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A NON–LINEAR GENERALISATION OF THE
LOOMIS–WHITNEY INEQUALITY AND APPLICATIONS

Jonathan Bennett, Anthony Carbery and James Wright

Abstract. We establish a diffeomorphism–invariant generalisation of the classical
Loomis–Whitney inequality in R

n. As a consequence we obtain a sharp trilinear
restriction theorem for the Fourier transform in three dimensions.

1. Introduction

The classical Loomis–Whitney inequality states that if πj : R
n → R

n−1 is
given by πj(x) = (x1, .., x̂j , .., xn)1, then∫

Rn

f1(π1(x)) · · · fn(πn(x)) dx ≤ ‖f1‖n−1 · · · ‖fn‖n−1(1)

for all fj ∈ Ln−1(Rn−1). The Loomis–Whitney inequality can be viewed as
an n-parameter isoperimetric inequality and in fact the classical isoperimetric
inequality in R

n can be easily derived from it (albeit not with the sharp constant
depending on n). This was the main reason that Loomis and Whitney originally
considered inequalities of the form (1), see [8].

The main subject of this paper is the following non–linear generalisation of
(1).

Theorem 1. Suppose π1, · · ·, πn : R
n → R

n−1 are smooth submersions in a
neighbourhood of a point x0 ∈ R

n. If in addition, the linear span of the kernels
of dπ1(x0), · · ·, dπn(x0) is R

n, then for all cut–off functions a supported in a
sufficiently small neighbourhood of x0, there exists a constant C such that∫

Rn

f1(π1(x)) · · · fn(πn(x)) a(x) dx ≤ C‖f1‖n−1 · · · ‖fn‖n−1(2)

for all f1, ..., fn ∈ Ln−1(Rn−1).

Our applications to the restriction theory of the Fourier transform (the con-
tent of Section 4) require a slightly stronger, uniform version of the above theo-
rem. In order to formulate this it will be convenient to associate to each submer-
sion πj a non–vanishing smooth vector field Xj : R

n → R
n which flows along the

fibres of πj . More specifically, for each x in a sufficiently small neighbourhood
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of the origin in R
n, Xj(x) will be defined to be the wedge product of the rows of

the (n − 1) × n matrix dπj(x). We point out that Xj(x) is a non–zero element
of the kernel of dπj(x).

Theorem 2. Let A, ε > 0 be given. Suppose π1, · · ·, πn : R
n → R

n−1 are smooth
submersions in a neighbourhood of a point x0 ∈ R

n, and satisfy ‖πj‖C3 ≤ A for
all j. If in addition the corresponding vector fields X1, ..., Xn are such that

det(X1(x0), ..., Xn(x0)) > ε,(3)

then there exists a neighbourhood U of x0, depending only on ε, A and n, such
that for all cut–off functions a supported in U , there is a constant C depending
only on n and a for which∫

Rn

f1(π1(x)) · · · fn(πn(x)) a(x) dx ≤ Cε−1/(n−1)‖f1‖n−1 · · · ‖fn‖n−1(4)

for all f1, ..., fn ∈ Ln−1(Rn−1).

Remark. The bound ε−1/(n−1) appearing in the above theorem is the natural
bound predicted by affine–invariance considerations.

When the mappings {πj} interact trivally in the sense that the corresponding
vector fields {Xj} commute, then one can choose coordinates reducing (4) to the
classical Loomis–Whitney inequality (1). Therefore it is only of interest when
the vectors fields {Xj} do not commute and in this case, Theorems 1 and 2 can
be viewed as the optimal result measured with respect to Lebesgue spaces under
the nondegeneracy condition (3). It would also be of interest to establish optimal
estimates when the vector fields fail to span. The bilinear situation where there
are only two submersions π1, π2 : R

n → R
n−1 is related to singular averaging

operators along curves and has been well-studied by many authors; see [12] for
a discussion of some aspects of this problem.

Theorems 1 and 2 are local results as they are stated above. One might
ask whether there are global versions of these theorems, possibly even weighted
versions to quantify how the spanning condition (3) may degenerate. Simple
examples show that naive versions, for example, requiring only that the mappings
{πj} be submersions at every point in R

n, cannot possibly hold. For example,
when n = 2 the determinant in (3) is simply the Jacobian of the mapping
T : R

2 → R
2 given by T (x, y) = (π1(x, y), π2(x, y)), and so the following formula

holds: ∫
R2

f(π1(x, y)) g(π2(x, y)) |det(X1(x, y), X2(x, y))| dxdy

=
∫

R2
f(x) g(y) N(π1, π2; (x, y)) dxdy

where N(π1, π2; (x, y)) counts the number of intersections of the fibres π−1
1 {x}

and π−1
2 {y}, see for example, [6]. Therefore if one can keep this number under

control, a global version of (4) would then hold. Of course N(π1, π2; (x, y))
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can be infinite almost everywhere, for example, consider π1(x, y) = ex cos y and
π2(x, y) = ex sin y.

Our proof of Theorem 2 (the content of Section 2) comes in two stages. The
first uses a method of refinements due to Christ [5] (see also [12]), to establish
(4) for arbitrary characteristic functions of sets. The second stage, which is
based on an argument of the second author in [3], exploits a certain invariance
under tensor products of our refinement argument, allowing us to pass from
characteristic functions of sets to general functions.

The remaining parts of this paper are organised as follows. In Section 3 we use
Theorems 1 and 2 in three dimensions to obtain L2 estimates for a certain family
of bilinear Radon–like transforms in the plane. In Section 4 we give applications
of these estimates to the restriction theory of the Fourier transform in three
dimensions. Finally, we collect together several observations of a technical nature
in an appendix.

Notation. For X, Y ∈ C, we write X � Y (X � Y ) if |X| ≤ c|Y | (|X| ≥ c|Y |)
for some constant c > 0 which may depend only on the dimension n.

2. Proof of Theorem 2

Without loss of generality we may assume that x0 = 0 in the statement of
Theorem 2.

Before we begin it is convenient to make a number of observations about
the vector fields X1, ..., Xn, and identify the neighbourhood U appearing in the
statement of the above theorem. In order to do this we associate to the Xj ’s the
flow maps etXj : R

n → R
n. These will be defined in a neighbourhood of 0, for

sufficiently small t, by the differential equations
d

dt
etXj x = Xj(etXj x); e0Xj x = x.

The flow maps will be used to parametrise the fibres of the submersions πj later
in our argument. It will be implicit in our analysis that x and t are sufficiently
localised so that the vector fields Xj never vanish, and for the corresponding flow
maps to be well–defined. More specifically, by the hypotheses of Theorem 2 and
the existence theory for ODE’s, there exists a neighbourhood N of the origin in
R

n and a time t0 > 0, both depending only on ε, A and n, for which each of the
vector fields Xj is bounded away from zero on N , and the flows etXj x exist for
all (t, x) ∈ [−t0, t0] × N (see the proof of Proposition 3 in the Appendix ).

Now the set U in the statement of Theorem 2 will be chosen sufficiently small
so that it will satisfy several technical conditions needed at various stages of our
argument. Throughout this article we will use γ(t, x) to denote the iterated flow
et1X1 · · · etnXnx, where t = (t1, ..., tn).

Proposition 3. There exists a neighbourhood U of 0 ∈ R
n, and constants C, r >

0, depending only on ε, A and n, such that
(i) det(X1(x), ..., Xn(x)) ≥ ε/2 for all x ∈ U ,
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(ii) π−1
j (y)∩U is a connected subset of R

n for all y ∈ R
n−1 and 1 ≤ j ≤ n,

(iii) etXj (x) ∩ U is empty for all |t| > r, x ∈ U , and 1 ≤ j ≤ n, and
(iv) ‖γ‖C2([−r,r]n×U) ≤ C.

So as not to be distracted from the main line of our argument, a detailed
proof of this proposition is left to an appendix.

Corollary 4. There exists a neighbourhood U of 0 ∈ R
n and an r > 0, depend-

ing only on ε, A and n, such that whenever x ∈ U ,
1. t 
→ γ(t, x) is injective on [−r, r]n,
2. |det(D1γ(t, x))| � ε for every t ∈ [−r, r]n, and
3. π−1

j (πj(x)) ∩ U = {etjXj (x) : tj ∈ [−r, r]} ∩ U for each 1 ≤ j ≤ n.

Proof. Part (1) is a direct consequence of parts (i) and (iv) of Proposition 3,
the observation that D1γ(0, x) = (X1(x), ..., Xn(x)), and a quantitative versions
of the inverse function theorem (see for example, [4], page 595). Part (2) is
an elementary consequence of parts (i) and (iv) of Proposition 3 and the mean
value theorem. Part (3) is an immediate consequence of parts (ii) and (iii) of
Proposition 3.

We now come to the main argument leading to Theorem 2. Both U and r will
given by Corollary 4 throughout.

Initially we will focus on establishing (4) for characteristic functions of sets;
i.e. that∫

U

χE1(π1(x)) · · · χEn(πn(x)) dx � ε−1/(n−1)|E1|1/(n−1) · · · |En|1/(n−1)(5)

for all E1, ..., En ⊂ R
n−1. The extension to general functions will be dealt with

at the end of the section.
Inequality (5) is easily seen to be equivalent to

|Ω|n−1 � ε−1|π1(Ω)| · · · |πn(Ω)|
for all Ω ⊂ U . If we define

δj =
|Ω|

|πj(Ω)| , j = 1, ..., n,

then (5) may be restated as

|Ω| � εδ1 · · · δn(6)

for all Ω ⊂ U . In order to prove (6) we shall do some preliminary “refining” of
our set Ω. We will say that a set Ω′ ⊂ R

n is a refinement of Ω, if Ω′ ⊂ Ω and
the measure of Ω′ is comparable to that of Ω.

By the coarea formula (see [6] for example),

δ1 =
1

|π1(Ω)|
∫

π1(Ω)

∫
π−1
1 (y)∩Ω

|X1(x)|−1dH1(x)dy,(7)

where dH1 denotes 1–dimensional Hausdorff measure on R
n.
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We now define E1 ⊂ π1(Ω) by

E1 =

{
y ∈ π1(Ω) :

∫
π−1
1 (y)∩Ω

|X1(x)|−1dH1(x) ≥ δ1/10n

}
,

and take Ω1 = Ω∩ π−1
1 (E1). Clearly Ω1 is a refinement of Ω since by the coarea

formula,

|Ω1| =
∫

E1

∫
π−1
1 (y)∩Ω

|X1(x)|−1dH1(x)dy ≥ |Ω| − δ1

10n
|π1(Ω)| =

(
1 − 1

10n

)
|Ω|.

Now let E2 ⊂ π2(Ω1) be given by

E2 =

{
y ∈ π2(Ω1) :

∫
π−1
2 (y)∩Ω1

|X2(x)|−1dH1(x) ≥ δ2/10n

}
,

and take Ω2 = Ω1 ∩ π−1
2 (E2). Again, Ω2 is a refinement of Ω, since

|Ω2| =
∫

E2

∫
π−1
2 (y)∩Ω1

|X2(x)|−1dH1(x)dy

≥ |Ω1| − δ2

10n
|π2(Ω1)|

≥
(

1 − 1
10n

)
|Ω| − δ2

10n
|π2(Ω)|

≥
(

1 − 2
10n

)
|Ω|.

Proceeding in this way we generate a nested sequence of refinements Ωj of Ω
(0 ≤ j ≤ n) satisfying Ω0 = Ω, and Ωj = Ωj−1 ∩ π−1

j (Ej), where

Ej =

{
y ∈ πj(Ωj−1) :

∫
π−1

j (y)∩Ωj−1

|Xj(x)|−1dH1(x) ≥ δj/10n

}
.

Since |Ω| �= 0 (without loss of generality), the last refinement Ωn is non–empty.
Let x0 be any element of Ωn, and

Ix0 := {tn ∈ [−r, r] : etnXnx0 ∈ Ωn−1}.
Using Corollary 4, it is easily verified that

|Ix0 | =
∫

π−1
n (πn(x0))∩Ωn−1

|Xn(x)|−1dH1(x) ≥ δn/10n.

Now for each tn ∈ Ix0 , etnXnx0 ∈ Ωn−1, and so

Ix0,tn := {tn−1 ∈ [−r, r] : etn−1Xn−1etnXnx0 ∈ Ωn−2}
satisfies |Ix0,tn

| ≥ δn−1/10n.
Continuing in this way we generate a sequence of families of subsets of R

given by

Ix0,tn,...,t�+1 := {t� ∈ [−r, r] : et�X� · · · etnXnx0 ∈ Ω�−1}; 1 ≤ $ ≤ n − 1,
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which satisfy the uniform bounds |Ix0,tn,...,t�+1 | ≥ δ�/10n.
Now define

P = {t = (t1, ..., tn) ∈ [−r, r]n : tn ∈ Ix0 ,

tn−1 ∈ Ix0,tn ,

tn−2 ∈ Ix0,tn,tn−1 ,

...

t1 ∈ Ix0,tn,tn−1,...,t2}.
Clearly,

|P| ≥ δ1 · · · δn/10n2
,

and γ(P, x0) ⊂ Ω, and so by Corollary 4

|Ω| ≥ |γ(P, x0)| =
∫

P

|det (D1γ(t, x0))| dt � ε δ1 · · · δn.

This completes the proof of (6) and hence that of Theorem 2 in the case where
the functions f1,...,fn are characteristic functions of sets.

In order to pass to general functions we will need to exploit a certain invariance
under tensor products of the above proof.

Let π1, ..., πn : R
n → R

n−1 be as in the statement of Theorem 2. For each
1 ≤ j ≤ n and k ∈ N we define π

(k)
j : R

kn → R
k(n−1) by

π
(k)
j (x) =

(
πj(x(1)), ..., πj(x(k))

)
,

where x :=
(
x(1), ..., x(k)

)
, and each x(�) is an element of R

n.

Claim 5. There exists a neighbourhood U of 0 ∈ R
n, depending only on ε, A

and n, such that for all cut–off functions a supported in Uk, there is a constant
C > 0 depending only on a and n, for which∫

Rkn

χE1(π
(k)
1 (x)) · · · χEn(π(k)

n (x)) a(x) dx

≤ Ckε−k/(n−1)|E1|1/(n−1) · · · |En|1/(n−1)

for all E1, ..., En ⊂ R
k(n−1).

Before we prove the claim, let us see how it can be used to finish the proof of
Theorem 2. We follow an argument of the second author in [3]. By an elementary
density argument it is enough to prove (4) where f1,...,fn are simple functions.
For each 1 ≤ j ≤ n let Fj : R

k(n−1) → R be given by

Fj(y) = fj(y(1)) · · · fj(y(k)),
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where y := (y(1), ..., y(k)) and each y(�) is an element of R
n−1. Now, there exists

an integer N independent of k, sets Ej,� ⊂ R
k(n−1), and dyadic numbers αj,�

with 1 ≤ $ ≤ kN , such that for each 1 ≤ j ≤ n,

Fj ≤
kN∑
�=1

αj,�χEj,�
,

and

‖fj‖k
n−1 = ‖Fj‖n−1 ∼

(
kN∑
�=1

αn−1
j,� |Ej,�|

)1/(n−1)

.

Hence(∫
U

f1(π1(x)) · · · fn(πn(x)) dx

)k

=
∫

Uk

F1(π
(k)
1 (x)) · · · Fn(π(k)

n (x)) dx

≤
kN∑

�1,...,�n=1

α1,�1 · · · αn,�n

∫
Uk

χE1,�1
(π(k)

1 (x)) · · · χEn,�n
(π(k)

n (x)) dx

≤ Ckε−k/(n−1)
kN∑

�1,...,�n=1

α1,�1 · · · αn,�n |E1,�1 |1/(n−1) · · · |En,�n |1/(n−1)

� Ckε−k/(n−1)(kN)n‖F1‖n−1 · · · ‖Fn‖n−1

= Ckε−k/(n−1)(kN)n‖f1‖k
n−1 · · · ‖fn‖k

n−1.

On taking kth roots, letting k tend to infinity and using the fact that (kN)n/k →
1, we obtain∫

U

f1(π1(x)) · · · fn(πn(x)) dx ≤ Cε−1/(n−1)‖f1‖n−1 · · · ‖fn‖n−1.

Since the fj ’s were arbitrary step functions, Theorem 2 now follows.

The proof of the claim is essentially a straightforward reprise of the above
proof of (6). It will be enough to merely indicate the main steps in the argument.
As before, we initially observe that we may reduce matters to proving that

|Ω| ≥ Ckεkδ1 · · · δn,

for all Ω ⊂ Uk, where now

δj :=
|Ω|

|π(k)
j (Ω)|

.

Again, throughout this argument U and r will be given by Corollary 4.
As before we use the coarea formula to write

δ1 =
1

|π(k)
1 (Ω)|

∫
π

(k)
1 (Ω)

∫
π

(k)
1

−1
(y)∩Ω

|X1(x(1))|−1 · · · |X1(x(k))|−1dHk(x) dy,
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where dHk denotes k–dimensional Hausdorff measure on R
kn. If we now define

Ω1 = Ω ∩ π
(k)
1

−1
(E1), where

E1 =

{
y ∈ π

(k)
1 (Ω) :

∫
π

(k)
1

−1
(y)∩Ω

|X1(x(1))|−1 · · · |X1(x(k))|−1dHk(x) ≥ δ1

10n

}
,

then, just as before, Ω1 is a refinement of Ω. Continuing this process in the now
familiar way we obtain a sequence of refinements Ωj of Ω (0 ≤ j ≤ n) satisfying

Ω0 = Ω and Ωj = Ωj−1 ∩ π
(k)
j

−1
(Ej), where

Ej =

{
y ∈ π

(k)
j (Ωj−1) :

∫
π

(k)
j

−1
(y)∩Ωj−1

|Xj(x(1))|−1 · · · |Xj(x(k))|−1dHk ≥ δj

10n

}
.

Since |Ω| �= 0 (without loss of generality), the last refinement Ωn is non–empty.
Let x0 ∈ Ωn, and

Ix0 :=
{

t(n) = (t(n)
1 , ..., t

(n)
k ) ∈[−r, r]k :

(
et

(n)
1 Xnx

(1)
0 , . . . , et

(n)
k Xnx

(k)
0

)
∈ Ωn−1

}
,

then it is again easily verified that |Ix0 | ≥ δn/10n. Continuing as before we may
generate a sequence of families of subsets Ix0,t(n),...,t(�+1) of R

k given by{
t(�) ∈ [−r, r]k :

(
et

(�)
1 X� · · · et

(n)
1 Xnx

(1)
0 , . . . , et

(�)
k X� · · · et

(n)
k Xnx

(k)
0

)
∈ Ω�−1

}
,

(1 ≤ $ ≤ n − 1), which satisfy the uniform bounds |Ix0,t(n),...,t(�+1) | ≥ δ�/10n.
Now define

P = {t = (t(1), ..., t(n)) ∈ [−r, r]kn : t(n) ∈ Ix0 ,

t(n−1) ∈ Ix0,t(n) ,

t(n−2) ∈ Ix0,t(n),t(n−1) ,

...

t(1) ∈ Ix0,t(n),t(n−1),...,t(2)}.
Clearly,

|P| ≥ δ1 · · · δn/10n2
,

and γ(k)(P, x0) ⊂ Ω, where γ(k) : R
kn × R

kn → R
kn is given by

γ(k)(t, x) =
(
et

(1)
1 X1 · · · et

(n)
1 Xnx(1), . . . , et

(1)
k X1 · · · et

(n)
k Xnx(k)

)
.

Now by Corollary 4, t 
→ γ(k)(t, x0) is injective on [−r, r]kn, and since
D1γ

(k)(t, x0) is block–diagonal,∣∣∣det
(
D1γ

(k)(t, x0)
)∣∣∣ � εk

for all t ∈ [−r, r]kn. This completes the proof of the claim, and hence that of
Theorem 2.
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3. Bilinear Radon–like transforms in the plane

In this short section we use Theorems 1 and 2 to obtain L2 × L2 → L2 esti-
mates for certain bilinear Radon–like transforms in the plane. These transforms
play a key role in the three–dimensional restriction theory that we develop in
the following section.

Proposition 6. If F : R
2 × R

2 → R is smooth, F (0) = 0, and

det(∇xF (0),∇yF (0)) �= 0,

then there exists a neighbourhood V of the origin in R
2 × R

2, and a constant C
such that ∫

V

f(x)g(y)h(x + y) δ(F (x, y)) dxdy ≤ C‖f‖2‖g‖2‖h‖2

for all f, g, h ∈ L2(R2).

Since our uniformity requirements in the next section are not addressed by
this proposition, a stronger, more quantitative version is needed.

Proposition 7. Let A, ε > 0 be given. If F : R
2 ×R

2 → R is smooth, such that
‖F‖C3 ≤ A, F (0) = 0, and

det(∇xF (0),∇yF (0)) > ε,

then there exists a neighbourhood V of the origin in R
2 ×R

2, depending only on
A and ε, such that∫

V

f(x)g(y)h(x + y) δ(F (x, y)) dxdy � ε−1/2‖f‖2‖g‖2‖h‖2

for all f, g, h ∈ L2(R2).

It is instructive to observe that if F is a linear mapping, the above propositions
can be obtained from the classical 3–dimensional Loomis–Whitney inequality
(1). It is therefore natural to expect the case of general F to be a consequence
of a certain perturbed version of (1). As may be expected, in order to prove
Proposition 6 we would need only appeal to Theorem 1, whereas the proof of
(the stronger) Proposition 7 requires the more quantitative Theorem 2.

We now prove Proposition 7. We first remark that since the full gradient
∇F (0) is non–zero, the distribution δ(F ) is well–defined in a sufficiently small
neighbourhood of the origin in R

2 × R
2. By straightforward considerations this

neigbourhood may be taken to depend only on ε and A. Our next step is to
find a local parametrisation of {(x, y) : F (x, y) = 0}. By symmetry, without
loss of generality we may assume that ∂F

∂y2
(0) � ε1/2. Furthermore, by the mean

value theorem, we may find a neighbourhood of the origin in R
2 × R

2, which
depends only on ε and A, upon which ∂F

∂y2
(x, y) ∼ ∂F

∂y2
(0). By the implicit

function theorem, for each (x1, x2, y1) in a sufficiently small neighbourhood W
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of the origin in R
3, there exists a smooth mapping η : W → R such that for all

(x1, x2, y1) ∈ W ,

F (x1, x2, y1, η(x1, x2, y1)) = 0.(8)

Furthermore

∇η(0) = −
(

∂F

∂y2
(0)

)−1

∇x1,x2,y1F (0).(9)

That W and the C3 norm of η may be chosen to depend only on A and ε is a
consequence of quantitative versions of the implicit function theorem.

Let
π1(u1, u2, u3) = (u1, u2),

π2(u1, u2, u3) = (u3, η(u1, u2, u3))
and π3 = π1 +π2. Hence the C3–norms of π1, π2 and π3 are uniformly bounded,
and that their associated vector fields X1, X2 and X3 (as defined in the intro-
duction), satisfy

det(X1(0), X2(0), X3(0)) =
(

∂F

∂y2
(0)

)−2

det(∇xF (0),∇yF (0)).

Hence by Theorem 2, there exists a neighbourhood U of the origin, with U ⊂ W ,
depending only on A and ε, such that∫

U

f(π1(u))g(π2(u))h(π3(u))du � ε−1/2 ∂F

∂y2
(0) ‖f‖2‖g‖2‖h‖2.

In order to complete the proof of Proposition 7 we make the elementary ob-
servation that there exists a neighbourhood V of the origin in R

2 × R
2 (again

depending only on A and ε), such that∫
V

f(x)g(y)h(x + y) δ(F (x, y)) dxdy

�
(

∂F

∂y2
(0)

)−1 ∫
U

f(π1(u))g(π2(u))h(π3(u))du.

(It is here where we explicitly use the definition of the distribution δ(F ) – see
[10] for further discussion.)

4. A trilinear restriction inequality

Let Σ : R
2 → R

3 parametrise a two dimensional smooth submanifold. For a
function f ∈ L1(R2) and ξ ∈ R

3, let

Ef(ξ) =
∫

R2
f(x)eiΣ(x)·ξdx.

We refer to E as the extension operator associated to Σ. We point out that Ef
coincides with the 3–dimensional Fourier transform of a density carried on the
submanifold {Σ(x) : x ∈ R

2} ⊂ R
3.
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Suppose now that we have three such mappings Σ1, Σ2 and Σ3, and associated
extension operators E1, E2 and E3.

Theorem 8. If the kernels of the mappings (dΣ1(0))∗, (dΣ2(0))∗ and (dΣ3(0))∗

span R
3, then there exists a constant C such that

‖E1f E2g E3h‖L2(R3) ≤ C‖f‖4/3‖g‖4/3‖h‖4/3(10)

for all f , g and h supported in a sufficiently small neighbourhood of 0 ∈ R
2.

Remarks.

1. The condition that the kernels of the linear mappings (dΣj(0))∗ span,
amounts to requiring that the normals to the submanifolds {Σj(x) : x ∈
R

2} span at x = 0.
2. We will actually prove a slightly stronger, “uniform” version of the above

restriction theorem. In particular, given A, ε > 0, our conclusions will be
uniform over all triples (Σ1,Σ2,Σ3) satisfying

‖Σj‖C3 ≤ A, and det(Y1, Y2, Y3) > ε,

where Yj ∈ R
3 is the wedge product of the columns of the matrix dΣj(0).

In particular, the neighbourhood of the origin may be chosen in such a way
that the constant C may be taken to be an absolute constant multiple of
ε−1/4.

3. The exponent 4/3 on the right of (10) is optimal given the exponent 2 on
the left. It should be emphasised that this continues to be the case even if
we make additional curvature assumptions on the Σj ’s.

4. If the kernels of the mappings (dΣj(0))∗ fail to span, but are merely distinct
the exponent 4/3 must be replaced by 3/2. This inequality can be seen as
a consequence of the elementary bilinear estimate

‖E1f E2g‖L2(R3) ≤ C‖f‖2‖g‖2.

However, it is well–known that in this context one can do better than 3/2
by imposing appropriate curvature hypotheses on the Σj ’s (it turns out
that one may go down as far as 18/13 – see [9] and [11]).

5. If we place no condition at all on the kernels of the (dΣj(0))∗’s, it is easy
to see that in general, the inequality (10) fails to hold even with L∞ norms
on the right. Such an inequality may of course be salvaged under curvature
assumptions by appealing to classical linear restriction inequalities (such
as the Stein–Tomas theorem), although the exponent can never drop below
3/2.

6. It may be conjectured that under the conditions of Theorem 8, one may
obtain the stronger conclusion

‖E1f E2g E3h‖L1(R3) ≤ C‖f‖2‖g‖2‖h‖2.
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We point out that if the Σj ’s are linear mappings then this is a true in-
equality, and moreover is equivalent to the classical 3–dimensional Loomis–
Whitney inequality (1). For some further partial results in this direction
see [2].

7. Theorem 8 was proved for sections of paraboloid in [1].

Proof. We begin by observing that inequality (10) is equivalent to

〈E1f1 E2g1 E3h1,E1f2 E2g2 E3h2〉
≤ C‖f1‖4/3‖g1‖4/3‖h1‖4/3‖f2‖4/3‖g2‖4/3‖h2‖4/3,

for all f1, g1, h1, f2, g2 and h2 supported in a sufficiently small neighbourhood
of the origin. It therefore suffices to show that there exist neighbourhoods
Ω1,Ω2,Ω3 of 0 ∈ R

2, such that∫
Ω1

∫
Ω2

∫
Ω3

∫
Ω1

∫
Ω2

∫
Ω3

f1(x)g1(y)h1(z)f2(x′)g2(y′)h2(z′)

× δ (Σ1(x) + Σ2(y) + Σ3(z) − Σ1(x′) − Σ2(y′) − Σ3(z′)) dx dy dz dx′dy′dz′

≤ C‖f1‖4/3‖g1‖4/3‖h1‖4/3‖f2‖4/3‖g2‖4/3‖h2‖4/3

for all f1, g1, h1, f2, g2, h2 ∈ L4/3. By symmetry and multilinear interpolation it
suffices to prove that∫

Ω1

∫
Ω2

∫
Ω3

∫
Ω1

∫
Ω2

∫
Ω3

f1(x)g1(y)h1(z)f2(x′)g2(y′)h2(z′)

× δ (Σ1(x) + Σ2(y) + Σ3(z) − Σ1(x′) − Σ2(y′) − Σ3(z′)) dx dy dz dx′dy′dz′

≤ C

{ ‖f1‖2‖g1‖2‖h1‖2‖f2‖1‖g2‖1‖h2‖1

‖f1‖2‖g1‖2‖h1‖1‖f2‖1‖g2‖1‖h2‖2.

By considering the mapping Σ3 
→ −Σ3, we quickly see that it will be enough
to prove only the first of the above two inequalities. Since f2, g2 and h2 are
measured in L1 it is enough to deal with the case where f2 = δx′ , g2 = δy′ and
h2 = δz′ , where now we view (x′, y′, z′) as an arbitrary element of Ω1 ×Ω2 ×Ω3.
It hence suffices to show that∫

Ω1

∫
Ω2

∫
Ω3

f1(x)g1(y)h1(z)

× δ (Σ1(x) + Σ2(y) + Σ3(z) − Σ1(x′) − Σ2(y′) − Σ3(z′)) dx dy dz

≤ C‖f1‖2‖g1‖2‖h1‖2,

uniformly in (x′, y′, z′) ∈ Ω1 × Ω2 × Ω3.
Now, by a rotation of R

3, we may assume that each Σj(x) is of the form
(x,Φj(x)) in a small neighbourhood of the origin, where Φj is smooth and real–
valued. In this notation, the hypothesis that the kernels of the (dΣj(0))∗’s span
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becomes

det

 1 1 1
∂Φ1
∂x1

∂Φ2
∂x1

∂Φ3
∂x1

∂Φ1
∂x2

∂Φ2
∂x2

∂Φ3
∂x2

 �= 0

at the origin.
It remains to show that under the above condition

(11)
∫

Ω1

∫
Ω2

f(x)g(y)h(x′ + y′ + z′ − x − y)δ (F (x − x′, y − y′)) dxdy

≤ C‖f‖2‖g‖2‖h‖2

uniformly in (x′, y′, z′) ∈ Ω1 × Ω2 × Ω3. Here we have set

F (x, y) = Φ1(x′ + x) + Φ2(y′ + y) + Φ3(z′ − x − y) − Φ1(x′) − Φ2(y′) − Φ3(z′)

for each (x′, y′, z′). Note that

det(∇xF (0),∇yF (0)) = det

 1 1 1
∂Φ1
∂x1

(x′) ∂Φ2
∂x1

(y′) ∂Φ3
∂x1

(z′)
∂Φ1
∂x2

(x′) ∂Φ2
∂x2

(y′) ∂Φ3
∂x2

(z′)

 ,

which is non–zero uniformly in x′, y′ and z′ in a sufficiently small neighbourhood
of the origin. On observing that the C3–norm of F is bounded uniformly in x′,
y′ and z′, (11) now follows from Proposition 7.

Concluding remarks.
1. Although we have only worked in three dimensions here, similar questions

may be posed for n–linear expressions in n dimensions for all n ≥ 2. 2 Let
E1, ...., En be the extension operators associated to the smooth mappings
Σ1, ...,Σn : R

n−1 → R
n

Ejf(ξ) =
∫

Rn−1
f(x)eiξ·Σj(x)dx.

One may conjecture that if the kernels of the mappings
(dΣ1(0))∗, ..., (dΣn(0))∗ span R

n, then there exists a constant C such that

‖E1f1 · · · Enfn‖2/(n−1) ≤ C‖f1‖2 · · · ‖fn‖2

for all f1, ..., fn supported in a sufficiently small neighbourhood of 0.
Again, when the mappings Σj are linear, this inequality is true, and is

equivalent to the classical Loomis–Whitney inequality (1). However, rather
curiously, the natural extension of Theorem 8 to dimensions n ≥ 4 requires
something other than Theorem 2. More specifically, if one attempts to
follow the argument of Theorem 8 in higher dimensions, one is required to
prove that∫

(Rn−1)n

f1(u1)···fn(un) δ(Σ1(u1)+···+Σn(un)−ξ) du � ‖f1‖(n−1)′ ···‖fn‖(n−1)′

2The two dimensional situation is of course well established.
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for all f1, ..., fn supported in sufficiently small neighbourhoods of 0, uni-
formly in ξ. In dimensions n ≥ 4 this inequality appears to require non–
linear versions of more general inequalities of Brascamp–Lieb type. Some
recent progress on this by other methods can be found in [2].

2. Although the statements of Theorems 1 and 2 are diffeomorphism invari-
ant, our subsequent trilinear restriction theorem (Theorem 8) is not. It
seems likely that Theorem 8 may be generalised to a wider (diffeomorphism
invariant) family of oscillatory integral operators satisfying a certain non–
degeneracy condition in the spirit of Hörmander’s conjecture. This line of
investigation will be taken up in a subsequent paper.

Appendix: The proof of Proposition 3

It will suffice to deduce the existence of the required U , C and r for each of
the parts (i)– (iv) individually.

Part (i) is an elementary consequence of the mean value theorem and the
fact that for each j, ‖Xj‖C1 ≤ A′ where A′ is such that A′/An−1 is a non–zero
constant depending only on the dimension. We may henceforth assume that we
are dealing only with x satisfying

det(X1(x), ..., Xn(x)) ≥ ε/2.

Parts (ii) and (ii) rely on the simple geometrical observation that for each 1 ≤ j ≤
n, we have the lower bound |Xj(x)| ≥ ε

2(A′)(n−1) . Fix 1 ≤ j ≤ n. By considering
a rotation of R

n we may suppose that the nth component of Xj , denoted by
(Xj)n, satisfies |(Xj)n(0)| � ε/(A′)n−1. By the mean value theorem there exists
a neighbourhood U ′ of 0 ∈ R

n, depending only on ε, A and n, upon which
|(Xj)n(x)| � ε/(A′)n−1. We now define G : U ′ → R

n by G(x) = (πj(x), xn). It
is now easily verified that

det(DG(x)) � ε/(A′)n−1

on U ′, and so there exist neighbourhoods U ⊂ U ′ and V ⊂ R
n of 0 ∈ R

n, such
that G : U → V is invertible. That U and V may be chosen to depend only
on ε, A and n is a consequence of quantitative versions of the inverse function
theorem as in [4]. Furthermore, we may clearly choose V to be a convex set,
such as an open ball. We now observe that πj ◦G−1 : V → R

n−1 is the canonical
submersion (x′, xn) 
→ x′, and hence for any y ∈ R

n−1, (πj ◦ G−1)−1(y) ∩ V is
connected. Since G is a homeomorphism,

G−1
(
(πj ◦ G−1)−1(y)

) ∩ G−1(V ) = π−1
j (y) ∩ U

is connected. This completes the proof of part (ii).
In order to prove part (iii) we confine our attention, as we may, to |t| ≤
ε

2(A′)n+1 . We first observe that our flows are close to linear in the sense that

|γj(t, x) − (x + tXj(x))| = |γj(t, x) − (γj(0, x) + tD1γj(0, x))|

=
∣∣∣∣∫ t

0

∫ s

0

D2
1γj(u, x) du ds

∣∣∣∣ ≤ ‖Xj‖2
C1t2/2,

(12)
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where γj(t, x) := etXj (x). Consequently,

|γj(t, x)| ≥ |t| ε

2(A′)n−1

(
1 − (A′)n−1

ε
‖Xj‖2

C1 |t|
)
− |x|

≥ |t| ε

4(A′)n−1
− |x|,

(13)

and so if 0 < r < ε
2(A′)n+1 , |γj(t, x)| > rε

4(A′)n−1 for all |t| > r and |x| ≤ rε
4(A′)n−1 .

On taking U = B
(
0; rε

4(A′)n−1

)
, part (iii) of the proposition is satisfied.

Part (iv) is a simple consequence of the chain rule and a quantitative version
of the differential dependence on initial conditions of ODE’s, see for example,
[7].
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