
Mathematical Research Letters 12, 493–512 (2005)

BUNDLE CONSTRUCTIONS OF
CALIBRATED SUBMANIFOLDS IN R

7 AND R
8

Marianty Ionel, Spiro Karigiannis, and Maung Min-Oo

Abstract. We construct calibrated submanifolds of R
7 and R

8 by viewing them

as total spaces of vector bundles and taking appropriate sub-bundles which are

naturally defined using certain surfaces in R
4. We construct examples of asso-

ciative and coassociative submanifolds of R
7 and of Cayley submanifolds of R

8.

This construction is a generalization of the Harvey-Lawson bundle construction of

special Lagrangian submanifolds of C
n.

1. Introduction

The study of calibrated geometries was initiated by Harvey and Lawson in
their seminal paper [7]. Because they are believed to play a crucial role in
explaining mirror symmetry [18], they have recently received much attention.
There has been extensive research done on special Lagrangian submanifolds of
C

n, most notably by Joyce but see also [10] and the many references contained
therein. Significantly less progress has been made in analyzing associative and
coassociative submanifolds of R

7 and Cayley submanifolds of R
8, although the

recent papers [13, 14] of Lotay presented some constructions analogous to earlier
special Lagrangian constructions by Joyce. Even less is known about calibrated
submanifolds in more general Calabi-Yau, G2, and Spin(7) manifolds, even in
the non-compact case, although the examples in R

n serve as important local
models, especially for studying the possible singularities that can occur.

In their original paper [7] Harvey and Lawson presented a construction of
special Lagrangian submanifolds in C

n using bundles. In this paper, motivated
by their work, we describe a similar bundle construction of associative and coas-
sociative submanifolds of R

7 and Cayley submanifolds of R
8. The reader can

consult [6, 7, 11] for background on these exceptional calibrations.
The Harvey-Lawson contruction involves viewing C

n as a vector bundle over
R

n, and taking an appropriate sub-bundle of the restriction of this bundle to
a submanifold Mp ⊂ R

n. In this case C
n = T ∗(Rn) and the subbundle is

the conormal bundle N∗(Mp). They find that the conormal bundle is special
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Lagrangian if and only in Mp is austere in R
n, which is a condition which is in

general much stronger than minimal. Their construction is reviewed in Section 3.

It is well known [2] that if one views R
7 as the space of anti-self dual 2-forms

on R
4, and R

8 as the negative spinor bundle of R
4, there are naturally defined

parallel G2 and Spin(7)-structures on them, respectively. See [9, 11, 12] for back-
ground on G2 and Spin(7)-structures. We consider restricting these bundles to
a surface M2 ⊂ R

4, and then take appropriate naturally defined sub-bundles of
this restriction, the total spaces of which are candidates for associative, coasso-
ciative, and Cayley submanifolds. This is discussed in Section 4.

Since a calibrated submanifold is necessarily minimal, and since the vector
bundle directions have trivial second fundamental form, the base manifold M2

must be necessarily at least minimal in R
4. (Just as austere submanifolds are

at least minimal in the Harvey-Lawson construction.) In Theorem 4.2.1 we find
that the naturally defined rank 2 sub-bundle of ∧2

−(R
4)|

M2 is coassociative iff
the immersion of M2 in R

4 is a solution of exactly one half of the superminimal
surface equation. It is important that not all superminimal surfaces will work.
Surprisingly, we find in Theorem 4.3.1 that the naturally defined rank 1 sub-
bundle of ∧2

−(R
4)|

M2 is associative iff M2 is just minimal in R
4, with no extra

conditions. Similarly in Theorem 4.5.1 we find two naturally defined rank 2 sub-
bundles of /S−(R4)|

M2 and each of them is Cayley iff M2 is again just minimal.

The associative construction produces interesting new examples, while the
coassociative construction actually produces examples which live in a C

3 sub-
space of R

7 and are complex submanifolds of C
3. The Cayley construction pro-

duces submanifolds of R
8 which are either of the form R × L for an associative

3-fold L or are non-trivial coassociative submanifolds of R
7.

It is interesting that special Lagrangian and coassociative submanifolds are
harder to construct using these methods, requiring a base which is more than
just minimal. Special Lagrangian and coassociative submanifolds have a nice,
unobstructed local deformation theory [15], and the local moduli space is intrin-
sic to the submanifold. On the other hand, associative and Cayley submanifolds
have a more complicated, non-intrinsic and obstructed deformation theory, yet
the bundle construction in these cases is simpler, requiring only minimality.

There exist examples of special holonomy metrics on non-compact manifolds
which are bundles over a compact base, for example the Calabi-Yau metrics on
T ∗(Sn), described in [17], the G2 holonomy metrics on ∧2

−(S
4) and ∧2

−(CP
2)

and the Spin(7) holonomy metrics on /S−(S4), described in [2, 4]. Similar con-
structions can be done in these cases, and this is the subject of [8].

We should remark that after this work was done, the authors found a similar
although different statement, without proof, in an unpublished preprint by S.H.
Wang [19]. We were recently informed by Robert Bryant that a corrected version
of Wang’s paper will appear in Differential Geometry and its Applications.
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2. The second fundamental form for immersions Mp ⊂ R
n

In this section we set up notation for local computations for an isometric
immersion of a p-dimensional submanifold Mp immersed in R

n.
Take (x1, x2, . . . , xn) to be coordinates on R

n, and denote the immersion
M ⊂ R

n by xi = xi(u1, u2, . . . , up), for 1 ≤ i ≤ n where (u1, u2, . . . , up)
are local coordinates on Mp. Consider a point u0 in M with coordinates
(u1

0, u
2
0, . . . , u

p
0) and corresponding to the point x0 = x(u0) in X with coor-

dinates (x1
0, x

2
0, . . . , x

n
0 ). Near x0 let e1, e2, . . . , ep be a local orthonormal frame

of tangent vector fields to M and let ν1, ν2, . . . , νq be a local orthonormal frame
of normal vector fields to M , where q = n− p.

Let ∇ denote the Levi-Civita connection on R
n and ()T and ()N denote the

orthogonal projections onto the tangent and normal bundles of M in R
n. By

choosing an orthonormal tangent frame and an orthonormal normal frame at
the point x0 and then parallel transporting via the induced tangent and normal
connections, we can assume that these local vector fields have been chosen so
that at the point x0,

(2.1) (∇ei
ej)|Tx0

= 0 and (∇ei
νj)|Nx0

= 0

For ν any normal vector field, we can define the second fundamental form Aν

as the linear operator

Aν : T (M) → T (M)

Aν : w 
→ Aν(w) = (∇wν)
T

Here we are following the sign convention of Harvey and Lawson, which differs
from most definitions. The statements of all results in this paper are independent
of the choice of sign for the definition of Aν . The important property of Aν is
that it is a symmetric operator, and hence diagonalizable. This follows from

〈ei, A
ν(ej)〉 = 〈ei,

(∇ej
ν
)T 〉 = 〈ei,∇ej

ν〉 = −〈∇ej
ei, ν〉

= −〈∇ei
ej , ν〉+ 〈[ei, ej ], ν〉 = −〈∇ei

ej , ν〉 = 〈ej , A
ν(ei)〉

where we have used [ei, ej ] = ∇eiej−∇ejei and the fact that [ei, ej ] is orthogonal
to ν since the bracket of two tangent vector fields on M is again a tangent vector
field on M . We now adopt the notation

Aν
ij = 〈Aν(ei), ej〉 = Aν

ji

and more specifically Ak
ij = Aνk

ij .
We also have the dual coframe of orthonormal cotangent vector fields

e1, e2, . . . , ep and the orthonormal conormal vector fields ν1, ν2, . . . , νq. These
satisfy

(2.2) ei(ej) = δi
j νi(νj) = δi

j ei(νj) = 0 νi(ej) = 0

From (2.2), we have that
(∇ei

ej
)
(ek) = −ej (∇ei

ek). From this, it is very easy
to check that under the hypotheses of (2.1), we have the following expressions
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for the covariant derivatives of the ei’s and the νj ’s at the point x0:

(2.3) ∇ei
ej = −

q∑
k=1

Ak
ijν

k ∇ei
νj =

p∑
k=1

Aj
ike

k

3. The Harvey-Lawson special Lagrangian bundle construction

In this section we review the bundle construction of Harvey and Lawson [7]
of special Lagrangian submanifolds. The natural ambient manifold in which to
consider special Lagrangian submanifolds is a Calabi-Yau manifold, which is in
particular a symplectic manifold. The simplest example of a symplectic manifold
is the cotangent bundle T ∗(Rn) of R

n. This example is trivially Calabi-Yau, since
T ∗(Rn) = R

n ⊕ R
n = C

n.
On C

n = T ∗(Rn) we have a Kähler form ω = i
2

∑
dzk∧dz̄k and a holomorphic

(n, 0) volume form Ω = ReΩ + i ImΩ = dz1 ∧ . . . ∧ dzn. A real n-dimensional
submanifold Ln of C

n is special Lagrangian with phase eiθ (up to a possible
change of orientation) if the following two independent conditions are satisfied:

ω|
L
= 0

(
Im e−iθΩ

)|
L
= 0

The first condition simply says that L is Lagrangian, which involves only the
symplectic structure ω of C

n. The special condition is given by the second
equation, which involves the Calabi-Yau metric structure.

Now it is a classical fact that if Mp is a p-dimensional submanifold of R
n,

then the conormal bundle N∗(Mp) is a Lagrangian submanifold of the symplec-
tic manifold T ∗(Rn). (This will be shown below.) Motivated by this, Harvey
and Lawson found conditions on the immersion Mp ⊂ R

n that makes N∗(Mp)
a special Lagrangian submanifold of T ∗(Rn), in terms of the second fundamen-
tal form of the immersion. We reproduce their results here, to motivate the
constructions in Section 4 and to fix our notation and conventions.

The canonical symplectic form ω on T ∗(Rn) is a 2-form on the total space
T ∗(Rn) = R

n ⊕ R
n. An orthonormal coframe for R

n is given by e1, e2, . . . , en.
Hence an arbitrary element of the cotangent bundle can be written as

(x, s1e1 + s2e
2 + . . .+ sne

n)

where the si’s are coordinates on the cotangent space. An orthonormal tangent
frame for the total space is given by

(ei, 0) i = 1, . . . , n and (0, ei) i = 1, . . . , n

For notational simplicity, we will denote (ei, 0) by ēi and (0, ei) by ěi. The
canonical symplectic form ω on T ∗(Rn) is then given by

ω =
n∑

k=1

ēk ∧ ěk
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where ēk is dual to ēk and ěk is dual to ěk. Let Mp ⊂ R
n. If we restrict the

cotangent bundle T ∗(Rn) to Mp, we have

T ∗(Rn)|
M

= T ∗(M)⊕N∗(M)

Since M is p-dimensional, the total space of the conormal bundle has dimension
p+ (n− p) = n. It therefore makes sense to ask if N∗(M) is Lagrangian.

We use the local coordinate notation described in Section 2. An orthonormal
coframe for R

n is given by e1, e2, . . . , ep, ν1, ν2, . . . , νq, where the ei’s are tangent
to Mp and the νi’s are normal to Mp. Then ω takes the form

(3.1) ω =
p∑

k=1

ēk ∧ ěk +
q∑

l=1

ν̄l ∧ ν̌l

where as above ν̄j = (νj , 0) and ν̌j = (0, νj).

Lemma 3.0.1. The conormal bundle is a Lagrangian submanifold of T ∗(Rn).

Proof. We show that every tangent space to N∗(M) is a Lagrangian subspace of
the corresponding tangent space to T ∗(Rn). In local coordinates the immersion
Ψ is given by

Ψ : (u1, u2, . . . , up, t1, t2, . . . , tq) 
→ (x1(u), . . . , xn(u), t1ν1 + t2ν
2 + . . .+ tqν

q)

Hence the tangent space at (x(u0), t1, t2, . . . , tq) is spanned by the vectors

Ei = Ψ∗

(
∂

∂ui

)
=

(
ei,

q∑
k=1

tk∇ei(ν
k)|x0

)
i = 1, . . . , p

Fj = Ψ∗

(
∂

∂tj

)
= (0, νj) = ν̌j j = 1, . . . , q

Using (2.3) we can write

Ei =

(
ei,

q∑
k=1

p∑
l=1

tkA
k
ile

l

)
= ēi +

p∑
l=1

Aν
ilě

l

where we have defined ν =
∑q

k=1 tkνk. To check that the immersion is La-
grangian, we use (3.1) and compute

ω(Fi, Fj) = ω(ν̌i, ν̌j) = 0 ∀i, j = 1, . . . , q

and (dropping the summation sign over k for clarity)

ω(Fi, Ej) = ω(ν̌i, ēj +Aν
jkě

k) = 0 ∀i = 1, . . . , q j = 1, . . . , p

Finally we have (again with the summations over k and l implied)

ω(Ei, Ej) = ω(ēi +Aν
ilě

l, ēj +Aν
jkě

k) = Aν
ij −Aν

ji = 0

using the symmetry of Aν . Hence ω restricts to zero on N∗(M) and the conormal
bundle is Lagrangian in T ∗(Rn). �
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Since T ∗(Rn) is Calabi-Yau, we can further ask under what conditions the
conormal bundle N∗(M) is actually special Lagrangian. A basis for the (1, 0)
forms is given by ēj + iěj for j = 1, . . . , p and ν̄k + iν̌k for k = 1, . . . , q. Thus
the holomorphic (n, 0) form Ω can be written as

Ω = (ē1 + iě1) ∧ . . . ∧ (ēp + iěp) ∧ (ν̄1 + iν̌1) ∧ . . . ∧ (ν̄q + iν̌q)

Proposition 3.0.2 (Harvey and Lawson, 1982 [7], Theorem III.3.11). The
conormal bundle N∗(M) is special Lagrangian in T ∗(Rn) with phase iq if and
only if all the odd degree symmetric polynomials in the eigenvalues of Aν vanish
for all normal vector fields ν on M , where Aν is the second fundamental form
for the immersion of M in R

n.

Remark 3.0.3. Such a submanifold is called austere.

Proof. From Lemma 3.0.1 we had a basis for the tangent space to the immersion
of N∗(M) at a point (x(u0), t1, t2, . . . , tq) was given by

Ek = ēk +
p∑

l=1

Aν
klě

l k = 1, . . . , p

Fj = ν̌j j = 1, . . . , q

Without loss of generality we can assume that the tangent vector fields were
chosen to diagonalize Aν at x0. That is, Aν(ek) = λkek for k = 1, . . . , p. We
compute easily that

(ēj + iěj)(Ek) = δj
k + iλkδ

k
j (ēj + iěj)(Fk) = 0

(ν̄j + iν̌j)(Ek) = 0 (ν̄j + iν̌j)(Fk) = δj
k

and hence

Ω(E1, . . . , Ep, F1, . . . , Fq) = iq(1 + iλ1)(1 + iλ2) · · · (1 + iλp)

If instead we consider the point (x(u0), ct1, ct2, . . . , ctq) then the eigenvalues of
Acν are cλi and thus Im(i−qΩ) restricts to zero on all these tangent spaces (for
any c) if and only if all the odd degree symmetric polynomials in the eigenvalues
vanish. �

Remark 3.0.4. The first symmetric polynomial is the trace, so the submanifold
Mp is necessarily minimal, as expected. If p = 1, 2 this is the only condition,
but for p ≥ 3 the austere condition is much stronger than minimal.

Remark 3.0.5. Note that we cannot construct special Lagrangian submanifolds
in this way of arbitrary phase. The factor of i−q means that the allowed phase
(up to orientation) depends on the codimension q of the immersion.
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4. Bundle constructions for exceptional calibrations

We now look for a similar procedure which will produce exceptional calibrated
submanifolds: associative and coassociative submanifolds of R

7, and Cayley sub-
manifolds of R

8. The idea is as follows. There are natural ways to view R
7 and

R
8 as total spaces of vector bundles over the base space R

4, which are compati-
ble with the canonical G2 and Spin(7)-structures on R

7 and R
8. Specifically, the

bundle of anti-self-dual 2-forms ∧2
−(R

4) ∼= R
7 has a natural G2-structure, and

the negative spinor bundle /S−(R4) ∼= R
8 has a natural Spin(7)-structure.

Now we let Mp be a submanifold immersed in R
4 and consider the restriction

of these bundles to Mp. For the right choice of dimension p, this restriction
breaks up naturally into the direct sum of bundles, which can have the correct
dimension (as total spaces) to be candidates for calibrated submanifolds. Then
we can find conditions on the second fundamental form of the immersion of M
in R

4 for this to actually happen.

4.1. The G2 manifold ∧2
−(R

4). The space of anti-self-dual 2-forms ∧2
−(R

4)
on R

4 (which we will sometimes denote ∧2
−) is naturally isomorphic to R

7, with
a natural G2-structure which we now describe. (See [2], for example.) Let
e1, e2, e3, e4 be an oriented coframe of orthonormal covector fields on R

4. Then
a basis of sections for ∧2

− is given by

ω1 = e1 ∧ e2 − e3 ∧ e4

ω2 = e1 ∧ e3 − e4 ∧ e2

ω3 = e1 ∧ e4 − e2 ∧ e3

The canonical G2 form ϕ on ∧2
−(R

4) is a 3-form on the total space ∧2
−(R

4) =
R

4 ⊕ R
3. An arbitrary element of ∧2

−(R
4) can be written as(

x, t1ω1 + t2ω
2 + t3ω

3
)

An orthonormal tangent frame for the total space is given by

(ei, 0) i = 1, . . . , 4 and (0, ωi) i = 1, . . . , 3

For notational simplicity, we will denote (ei, 0) by ēi and (0, ωi) by ω̌i. The
canonical 3-form ϕ on ∧2

−(R
4) is then given by

ϕ = ω̌1 ∧ ω̌2 ∧ ω̌3 + ω̌1 ∧ (ē1 ∧ ē2 − ē3 ∧ ē4)(4.1)
+ ω̌2 ∧ (ē1 ∧ ē3 − ē4 ∧ ē2) + ω̌3 ∧ (ē1 ∧ ē4 − ē2 ∧ ē3)

where ω̌k is dual to ω̌k and ēk is dual to ēk.
Let M2 be a surface isometrically immersed in R

4. As in Section 2, we let
e1, e2 be a local orthonormal frame of tangent vector fields to M and ν1, ν2 be
a local orthonormal frame of normal vector fields to M . Then the dual covector
fields e1, e2 and ν1, ν2 are local coframes for the cotangent and conormal bundles.
Locally we can write that the anti-self-dual 2-forms restrict to M as

∧2
−(R

4)|
M

= span(ω1, ω2, ω3)
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where ω1 = e1 ∧ e2 − ν1 ∧ ν2, ω2 = e1 ∧ ν1 − ν2 ∧ e2, and ω3 = e1 ∧ ν2 − e2 ∧ ν1.
Then ω1 is globally defined on M independent of the choice of frames, and
span(ω1) defines a rank 1 bundle E over M2 and its orthogonal complement
(locally defined as span(ω2, ω3)) defines a rank 2 bundle F over M2.

∧2
−(R

4)|
M

= E ⊕ F

The total spaces of E and F are 3 and 4-dimensional submanifolds of R
7 and

hence candidates for associative and coassociative submanifolds, respectively.

Proposition 4.1.1. Using the notation of Section 2, we have the following
expressions for the covariant derivatives of ω1, ω2, ω3 at the point x0.

∇ei
ω1 =

(
A2

i1 −A1
i2

)
ω2 +

(−A1
i1 −A2

i2

)
ω3

∇eiω
2 =

(
A1

i2 −A2
i1

)
ω1

∇eiω
3 =

(
A2

i2 +A1
i1

)
ω1

Proof. We prove the second expression. We use (2.3) and compute:

∇ei
ω2 =

(∇ei
e1
) ∧ ν1 + e1 ∧ (∇ei

ν1
)− (∇ei

ν2
) ∧ e2 − ν2 ∧ (∇ei

e2
)

=
(−A1

i1ν
1 −A2

i1ν
2
) ∧ ν1 + e1 ∧ (A1

i1e
1 +A1

i2e
2
)

− (A2
i1e

1 +A2
i2e

2
) ∧ e2 − ν2 ∧ (−A1

i2ν
1 −A2

i2ν
2
)

=
(
A1

i2 −A2
i1

) (
e1 ∧ e2 − ν1 ∧ ν2

)
The other two are obtained similarly. �
4.2. Coassociative submanifolds of ∧2

−(R
4). We now determine conditions

on the immersion M2 ⊂ R
4 so that the total space of the bundle F over M is

a coassociative submanifold. A 4-manifold L4 is coassociative (see [6] and [7]
Section IV.1.B) iff ϕ|

L4 = 0 where ϕ is the fundamental 3-form.
A rank 2 real vector bundle which is both oriented and possesses a Riemannian

metric on each fibre comes equipped with a natural almost complex structure J
defined as follows. If v1, v2 is an oriented orthonormal basis in a fixed fibre, we
define Jv1 = v2 and Jv2 = −v1.

Theorem 4.2.1. The total space of the rank 2 bundle F over M is a coasso-
ciative submanifold of ∧2

−(R
4) if and only if the second fundamental form Aν of

the immersion M ⊂ R
4 satisfies

(4.2) AJν = −JAν

for all normal vector fields ν.

Remark 4.2.2. In this equation the J on the left hand side corresponds to the
natural almost complex structure on N(M) while the J on the right hand side
corresponds to the natural almost complex structure on T (M).

Proof. We show every tangent space to F is a coassociative subspace of the
corresponding tangent space to ∧2

−. Locally the immersion Ψ is given by

Ψ : (u1, u2, t2, t3) 
→ (x1(u1, u2), x2(u1, u2), t2ω2 + t3ω
3)
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Hence the tangent space at (x(u0), t2, t3) is spanned by the vectors

Ei = Ψ∗

(
∂

∂ui

)
=
(
ei, t2∇ei

(ω2)|x0
+ t3∇ei

(ω3)|x0

)
i = 1, 2

Fj = Ψ∗

(
∂

∂tj

)
= (0, ωj) = ω̌j j = 2, 3

Using Proposition 4.1.1 we can write

E1 = ē1 +
(
t2
(
A1

12 −A2
11

)
+ t3

(
A2

12 +A1
11

))
ω̌1

E2 = ē2 +
(
t2
(
A1

22 −A2
12

)
+ t3

(
A2

22 +A1
12

))
ω̌1

If we now define the vectors ν = t2ν1 + t3ν2 and ν⊥ = −t3ν1 + t2ν2, which are
orthogonal normal vectors, then the expressions for E1, E2 simplify to

E1 = ē1 +
(
Aν

12 −Aν⊥
11

)
ω̌1

E2 = ē2 +
(
Aν

22 −Aν⊥
12

)
ω̌1

Now since we have

ϕ = ω̌1 ∧ ω̌2 ∧ ω̌3 + ω̌1 ∧ (ē1 ∧ ē2 − ν̄1 ∧ ν̄2)
+ ω̌2 ∧ (ē1 ∧ ν̄1 − ν̄2 ∧ ē2) + ω̌3 ∧ (ē1 ∧ ν̄2 − ē2 ∧ ν̄1)

we compute that

ϕ(E1, E2, ·) = E2�E1�ϕ = ω̌1 + (· · · ) ē1 + (· · · ) ē2
and hence since Fj = ω̌j we see that ϕ(E1, E2, F2) = ϕ(E1, E2, F3) = 0 always.
It remains to check when ϕ(F2, F3, Ej) = 0 for j = 1, 2. Since ϕ(F2, F3, ·) = ω̌1

these become the pair of conditions

Aν
12 −Aν⊥

11 = 0 Aν
22 −Aν⊥

12 = 0

for the tangent space at (x0, t2, t3) to be coassociative. We get two more equa-
tions that must be satisfied by demanding that the tangent space at (x0,−t3, t2)
also be coassociative. This corresponds to changing t2 
→ −t3 and t3 
→ t2 in the
above equations, which is equivalent to ν 
→ ν⊥ and ν⊥ 
→ −ν. This gives

Aν⊥
12 +Aν

11 = 0 Aν⊥
22 +Aν

12 = 0

Thus at each point x(u0) on M2, Aν⊥
is determined by Aν for all normal vector

fields ν. These four equations are equivalent to the single matrix equation Aν⊥
=

AJν = −JAν for J the natural almost complex structure described above. �

Note this condition implies that A1
11 +A1

22 = A2
11 +A2

22 = 0. Since ν and ν⊥

are a basis for the normal space at every point, we see that Tr(A) = 0 and M2 is
necessarily minimal in R

4, as expected. However the condition AJν = −JAν is
actually stronger than minimal, just as the austere condition in Proposition 3.0.2
was stronger than minimal. These surfaces are well known, and are usually called
superminimal, although they are sometimes called isotropic minimal surfaces.
In general they are given by the equation AJν = ±JAν . Hence only half of
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the superminimal surfaces in R
4 will work. Superminimal surfaces have been

extensively studied by many, and the interested reader can refer to [1, 3, 16] and
the references contained therein for more details.

Suppose a surface M2 ⊂ R
4 satisfies AJ2ν = −J1A

ν , where J1 and J2 are the
natural almost complex structures on the tangent and normal spaces, respec-
tively. (These were both referred to as J above but now we distinguish them
explicitly for clarity.) We can define an almost complex structure J̃ on the rank
4 vector bundle T ∗(R4)|

M
over M as follows:

J̃ =
(
J1 0
0 −J2

)
acting diagonally on the tangent and normal spaces. In this notation, the con-
dition (4.2) becomes A eJν = J̃Aν . This is equivalent to

(4.3) (∇X(J̃ν))T = J̃(∇Xν)T

where ∇ is the Levi-Civita connection on R
4, X is a tangent vector field to M ,

and ν is a normal vector field to M .

Proposition 4.2.3. If (4.2) holds, then the J̃ defined above satisfies

∇X J̃ = 0

for all tangent vector fields X to M .

Proof. Let X and Y be tangent vector fields to M . Using that J̃ is orthogonal
and also preserves the tangent and normal spaces, we can use (4.3) to compute

〈(∇X(J̃ν))T , Y 〉 = 〈J̃(∇Xν)T , Y 〉
−〈J̃ν,∇XY 〉 = −〈∇Xν, J̃Y 〉

〈ν, J̃(∇XY )N 〉 = 〈ν, (∇X J̃Y )N 〉
which holds for all normal vector fields ν, and hence

(4.4) (∇X(J̃Y ))N = J̃(∇XY )N

Let ∇ denote the Levi-Civita connection on M2 from the induced metric, then

∇X(J̃)Y = ∇X(J̃Y )− J̃(∇XY )

= ∇X(J̃Y ) + (∇X(J̃Y ))N − J̃(∇XY +
(∇XY

)N
)

= ∇X(J1Y )− J1(∇XY ) = ∇X(J1)Y = 0

where we have used (4.4) in the third line and the last equality is due to the fact
that any almost complex structure on a rank 2 bundle is necessarily parallel. In
the same way (4.3) can be used to show

∇X(J̃)ν = ∇X(J2)ν = 0

and the result now follows. �
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Unfortunately, Proposition 4.2.3 means that all the coassociative submani-
folds of R

7 thus constructed are everywhere orthogonal to a parallel direction,
given by ω1 = e1 ∧ e2 − ν1 ∧ ν2, and actually live in an R

6 subspace of R
7. A

coassociative submanifold of R
7 which misses one direction is actually a com-

plex dimension 2 complex submanifold of C
3 = R

6 (up to a possible change of
orientation). It is interesting to note, however, that precisely which C

3 sitting in
R

7 contains this complex submanifold depends on the immersion of the surface
M2 in R

4.

Remark 4.2.4. In Section 4.5, during our search for Cayley submanifolds of
R

8, we will obtain non-trivial coassociative submanifolds of R
7 which are not

contained in a strictly smaller subspace.

Remark 4.2.5. On more general non-compact manifolds with holonomy G2 such
as ∧2

−(S
4) and ∧2

−(CP
2) (see [2, 4]), this construction will produce more inter-

esting coassociative submanifolds. This is discussed in [8].

4.3. Associative submanifolds of ∧2
−(R

4). Similarly we can determine con-
ditions on the immersion M2 ⊂ R

4 so that the total space of the bundle E over
M is an associative submanifold. A 3-manifold L3 is associative (see [6] and [7]
Section IV.1.A) iff its tangent space at every point x is an associative subspace
of Tx(∧2

−(R
4)) ∼= R

7. Here we identify R
7 ∼= ImO, the imaginary octonions.

Theorem 4.3.1. The total space of the rank 1 bundle E overM is an associative
submanifold of ∧2

−(R
4) if and only if the immersion M ⊂ R

4 is minimal.

Proof. We show every tangent space to E is an associative subspace of the
corresponding tangent space to ∧2

−(R
4). Locally the immersion Ψ is

Ψ : (u1, u2, t1) 
→ (x1(u1, u2), x2(u1, u2), t1ω1)

Hence the tangent space at (x(u0), t1) is spanned by the vectors

Ei = Ψ∗

(
∂

∂ui

)
=
(
ei, t1∇ei(ω

1)|x0

)
i = 1, 2

F1 = Ψ∗

(
∂

∂t1

)
= (0, ω1) = ω̌1

From Proposition 4.1.1 we have

E1 = ē1 + t1
(
(A2

11 −A1
12)ω̌

2 + (−A1
11 −A2

12)ω̌
3
)

E2 = ē2 + t1
(
(A2

12 −A1
22)ω̌

2 + (−A1
12 −A2

22)ω̌
3
)

To check that the tangent space at (x0, t1) is associative, we need to verify
that the associator [E1, E2, F1] = (E1E2)F1 − E1(E2F1) vanishes. Without
loss of generality, at a point we can take the following explicit identification
Tx(∧2

−(R
4)) ∼= ImO: ω̌1 ω̌2 ω̌3 ē1 ē2 ν̄1 ν̄2

� � � � � � �
i j k e ie je ke
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and hence

E1 = e + t1
(
(A2

11 −A1
12)j + (−A1

11 −A2
12)k

)
E2 = ie + t1

(
(A2

12 −A1
22)j + (−A1

12 −A2
22)k

)
F1 = i

Now we can compute the associator (for the octonion multiplication rules see[7]
Appendix IV.A.), with the result being

[E1, E2, F1] = (E1E2)F1 − E1(E2F1)
= (−2A2

11 − 2A2
22)je + (2A1

11 + 2A1
22)ke

which vanishes if and only if TrAν1 = TrAν2 = 0. �

4.4. The Spin(7) manifold /S−(R4). The simplest Spin(7)-structure on the to-
tal space of a bundle is the negative spinor bundle /S−(R4) of R

4. Over each point
x ∈ R

4, the fibre of spinors over x is isomorphic to two copies of the quaternions
/S+ ⊕ /S− = H ⊕ H. The one-forms (covectors) at x are a subset of the Clifford
algebra over x, and hence act on the spinor space. A good reference for spin
representations is the book of Harvey [5]. If e1, e2, e3, e4 is an orthonormal basis
of 1-forms at x, then the Clifford algebra relations are

ei· ej + ej· ei = −2δij

where the · denotes the Clifford product. Clifford multiplication by 1-forms
interchanges the two spaces /S±. We identify the spinor space with the octonions,
/S+⊕ /S− ∼= He⊕H ∼= O. Octonionic multiplication by elements of He interchanges
He and H. Also, we have the following identities (see [7] Appendix IV.A):

a(ax) = a2x

a1(ā2x) = −ā2(a1x) for a1, a2 orthogonal

If we take ai ∈ He, then āi = −ai and hence if e1, e2, e3, e4 is an orthonormal
basis of He, these relations become

ei(ejx) + ej(eix) = −2δijx

Thus we obtain the spin representation at each point from octonionic multipli-
cation by identifying /S+ ⊕ /S− ∼= He ⊕ H and the 1-forms with He. We will only
require this representation for Clifford products of 1-forms and it will be written

γ : T ∗ → End( /S+ ⊕ /S−)
γ(α)(s) = αs

where α is a 1-form, s ∈ /S+ ⊕ /S− and the product αs is octonionic multiplication.
Note that since O is not associative, we have to be careful when composing two
elements of this representation:

(γ(α1)γ(α2)) (s) = γ(α1) (γ(α2)(s)) = γ(α1)(α2s) = α1(α2s)

which in general is not the same as (α1α2)s.
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Now a manifold has a Spin(7)-structure if at every point its tangent space can
be naturally identified with O. With the identifications we have made, the total
space of /S−(R4) has a tangent space (at a point) isomorphic to T (R4) ⊕ /S− ∼=
T ∗(R4)⊕ /S− ∼= He ⊕ H ∼= O.

Proceeding as before, we now isometrically immerse a submanifold Mp in R
4

so that the restriction /S−(R4)|
Mp splits naturally into pieces, and hope to obtain

Cayley submanifolds in this way. Once again, the only natural choice occurs
when p = 2, the case of a surface. If we let e1, e2 be a local orthonormal coframe
for M2, and ν1, ν2 a local orthonormal basis for the conormal bundle, then
we can consider the operations on the fibre /S− of Clifford multiplication with
γ(e1)γ(e2) or γ(ν1)γ(ν2). Two remarks are in order. First, since multiplication
by γ(α) interchanges /S+ and /S− , we need to consider the composition of two such
multiplications to stay in /S− . Second, up to a sign (corresponding to a choice
of orientation for M2) these operators are independent of the choice of e1, e2 or
ν1, ν2 since, for example γ(e1)γ(e2) = γ(e1· e2) = γ(e1 ∧ e2) because e1 and e2

are orthonormal.
The spinor space /S− can be given the structure of a complex 2-dimensional

vector space in many ways. One can check that if a, b, p, q ∈ H, then

(ae)((be)(pq)) = p((ae)((be)q))

That is, left multiplication by ordinary quaternions H commutes with the compo-
sition of two left multiplications by elements of He. Now left multiplication by a
unit imaginary quaternion is a complex structure on H, so /S− has an S2 family of
complex structures with respect to operators of the form γ(ae)γ(be) : /S− → /S− .
Since we have a surfaceM2 immersed in R

4, this determines a canonical complex
structure j

M
on /S− as follws. If e1 = ae and e2 = be are an orthonormal basis of

tangent vectors to M , then j
M

is defined by

j
M

= e1e2 = (ae)(be) = −b̄a
It is easy to check that j

M
is purely imaginary, and of unit length, so j2

M
= −1.

Lemma 4.4.1. The operator rT = γ(e1)γ(e2) satisfies r2T = −1 and hence
decomposes the space /S− into two 2-dimensional eigenspaces V±j

M
of eigenvalues

±j
M
. Further, the operator rN = γ(ν1)γ(ν2) is equal to rT .

Proof. We compute (rT )2 = γ(e1· e2· e1· e2) = −γ(1) = −1 using the fact that
e1·e2 = −e2·e1 and ei·ei = −1. The eigenspace decomposition now follows. Also,
γ(e1)γ(e2)γ(ν1)γ(ν2) = γ(e1· e2· ν1· ν2) = γ(vol) where vol is the volume form,
and the spinor spaces /S± are defined as ±1 eigenspaces of Clifford multiplication
with vol: vol· /S± = ± /S±. Thus rT rN is minus the identity on /S− and since rT

and rN commute (and hence are simultaneously diagonalizable), it is easy to see
that we must have rT = rN . �

We will henceforth denote rT = r. We can identify these eigenspaces exactly.
The octonion multiplication rules show

(ae)((be)q) = −(bq̄)a = −qb̄a = qj
M
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and so the operator r is exactly right multiplication by j
M
. Thus the +j

M

eigenspace of r is span {1, j
M
} and the −j

M
eigenspace is the orthogonal comple-

ment of this.

4.5. Cayley submanifolds of /S−(R4). We have described the natural splitting

/S−(R4)|
M2 = V+j

M
⊕ V−j

M

into two rank 2 bundles over the base surface M2. The total space of either of
these bundles is 4-dimensional and is a candidate for being a Cayley submanifold.

Theorem 4.5.1. The total space of either rank 2 bundle V±j
M

over M is a
Cayley submanifold of /S−(R4) if and only the immersion M ⊂ R

4 is minimal.

Proof. We show every tangent space to the total space of V+j
M

is a Cayley
subspace of the corresponding tangent space to /S−(R4). The proof for V−j

M
is

identical. Locally the immersion Ψ is

Ψ : (u1, u2, t1, t2) 
→ (x1(u1, u2), x2(u1, u2), t1q1(u1, u2) + t2q2(u1, u2))

where q1 and q2 are an orthonormal basis of V+j
M

and hence satisfy rqk = j
M
qk.

The tangent space at (x(u0), t1, t2) is spanned by the vectors

Ek = Ψ∗

(
∂

∂uk

)
= ek +∇ek

(t1q1 + t2q2)|x0
k = 1, 2

Fk = Ψ∗

(
∂

∂tk

)
= qk k = 1, 2

We now derive an expression for ∇ek
qj |x0

. To simplify notation we will use a
dot to denote ∇ek

|x0
. Since r2 = −1, we can differentiate to obtain

rṙ + ṙr = 0

Hence since r and ṙ anti-commute, r(ṙqj) = −ṙ(rqj) = −j
M
ṙqj and thus ṙqj ∈

V−j
M
. Now differentiating the equation rqj = j

M
qj , we have

ṙqj + rq̇j = j
M
q̇j

(r − j
M
)q̇j = −ṙqj

The right hand side is in V−j
M
, and on this space r = −j

M
, so r− j

M
= −2j

M
on

V−j
M

and we have

(r − j
M
)−1(r − j

M
)q̇j = q̇j =

−1
2

(−j
M
)(−ṙqj) = − j

M

2
ṙqj

Explicitly, at the point x0, we have

∇ek
qj = − j

M

2
(
γ(∇ek

e1)γ(e2) + γ(e1)γ(∇ek
e2)
)
qj

From (2.3) this can be written as

∇e1qj =
j
M

2
(
a11γ(ν1)γ(e2) + b11γ(ν2)γ(e2) + a12γ(e1)γ(ν1) + b12γ(e1)γ(ν2)

)
qj
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∇e2qj =
j
M

2
(
a12γ(ν1)γ(e2) + b12γ(ν2)γ(e2) + a22γ(e1)γ(ν1) + b22γ(e1)γ(ν2)

)
qj

where we have used the notation aij = 〈ei, A
ν1(ej)〉 and bij = 〈ei, A

ν2(ej)〉. The
operators γ(ei)γ(νj) all anti-commute with r and hence map V+j

M
→ V−j

M
.

Therefore ∇ek
qj ∈ V−j

M
. To check that the tangent space at (x0, t1, t2) is

Cayley, we need to verify that the purely imaginary 4-fold octonion product
Im(E1 × E2 × F1 × F2) vanishes. This multilinear 4-fold product is defined as

Im(a× b× c× d) = Im (ā(b(c̄d)))

when a, b, c, d are orthogonal octonions and ā is the conjugate of a. For non-
orthogonal arguments we can write them in terms of an orthogonal basis and
expand by multilinearity. (See [7] Section IV.1.C for details.) Without loss of
generality we can assume that at the point x0, we have chosen our coordinates
so that e1 = e and e2 = ie with respect to the identification Tx( /S−(R4)) ∼= O,
where T (R4)|

M
∼= He and the spinor space /S− ∼= H. Similarly we can also take

ν1 = je, ν2 = ke. From this choice it follows that j
M

= e(ie) = i. Then the
orthonormal basis for V+j

M
is just q1 = 1, q2 = i. Now we compute:

γ(e1)γ(ν1)q1 = j γ(e1)γ(ν1)q2 = k

γ(e1)γ(ν2)q1 = k γ(e1)γ(ν2)q2 = −j

γ(ν1)γ(e2)q1 = k γ(ν1)γ(e2)q2 = −j

γ(ν2)γ(e2)q1 = −j γ(ν2)γ(e2)q2 = −k

Therefore the tangent vectors to the immersion at (x0, t1, t2) are given by

E1 = e +
t1
2

i ((a12 − b11)j + (a11 + b12)k) +
t2
2

i ((−a11 − b12)j + (a12 − b11)k)

E2 = ie +
t1
2

i ((a22 − b12)j + (a12 + b22)k) +
t2
2

i ((−a12 − b22)j + (a22 − b12)k)

F1 = 1

F2 = i

Now we can compute Im(E1 × E2 × F1 × F2), with the result being(
t1
2
(a11 + a22)− t2

2
(b11 + b22)

)
je +

(
t1
2
(b11 + b22) +

t2
2
(a11 + a22)

)
ke

which vanishes for all t1, t2 if and only if TrAν1 = TrAν2 = 0. �
Although this construction does produce two distinct Cayley submanifolds of

R
8 for each minimal surface M2 in R

4, they are in a sense degenerate examples.
Note that when the global identification of R

8 = O has been made, then no
matter what surface M we choose, the octonion 1 will be in V+j

M
and the space

V−j
M

will be orthogonal to 1. Therefore the V+j
M

Cayley submanifold will always
be of the form R1×L3 for some 3-manifold L3 which therefore must be associative
in Im(O) = R

7. Similarly the V−j
M

Cayley submanifold will have zero projection
onto the 1 component, and thus is actually a coassociative submanifold of R

7.
Note however that this does indeed give coassociative submanifolds which are
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not contained in a strictly smaller subspace of R
7, which we were unable to find

in Section 4.2. We present some explicit examples in Section 5.

Remark 4.5.2. On more general non-compact manifolds of holonomy Spin(7),
like /S−(S4) (see [2, 4]), this construction does produce interesting Cayley sub-
manifolds. This is discussed in [8].

4.6. The G2 manifold /S(R3). A G2-structure can similarly be placed on the
spinor bundle /S(R3) ∼= R

7 of R
3. (See [2] for details.) In this case we do not

have positive and negative spinor bundles. The fibre (spinor space) at each point
is again isomorphic to the quaternions H. In fact we have

/S(R3) = /S±(R
4)|

R3

Explicitly, if e0, e1, e2, e3 is a basis for the Clifford algebra of R
4, then the Clifford

products e0 · e1, e0 · e2, e0 · e3 are a basis for the Clifford algebra of R
3. We can

take a surface M2 ⊂ R
3 with orthonormal cotangent frame e1, e2 and conormal

vector ν = e3 and again consider the eigenspaces V±j
M

of the operator r =
γ(e1)γ(e2) = ±γ(e0)γ(e3) where the sign depends on the choice of orientation
and does not affect the eigenspaces. Then we can take the total spaces of V±j

M

over M2 as 4-manifolds which can be coassociative in R
7.

Proposition 4.6.1. The total spaces of V±j
M

over M2 are coassociative in R
7

iff M2 ⊂ R
3 is minimal.

Proof. Since being coassociative in R
7 is equivalent to being Cayley in R

8, The-
orem 4.5.1 says that M2 must be minimal in R

4 = R × R
3. But since M2 sits

in R
3 ⊂ R

4, this is equivalent to being minimal in R
3. �

Similarly we can try to take a curve C1 ⊂ R
3 and decompose the spinor

space /S into eigenspaces of r = γ(e0)γ(e1) = ±γ(ν1)γ(ν2), where e1 is a unit
cotangent vector to C1 and ν1, ν2 are an orthonormal basis of conormal vector
fields. Then the total spaces of the bundles over C1 would be 3-manifolds which
could be associative. But since C1 would have to be minimal, it is a straight
line and this construction only produces associative 3-planes in R

7.

5. Some explicit examples

5.1. Some explicit minimal surfaces in R
4. For the convenience of the

reader, we present some explicit examples of minimal surfaces in R
4 which are

used to construct examples of calibrated submanifolds of R
7 and R

8 in Sec-
tion 5.2. If we consider a graph of the form(

x1, x2, f1(x1, x2), f2(x1, x2)
)

then the tangent vectors to this immersion are

e1 =
(
1, 0, f1

1 , f
2
1

)
e2 =

(
0, 1, f1

2 , f
2
2

)
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where the subscript k denotes partial differentiation with respect to xk. The
induced metric is gij = ei·ej . The minimal surface equations in these coordinates
are

(5.1) g22f
k
11 + g11f

k
22 − 2g12fk

12 = 0 k = 1, 2

They are a pair of second order, quasi-linear PDE’s in which the second order
derivatives are uncoupled.

Let us identify R
4 = C

2 with complex coordinates z = x1 + ix2 and w =
f1+ if2. It is well known (and trivial to check) that the image of a holomorphic
or anti-holomorphic map w = f(z) is a minimal surface. These satisfy the
Cauchy-Riemann equations f1

1 = f2
2 and f1

2 = −f2
1 in the holomorphic case and

f1
1 = −f2

2 and f1
2 = f2

1 in the anti-holomorphic case.
Alternatively we can instead choose complex coordinates z = x1 + if1 and

w = x2 + if2. Then a special Lagrangian graph is an example of a minimal
surface in R

4 = C
2. In this case fk = ∂F

∂xk for some potential function F (x1, x2)
and the special Lagrangian differential equation with phase eiθ is

F11 + F22 = 0 for θ = 0(5.2)

F11F22 − F 2
12 = 1 for θ =

π

2

We can also look for minimal surfaces which are not of these special types.
Our first example is a generalization of the holomorphic example f1 = eu cos(v),
f2 = eu sin(v), which corresponds to the holomorphic function ez where we are
now writing z = u+ iv. We can ask for the most general minimal surface of the
form

(u, v, f(u) cos(v), f(u) sin(v))

for some function f(u). Substitution into (5.1) yields the following non-linear
ODE for f(u):

f(1 + (f ′)2) = f ′′(1 + f2)

This can be explicitly integrated to give the general solution

f(u) =
C

2
eKu +

1−K2

2CK2
e−Ku

for two constants of integration C and K. Note that K = 1 corresponds to the
holomorphic solution eu. In Section 5.2 we use this minimal surface with C = 2
and K = 1

2 :

(5.3)
(
u, v,

(
e

u
2 +

3
4
e−

u
2

)
cos(v),

(
e

u
2 +

3
4
e−

u
2

)
sin(v)

)
Another explicit example can be obtained by considering graphs which are

rotationally symmetric: (
u, v, f(u2 + v2), g(u2 + v2)

)
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This time substitution into (5.1) yields the following system of non-linear ODE’s,
where we have denoted t = u2 + v2:

tf ′′ + f ′ + 2tf ′ ((f ′)2 + (g′)2
)

= 0

tg′′ + g′ + 2tg′
(
(f ′)2 + (g′)2

)
= 0

These can also be integrated explicitly to obtain

f(t) =
2K√
L
log

(√
t+

√
t− 4(1 +K2)

L

)

g(t) =
2√
L
log

(√
t+

√
t− 4(1 +K2)

L

)
for two constants of integration K and L. Note that this example is only defined
outside a circle in the u, v plane. We use this minimal surface in Section 5.2
with K = 1 and L = 4:
(5.4)(

u, v, log
(√

u2 + v2 +
√
u2 + v2 − 2

)
, log

(√
u2 + v2 +

√
u2 + v2 − 2

))
5.2. Examples of calibrated submanifolds. We now apply the construc-
tions described in Section 4 to some explicit examples. Our surfaces M2 will all
be given as graphs (u, v, f1(u, v), f2(u, v)).

It can be checked easily that anti-holomorphic surfaces (or equivalently special
Lagrangian surfaces of any phase) satisfy the real isotropic minimal surface equa-
tion (with the minus sign) from Theorem 4.2.1 that was required to construct
coassociative submanifolds. One can check that in these cases the constructed
4-fold is simply a product R

2×M2. Similarly a product 3-manifold R×M2 is ob-
tained when using these minimal surfaces to construct associative submanifolds
using Theorem 4.3.1.

However, we can also try holomorphic surfaces (which are still minimal) in
the associative case. (Recall that these satisfy the real isotropic equation with
the plus sign, and cannot be used to construct coassociative submanifolds. They
would work in ∧2

+(R
4), but would produce product manifolds there.) Consider

the holomorphic surface (x, y, u(x, y), v(x, y)) in R
4 where the Cauchy-Riemann

equations ux = vy and uy = −vx are satisfied. Then one can construct the
vector e1 ∧ e2 −ν1 ∧ν2 in ∧2

− and it turns out to be (using the Cauchy-Riemann
equations to simplify):(

1− |∇u|2
1 + |∇u|2 ,

2uy

1 + |∇u|2 ,
2ux

1 + |∇u|2
)

Hence Theorem 4.3.1 gives the following associative submanifold of R
7:(

t
1− |∇u|2
1 + |∇u|2 , t

2uy

1 + |∇u|2 , t
2ux

1 + |∇u|2 , x, y, u(x, y), v(x, y)
)
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For an explicit example, we can take u = ex cos(y) and v = ex sin(y) to obtain(
t
sinh(x)
cosh(x)

, t
sin(y)
cosh(x)

,−t cos(y)
cosh(x)

, x, y, ex cos(y), ex sin(y)
)

If we take instead the minimal surface in (5.3) we obtain, after rescaling the
fibre direction basis vector to simplify the expression, the following non-trivial
associative submanifold of R

7,:(
t
4ex − 9
12e

1
2 x

, t sin(y),−t cos(y), x, y,
(
e

x
2 +

3
4
e−

x
2

)
cos(y),

(
e

x
2 +

3
4
e−

x
2

)
sin(y)

)
Finally, the minimal surface in (5.4) yields the following associative submanifold
of R

7 (defined for x2 + y2 > 2):

((y − x)h1h2, y − x, x+ y, x, y, log (h1 + h2) , log (h1 + h2))

where h1(x, y) =
√
x2 + y2 and h2(x, y) =

√
x2 + y2 − 2.

Recall from the remarks made at the end of Section 4.5 that the Cayley
construction actually produces Cayley submanifolds which are either a line cross
an associative submanifold of R

7 or a coassociative submanifold of R
7. Thus

they can be used to provide non-trivial examples of coassociative submanifolds
which are not contained in a strictly smaller subspace of R

7, by taking the V−j
M

eigenspace. Taking a holomorphic surface (x, y, u(x, y), v(x, y)) in R
4, one can

compute that the −j
M

eigenspace is spanned by

(0,−2uy, 1− |∇u|2, 0) and (0,−2ux, 0, 1− |∇u|2)
Thus Theorem 4.5.1 gives the following coassociative submanifold of R

7:(
−2(t1uy + t2ux), t1(1− |∇u|2), t2(1− |∇u|2), x, y, u(x, y), v(x, y)

)
The example of u = ex cos(y) and v = ex sin(y) gives(

2ex(t1 sin(y)− t2 cos(y)), t1(1− e2x), t2(1− e2x), x, y, ex cos(y), ex sin(y)
)

as a coassociative submanifold of R
7. One can similarly use (5.3) or (5.4) and

Theorem 4.5.1 to produce explicit coassociative submanifolds of R
7. The expres-

sions tend to be extremely complicated in these cases.
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