),

for some constant c, which only depends on M . Denote the total energy of u(·, t)
by E(u(·, t)) for t ∈ [0, T ), i.e. E(u(·, t)) =

∫
M

e(u(·, t))dx. Then, one has

d

dt
E(u(·, t)) =

d

dt

∫
M

< du, du > dx =
∫

M

< ∇ ∂
∂t

du, du > dx

=
∫

M

< ∇∂u

∂t
, du > dx = −

∫
M

<
∂

∂t
u, τ(u) > dx = −

∫
M

|Hτ(u)|2dx ≤ 0.

Summing all the above up, we have

Lemma 3. Suppose u(x, t) is a solution of (∗). Then for some constant c,

(∆ − ∂

∂t
)e(u) ≥ ce(u);

furthermore, the total energy E(u(·, t)) is a decreaseing function of t.

Combining the above lemma with Lemma 2.3.1 in [5], one has

Lemma 4. Let t > 0, 0 < R < min(i(M), π
2Λ ),where i(M) is the injective radius

of M and Λ2 is an upper bound for the sectional curvature of M . Then, for all
x ∈ M ,

e(u)(x, t) ≤ c(tR−m−2 + t−
m
2 )

∫
M

e(g)(y)dy,
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where m = dimM and c is some constant depending only on the geometry of M ;
and for any t0 < t, in particular t0 = 0,

e(u)(x, t) ≤ cR−2 sup
x∈M

e(u)(y, t0).

In the following, we want to derive a stability lemma. Let g(x, s) be a smooth
horizontal family of smooth horizontal maps from M to X with parameter s ∈
[0, s0], i.e. both g(·, s) for any s ∈ [0, s0] and ∂g

∂s being horizontal. Suppose that
u(x, t, s) is a family of solutions of (∗) with initial data g(x, s) for 0 ≤ s ≤ s0.
As pointed out before, ∂u

∂t is horizontal; using the same discussion as in Lemma
1, we now show that ∂u

∂s is also horizontal: Fixing x ∈ M and s1 ∈ [0, s0], one
can then consider u(x, t, s) as a variant of the curve u(x, t, s1). Take arbitrarily
a vertical tangent vector V at u(x, 0, s1) and translate parallelly V along the
t-curve u(x, t, s1) and then the s-curves u(x, t, s), still denoted by V . (Note that
V is not necessarily parallel along other t-curves u(x, t, s) for s �= s1.) Compute
∂
∂t < ∂u

∂s , V >

∂

∂t
<

∂u

∂s
, V >=< ∇ ∂

∂t

∂u

∂s
, V >=< ∇ ∂

∂s

∂u

∂t
, V >=

∂

∂s
<

∂u

∂t
, V >= 0;

on the other hand, < ∂u
∂s , V > |t=0 = 0, therefore < ∂u

∂s , V >= 0. Thus, for any
fixed t ∈ [0, T ) and s ∈ [0, s0], the derivative of u with respect to s, ∂u

∂s (·, t, s),
can be considered as a horizontal vector field of X (if necessary, it needs to be
considered as some section of certain pull-back bundle). Using the horizontality
of ∂u

∂s (·, t, s), we then have

Lemma 5. For every s ∈ [0, s0], the quantity

sup
x∈M

|∂u

∂s
|2(x, t, s)

is decreasing in t. Hence also the quantity

sup
x∈M,s∈[0,s0]

|∂u

∂s
|2(x, t, s)

is a decreasing function of t.

Proof. As before, one can compute under a normal frame {ei}

(∆ − ∂

∂t
)|∂u

∂s
|2

= 2|∇∂u

∂s
|2 − 2

∑
i

< R(
∂u

∂s
,du(ei))

∂u

∂s
, du(ei) > .

Here we use the heat eqaution and the horizontality of ∂u
∂s . Thus, by the as-

sumption for the sectional curvature in the horizontal direction, we have

(∆ − ∂

∂t
)|∂u

∂s
|2 ≥ 0.

The lemma then follows from the maximum principle for parabolic equations.
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In order to apply the regularity theorems for elliptic equations, we have to
make sure that the solution of (∗) with the given initial data g lies in a suitable
coordinate chart of X when the domain considered is enough small and the
time interval short enough. We have obtained a point-wise upper bound of the
derivatives of u with respect to the space variables, so we still have to derive a
bound for the time derivative of the solution. This can be done by applying the
above lemma.

Lemma 6. Suppose that u(x, t) is a solution of (∗) with the initial data g for
t ∈ [0, T ). Then for all t ∈ [0, T ) and x ∈ M

|∂u(x, t)
∂t

| ≤ sup
y∈M

|∂u(y, o)
∂t

|.

Proof. Setting u(x, t, s) = u(x, t + s), then u(x, t, s) can be considered as
a family of solutions to (∗) with a family of initial data u(x, s). Applying the
preceeding lemma to u(x, t, s), we then get the present lemma.

Fix x ∈ M and t ∈ [0, T ). As before, we take a normal frame {ei} at x, and
a orthogonal frame {eα, eβ , eγ , · · · , eµ, eν , · · · } at u(x, t) with the property that
{eα, · · · } are horizontal and {eµ, · · · } are vertical; as pointed out before, under
such a restriction, one cannot get a normal frame at u(x, t) in general. Then,
the heat equation (∗) can be rewritten under such frames at (x, t) as

(∗′)
∑

i

uα
ii +

∑
i,β,γ

Γα
βγuβ

i uγ
i =

∂uα

∂t
.

Remark. Note that the solution with the initial data g is horizontal for both
the space variable and the time variable, as seen in Lemma 1. So by Lemma 2,
Vτ(u) = 0, i.e. Hτ(u) = τ(u). Thus we can actually omit H in the equation
(∗) and think that u just satisfies the usual heat equation for harmonic maps
τ(u) − ∂u

∂t = 0. In the following estimate, we will actually adopt this point of
view although it will not be pointed out explicitly.

Lemma 7. Suppose that u(x, t) is a solution of (∗) (or (∗′)) with the initial data
g for t ∈ [0, T ). Then for every α ∈ (0, 1)

‖u(·, t)‖C2+α(M ;X) + ‖∂u

∂t
(·, t)‖Cα(M ;X) ≤ c,

where c depends on α, the initial data g(x), and the geometry of M and X, but
not on t.

Proof. Rewrite (∗′) as
∑

i

uα
ii = −

∑
i,β,γ

Γα
βγuβ

i uγ
i +

∂uα

∂t
.

If we restrict the solution u to a suitable small coordinate chart at the point
x0 ∈ M , say B(x0, ρ) with ρ enough small, and a suitable small time interval
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[t0, t1], u(x, t) will stay in a certain coordinate chart of X by the lemma 4 and
the lemma 6; moreover, the two lemmata also imply that the right-hand side of
the above equation is bounded (note that the bound does not depend on t), this,
by elliptic regularity theory, then implies a bound (again not depending on t) for
‖u(·, t)‖C1+α(M ;X) on a smaller coordinate chart, say B(x0,

ρ
2 ) (see [5], Theorem

2.2.1). Thus, the right-hand side of the following parabolic equation
∂uα

∂t
−

∑
i

uα
ii =

∑
i,β,γ

Γα
βγuβ

i uγ
i

is bounded (the bound being independent of t) in Cα(M ;X), and hence the
Schauder estimate for parabolic equations then implies the estimate in the
lemma, at least in the above small coordinate chart; but M is compact, so
the estimate is valid on M .

Based on the local existence of solutions and the above Schauder estimate,
one has the following global existence theorem for (∗) with the initial data g.

Theorem 1. The solution u(x, t) of the heat equation (∗) with the horizontal
initial data g exists for all t ∈ [0,∞), provided that the Riemannian submersion
π : X → B satisfies the Chow condition and that B has non-positive sectional
curvature.

In the following, we will show that the global solution u(·, t) in the theorem
above converges to a horizontal harmonic map as t goes to infinity. As seen
before, we have shown the energy decay formula, namely

d
dt

E(u(·, t)) = −
∫

M

|∂u(x, t)
∂t

|2dx = −
∫

M

|Hτ(u)|2dx;

observe also that the energy function E(u(·, t)) in t is nonnegative for t ∈
[0,∞), so there exists a sequence {tn}∞n=1 with tn → ∞ as n → ∞ satisfying
d
dtE(u(·, t))|tn

→ 0 as n → ∞, this is just equivalent to saying∫
M

|∂u

∂t
(x, tn)|2dx → 0, as n → ∞.

On the other hand, as seen in Lemma 7, ∂u
∂t (·, t) has a Cα-bound independent

of the time t, so we obtain

Lemma 8. There exists a sequence {tn}∞n=1 with tn → ∞ as n → ∞, for which
∂u
∂t (x, tn) converges to zero uniformly in x ∈ M as n → ∞.

Lemma 7 also tells us that u(·, t) has a time-independent C2+α-bound, so one
obtains, by possibly passing to a subsequence of {tn}, that u(·, tn) converges
at least C2-uniformly to a map u : M → X, which is moreover horizontal;
furthermore, since {u(·, tn)} is at least C2-uniformly convergent to u and both
u(·, tn) and u are horizontal, so by the Hopf-Rinow theorem, as mentioned in
the Introduction, some u(·, tn), and hence g(·), is homotopic to u(·) by a certain
horizontal homotopy h(·, s) for s ∈ [0, 1] with h(·, 0) = u(·, tn) and h(·, 1) = u(·).



528 JÜRGEN JOST AND YI-HU YANG

Here by the homotopy h(·, s) being horizontal we mean that h(·, s) for each
s ∈ [0, 1] is a horizontal map and the s-curves are also horizontal. Again since
{u(·, tn)} uniformly converges to u, w. l. o. g., we can assume that the length
of the s-curves h(x, s) have a sufficient small upper bound ε > 0 independent of
x ∈ M . We now observe the family of the solutions u′(x, t, s) (s ∈ [0, 1]) to (∗)
with h(x, s) being the family of initial maps. It is clear that u′(x, t, 1) = u(x)
since Hτ(u) = 0 and h(x, 1) = u(x); while u′(x, t, 0) = u(x, t + tn). By the
Lemma 5, the supremum with respect to x of the length of s-curves u′(·, t, s) is
a decreasing function of t and hence less than ε. Since ε is arbitrary, we have
that u(x, t) converges uniformly to u(x) in t in the sense of C0, not only for a
subsequence {tn}. Applying this to the heat equation (∗), one obtains

Hτ(u) = 0.

Finally, the horizontality of u(x) and the Lemma 2 tell us that Vτ(u) = 0, and
hence

τ(u) = 0,

i.e. the limit u is a horizontal harmonic map. Thus we have

Theorem 2. Suppose that π : X → B is a Riemannian submersion satisfying
the Chow conditions and that B has non-positive sectional curvature. Let M be
a compact Riemannian manifold and g : M → X a horizontal smooth map from
M to X. Then there exists a horizontal harmonic map u : M → X from M into
X, which is homotopic to g by a horizontal homotopy.

Remark. The theorem above is actually valid in a more general setting, namely
the equivariant one: Let φ : π1(M) → π1(X) be a homomorphism and g a
φ-equivariant map from M into X, then one can solve the corresponding heat
equation (∗) and obtain similar results, e.g. the existence for φ-equivariant
horizontal harmonic maps. We omit this, but point out that in our future
applications we shall use this setting. We shall come back to this in [6].
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[6] J. Jost and Y.-H. Yang, Horizontal harmonic maps into locally homogeneous complex
manifolds, in preparation.

[7] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol.II, Interscience
Publishers (1969).

[8] B. O’Neill, The fundamental equations of a submersion, Michigan Mathematical Journal,
13 (1966) 459-469.

[9] J.-P. Serre, Complex Semisimple Lie Algebras, Springer-Verlag, New York, (1987).

[10] C. Simpson, Higgs bundles and Local systems, Inst. Hautes Études Sci. Publ. Math. 75
(1992) 5-95.

Max-Planck-Institute for Mathematics in the Sciences, Inselstrasse 22, D-04103
Leipzig, Germany

E-mail address: juergen.jost@mis.mpg.de

Department of Applied Mathematics, Tongji University, Shanghai 200092, China,
E-mail address: yhyang@mail.tongji.edu.cn


