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LOGARITHMIC TRACE OF TOEPLITZ PROJECTORS

L. Boutet de Monvel

Abstract. In [6] we defined Toeplitz projectors on a compact contact manifold,
which are analogues of the Szegö projector on a strictly pseudo-convex boundary.
The kernel of a Toeplitz projector, as the Szegö kernel, has a holonomic singularity
including a logarithmic term. The coefficient of the logarithmic term is well de-
fined, so as its trace (the integral over the diagonal). Here we show that this trace
only depends on the contact structure and not on the choice of the Toeplitz opera-
tor (for a given contact structure there are many possible choices). This generalizes
a result of K. Hirachi [16] for the Szegö kernel, and also shows that his invariant
(the trace of the logarithmic coefficient of the Szegö kernel) only depends on the
contact structure defined by the boundary pseudo-convex CR structure. Finally
we show that the Toeplitz logarithmic trace vanishes identically for all contact
forms on the three-sphere.

1. Introduction

Let (X, λ) be a compact oriented contact manifold of dimension 2n− 1. This
means that X is a manifold equipped with a differential 1-form λ such that
λ(dλ)n−1 is a volume element (2n − 1 = dimX); two forms λ, λ′ define the
same structure iff λ′ = fλ with f a smooth positive function. Equivalently X
is equipped with a smooth symplectic half-line sub-bundle Σ ⊂ T ∗X (the set of
positive multiples of λ).

A typical example is the unit sphere X (z.z̄ = 1) in C
n, with λ = 1

i z̄.dz|X .
The Szegö kernel of the unit sphere is

S =
1
c
(1 − z.w̄)−n with c =

2πn

(n − 1)!
, the volume of X

It is the kernel of the orthogonal projector (still denoted S) on the space of
holomorphic functions (ker ∂̄b) in L2(X):

Sf(z) =
∫

X

S(z, w̄)f(w)dσ(w), with dσ(w) the canonical volume element of X.

The Szegö kernel is linked to the contact structure in the following manner:
S is a Fourier integral operator with complex canonical relation C, where the
real part of C is IdΣ, the graph of the identity map of Σ (which just means
that in the complexification of X × X the set of real points of the hypersurface
{φ = i(z.w̄− 1) = 0} is the diagonal z = w, and there we have dzφ = dw̄φ = cλ,
with c > 0 - in this case c = 1).
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Things are similar when X is the boundary of a complex manifold Ω and is
strictly pseudo-convex. In this case S is again defined as the orthogonal projector
on the space of boundary values of holomorphic functions (ker ∂̄b) in L2(X, dv)
(this depends on the choice of a volume element dv). If X is defined by a real
analytic equation q(z, z̄) = 0 (q > 0 in Ω), the Szegö kernel S is holomorphic
with respect to z and antiholomorphic with respect to w, smooth up to the
boundary except along the diagonal of X×X where it has a typically holonomic
singularity (cf. [4], [19]):

S = φ(z, w̄) (q(z, w̄) + 0)−n + ψ(z, w̄) Log (q(z, w̄) + 0)(1)

where φ and ψ are smooth functions defined near the diagonal, holomorphic
(resp. anti–) with respect to z (resp. to w). If X is only C∞ rather than real
analytic, the formula above is formal, i.e. it only defines the Taylor series of
q, φ and ψ along the diagonal, but this is enough to determine completely the
singularity of S.

The coefficient ψ of the logarithmic term (or rather its Taylor series along the
diagonal) is completely defined; it only depends on the complex boundary (CR)
structure of X and dv. In [16] Hirachi shows that its trace, i.e. the integral

L(λ) =
∫

X

ψ(z, z̄) dv(2)

is a rather rigid invariant: it only depends on the CR structure of X, not on the
choice of the volume element dv, and it is also invariant under deformation.

We have shown in [6] that if X is an oriented contact manifold, there always
exists a Toeplitz projector, which is an analogue of the Szegö projector: this
is a projector in L2(X, dv) (for some volume element dv) which is an “elliptic”
Fourier integral operator with complex canonical relation C, where again the real
part of C is the graph of IdΣ. As in the holomorphic situation, C is the conormal
bundle of a complex hypersurface {q(x, y) = 0} in the complexification of X×X,
q a smooth function, with q = 0, idxq = −idyq = cλ, a positive multiple of the
contact form, on the diagonal, and Re q ≥ c|x − y|2 near the diagonal (c > 0;
Re q > 0 outside of the diagonal; there are further conditions to ensure C◦C = C).

The kernel of S is a Fourier integral:

S(x, y) ∼
∫ ∞

0

e−Tq(x,y)a(x, y, T ) dT(3)

with a ∼ ∑
k<n ak(x, y)T k, a symbol of degree n − 1. S has a holonomic singu-

larity as in (1), which we can expand as

(4) S(x, y) ∼
∑

0<k≤n

αk(x, y)(q(x, y) + 0)−k +

∑
k≥0

βk(x, y)q(x, y)kLog (q(x, y) + 0) (mod.C∞)
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with

αk(x, y) = ak−1(x, y) (k − 1)! for k > 0,(5)

βk(x, y) = a−1−k(x, y) k!−1 for k ≥ 0

Here again the coefficient ψ(x, y) of the logarithmic term is well defined; it
depends on the choice of the projector S. In this article we prove

Theorem 1. The trace L(S) =
∫

X
ψ(x, x)dv of the logarithmic term only de-

pends on the contact structure of X, not depend on the choice of the of the
canonical relation C of S.

To prove the theorem we will use the fact that any two Toeplitz projector
singularities belonging to the same contact structure can deformed one into the
other. Note that the theorem also implies that the trace of the logarithmic
coefficient is invariant in a deformation of the contact structure, because such
deformations are always trivial: if λt is a smooth one-parameter family of contact
structures on X (X compact), there exists a smooth family Φt of diffeomorphisms
of X such that Φ∗

t λt is a multiple of λ0, and of course diffeomorphisms preserve
separately polar and logarithmic singularities.

The result of K. Hirachi for the Szegö kernel follows from theorem 1, which
shows moreover that L(λ) only depends on the contact structure. I have no
example of a contact structure (X, λ) with L(λ) �= 0 and Hirachi’s question on
that point remains open, but in section 5, I show that if X is the 3-sphere, L(λ)
always vanishes. In view of this it not unlikely that L(λ) vanishes for all contact
forms.

2. Toeplitz projectors

As mentioned above a Toeplitz projector is a projector S in L2(X, dv) which
is an elliptic Fourier integral operator with positive complex canonical relation
C such that real part is the is the graph of IdΣ. It can be represented as a
Fourier integral (3) with , q a smooth function on X ×X, Re q ≥ c |x− y|2 near
the diagonal, and idxq = −idyq = c λ, (λ the contact form; there are further
conditions on q ensuring C ◦C = C). The construction of such canonical relations
and Toeplitz projectors is described in [6], see also [7], [8]. This construction
allows deformations or compact group actions and in fact shows that set of
such canonical relations, so as the set of singularities of Toeplitz projectors, is
contractible; in particular we have:

Proposition 1. Let C0, C1, resp. S0, S1 be two canonical relations, resp. Toeplitz
projectors as above. Then there exist smooth one parameter families C′

t, resp. S′
t

of canonical relations, resp. Toeplitz projectors such that C′
i = Ci, resp. S′

i − Si

has a smooth kernel, for i = 0, 1.

Another way of stating this is
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Corollary 1. Let (X, λ) be an oriented contact manifold. Then the singularities
of Toeplitz kernels form a soft sheaf on diagX ⊂ X × X.

In other words if S0 is a Toeplitz kernel singularity defined in a neighborhood
of some closed subset K ⊂ X, there exists a global singularity S (defined on
the whole of X) which coincides with S0 near K. (The mod. C∞ assertion
about S cannot be improved: the set of Toeplitz projectors is not connected;
in fact if S, S′ are two Toeplitz projector, S ◦ S′ induces a Fredholm operator
from the range of S′ to the range of S, whose index is an arbitrary integer and
is of course deformation invariant. The assertions above are possibly easier to
see in the setting of “Hermite operators” of [2] or of “symplectic spinors” of [15]:
the leading term is parametrized by normalized gaussian densities of the form
(discr 2π Re q)−

1
2 exp− 1

2q with q a quadratic form, Re q � 0, and the rest is a
formal expansion easily linearized. But in this setting it is more awkward to
keep track of the logarithmic term.)

Since these facts are not explicitly stated in loc. cit., I briefly recall the proof
in §4 below.

3. Logarithmic term of the Toeplitz projector

Let S be a Toeplitz projector, defined by a Fourier integral as in (3)

S(x, y) ∼
∫ ∞

0

e−Tq(x,y)a(x, y, T ) dT

Once q and a are fixed, following Hirachi, we introduce the asymptotic expan-
sions

(6) S(x, y, ε) =
∫ ∞

0

e−T (q+ε)a dT ∼
∑
k>0

αk(x, y)(q + ε)−k

+
∑
k≥0

βk(x, y)(q + ε)kLog (q + ε)

and its trace

s(ε) = trSε =
∫ ∞

0

e−Tεa(x, x, T )dv(x)dT ∼
∑

αkε−k +
∑

βkεkLog ε(7)

with αk(x, y), βk(x, y), βk as in (5), αk =
∫

αk(x, x), βk =
∫

βk(x, x).

These should be understood as a Fourier integral distribution on X ×X × R

defining an ε-parameter family of operators on X, resp. on R, with complex
Lagrangian the conormal bundle T ∗

{q+ε=0}(X × X × R), resp. T ∗
0 R. Although

as distributions they are only defined for ε ≥ 0, they satisfy regular holonomic
systems of pseudo-differential equations, with well defined jets of infinite order
along diag X × {ε = 0}, (resp. at ε = 0); this is the only thing that counts.

The logarithmic coefficients β0(x, y), β0 only depend on S, but of course the
full asymptotic expansions Sε(x, y), s(ε) depend on the precise choice of the phase
function q and symbol a (the leading term transforms in an obvious way if we
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replace q by a multiple of q, but the rest depends in a more complicated manner
on the choice of φ, a). For the proof it will be convenient to choose φ and a
adequately:

Lemma 1. We can choose the phase q and symbol a so that Sε ∼ S ◦ Sε ◦ S.

In the proof below we have denotes by the same letter an operator and its
Schwartz kernel (possibly depending on a parameter ε or λ): to a kernel a(x, y)
corresponds the operator f �→ ∫

a(x, y)f(y)dv(y); the composition law is a ◦
b(x, y) =

∫
a(x, u)b(u, y)dv(u). The theorem of the stationary phase shows that

we have

S ◦ e−λqa ◦ C

∼
∫

e−Tq(x,u)a(x, u, T )e−λq(u,v)a(u, v, λ)e−Sq(v,y)a(v, y, S)dTdSdv(u)dv(v)

∼ e−λq′(x,y)a′(x, y, λ)

for some phase function q′(x, y) and symbol a′(s, y, λ) (λq′ the critical value of
the exponent −Tq(x, u)− λq(u, v)− Sq(v, y) at its stationary point, a′ given by
the asymptotic expansion in the method of the stationary phase). The projector
equation S ◦ S = S then implies that

S ∼
∫

e−λq′(x,y)a′(x, y, λ)dλ,

and
S ◦ e−λq′(x,y)a′(x, y, λ)◦ ∼ e−λq′(x,y)a′(x, y, λ)

In particular q′ is a smooth multiple of q. In the holomorphic case (Szegö kernel)
this just means that q′ and a′ are holomorphic in x and antiholomorphic in y.

Proposition 2. Let St (0 ≤ t ≤ 1) be a smooth family (deformation) of Toeplitz
projectors. Then the logarithmic coefficient β0(t) is constant.

Proof. we write S for St, D = d
dt . To lighten the notation we omit the ◦

sign denoting the multiplication (composition) of operators. We have Ds(ε) =∑
Dαkε−k+

∑
DβkεkLog ε. Since S is a projector, we have DS = DS S+S DS,

hence

DS = [S, (2S − 1)DS].(8)

Let us choose choose the smooth phase function qt and symbol at as in Lemma1,
so that SSε ∼ Sε ∼ SεS. With this choice, the kernel of [S, (2S − 1)DSε]
is a Fourier integral distribution belonging to the same Lagrangian as Sε (the
conormal bundle of the hyper-surface {qt + ε = 0}) and DSε − [S, (2S − 1)DSε]
vanishes for ε = 0 , i.e. it is a multiple of ε, a Fourier integral of the form∫

e−T (q(x,y)+ε) ε b(x, y, ε, T ) dT
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Since the trace of a commutator vanishes identically, we have

Ds(ε) ∼
∫

e−T (q(x,y)+ε) ε b(x, y, ε, T ) dT dv.

Now we can repeat the argument of K. Hirachi [16]: the asymptotic expansion
of s(ε) is a multiple of ε, so in it the coefficient of Log ε vanishes. Since any two
Toeplitz projectors can be deformed into one another mod. smoothing operators,
this proves theorem 1.

4. Deformations of Toeplitz projectors.

As recalled above, a Toeplitz projector is a Fourier integral operator with
complex phase function. Its kernel is of the form (3):

S(x, y) =
∫ ∞

0

e−Tq(x,y)a(x, y, T )dT = φ(x, y)(q + 0)−n + ψ(x, y)Log (q + 0)

where a is a symbol of degree n−1, φ, ψ are smooth functions. The phase function
is Φ = iT q, with q a smooth complex function on X ×W , q(x, x) = 0, dq �= 0 on
the diagonal, Re q(x, y) ≥ c|x − y|2 near the diagonal.

The objects we are dealing with are really jets of infinite order along Σ in
T ∗X, the diagonal in X×X or the diagonal of Σ in T ∗(X×X), but it will be be
more agreeable, and perfectly legitimate, to use the language of functions and
sub-manifolds of differential geometry.

The complex canonical relation C is the set of covectors (x, ξ) = dxΦ, (y, η) =
−dyΦ with q(x, y) = 0, in the complexification of T ∗X × T ∗X0 (0 means that
we reverse the sign of the canonical symplectic form). Its real part is diag Σ,
i.e. 1

i dxq = − 1
i dyq = cλ on the diagonal (λ the contact form, c > 0). The

positivity of C follows from the condition Re q ≥ c|x− y|2 (cf. [20]). For a given
projector S only the complex canonical relation, i.e. the hypersurface {q = 0}
is well defined; the phase or q itself is only defined up to a smooth factor. We
will not require that q be hermitian (q(y, x) = q̄(x, y)) or S self adjoint - this
anyway makes sense only once the volume dv is chosen.

4.1. Construction of idempotent canonical relations. We next recall how
the condition C ◦ C = C is managed.

Let C ⊂ T ∗(X×X) be a canonical relation, i.e. a conic Lagrangian Lagrangian
sub-manifold of T ∗X ×T ∗X0 such that C ◦C = C. Then the positivity condition
above implies that the projections pr1C = Σ+, pr2C = Σ− are involutive complex
sub-manifolds of T ∗ X, with Re Σ± = Σ, Σ+ � 0, Σ− � 0. � 0 means that
locally Σ+ is defined by n = codim Σ+ transversal equations x1 = . . . xn = 0
where the Poisson brackets {xp, xq} vanish on Σ+ and the matrix (1

i {xp, x̄q})
is � 0 on Σ. The characteristic foliation of Σ± (tangent to the symplectic
orthogonal (TΣ±)⊥) is then tranversal to Σ, so it defines a projection Σ± → Σ,
and we have C = Σ+ ×Σ Σ− (the linearized version of this is elementary).

There is a standard way of constructing such pairs of involutive manifolds
Σ±, cf.[8] :
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Proposition 3. Let δ be a smooth function on T ∗Σ vanishing of order 2 on Σ,
and such that Re δ(ξ) � dist (ξ,Σ)2. Then there exists a unique pair Σ± such
that δ vanishes on Σ+ and Σ−, Σ+ � 0 and Σ− � 0. Σ± is the outgoing, resp.
in-going manifolds of the complex hamiltonian vector field 1

i Ha out of Σ. Any
pair Σ± can be generated in that manner. The set of such functions δ, so as
those producing a given pair Σ±, is contractible (convex).

E.g. in the case of the Szegö kernel on the sphere, Σ± is the complex charac-
teristic manifold of ∂̄b, resp. ∂b, and C is the complex flow of ∂̄b,z × ∂b,w out of
diag Σ in T ∗X × T ∗X. The standard choice for δ is the symbol of �b.

Proof of Prop.3: we start with a smooth homogeneous function δ on T ∗Σ van-
ishing of order 2 on Σ and such that Re δ(u) ≥ c dist (u, Σ)2. Let Hδ be its
hamiltonian vector field. Then the the linearization along Σ 1

i Hδ is orthogonal
to Σ (for the symplectic structure), and its transversal part has no real eigenroot,
so 1

i (Hδ) has two well defined outgoing and in-going manifolds Σ+,Σ− from Σ;
these are involutive and with this choice of signs Σ+ is � 0 and Σ− is � 0, as
in the case of the Szegö kernel of the sphere.

Remark 1. The corresponding result of linear algebra is the following: let E
be a real vector space with real symplectic form ω, q(x, y) a complex symmetric
bilinear form such that δ(x) = 1

2Re q(x, x) ≥ c ‖x‖2, A the linear operator such
that q(x, y) = −ω(Ax, y) (corresponding to the hamiltonian field of δ): A is
antisymmetric with respect to both ω and q; it has no real eigenroot, since if for
some complex vector z we have Az = λz with λ real (Āz̄ = λz̄), then q(z, z̄) =
−ω(Az, z̄) = −λ ω(z, z̄), q̄(z̄, z) = −ω(Āz̄, z) = +λω(z, z̄) hence Re q(z, z̄) = 0
and z = 0. The spectral spaces Eλ, Eλ′ are orthogonal except for λ′ = −λ so the
E± =

∑
±Imλ>0 Eλ are Lagrangian, in duality by ω; E+ is � 0 an E− is � 0

(Re 1
i ω(z, z̄) is negative on E+ so for the set of linear forms vanishing on E+

we get the other sign.

Conversely if the pair Σ± is given, there always exists a generating function δ
as above; for instance locally Σ+ can be defined by n smooth equations xp = 0
with {xp, xq} = 0, 1

i {xp, x̄q} = δpq = 0 (δpq the Kronecker symbol); Λ− is
then defined smooth equations ȳp = 0 with ȳp = x̄p +

∑
apjxj + O(|x|2) (mod.

functions vanishing of second order on Σ). Since Σ− is involutive, the matrix
α = (αkj) is symmetric. The condition Σ− � 0 i.e. 1

i {yp, ȳq} � 0 then means
that the matrix I − α∗α is � 0, i.e. ‖a‖ < 1. Then we set δ =

∑
xpȳp: its

real part is ≥ (1 − ‖α‖2)|x|2 − O(|x|3). We get δ globally by patching local
results using a partition of unity (constructing δ real analytic would require a
little more work but works just as well).

The function δ generating the pair Λ± is of course not unique, but clearly it
can be chosen depending smoothly on a parameter if Λ± does so.
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4.2. Construction of the symbol (leading term) of a projector. The
set of Fourier integral operators associated with C is an algebra (without unit).
The symbol of such operators lives on C; choosing a frame, i.e. a basic elliptic
symbol, identifies the set of symbols of these operators with the set of symbol
functions on C (there is no canonical frame). We identify C with Σ+×Σ Σ− and
denote (ξ′, ξ”) the variable, ξ′ ∈ Σ+, ξ” ∈ Σ− with common projection ξ0 ∈ Σ.
If σ denotes the principal symbol in some frame, we have :

σ(A ◦ B) (ξ′, ξ”) = J(ξ′, ξ”) σ(A)(ξ′, ξ0) σ(B)(ξ0, ξ”)

where J is a fixed elliptic symbol. Since the composition law is associative we
have

J(ξ′, ξ0) = J(ξ0, ξ”) = J(ξ0, ξ0)
The change of frames σ̃(A) = J(ξ, ξ”)J(ξ0, ξ0)−2 σ(A) then gives

σ̃(A ◦ B) = σ̃(A)(ξ′, ξ0) σ̃(B)(ξ0, ξ”).(9)

If the frame is chosen in that manner (J = 1), we have a = σ(A) = σ(A ◦ A) iff

a(ξ′, ξ”) = a(ξ′, ξ0) a(ξ0, ξ”) (this requires a(ξ0, ξ0) = 1)(10)

Again there are many idempotent symbols, but it is obviously possible to keep
track of this in a deformation.

4.3. Construction of a projector mod. smoothing operators.

Lemma 2. Let S0 be a Fourier integral operator with canonical relation C,
whose symbol a is a projector as above. Then the closed algebra generated by
S0 (closed for the filtration by degrees, mod. C∞) contains a unique projector S
such that deg (S − S0) < 0.

Proof : the solution is

S = S0 + (2S0 − 1)
∞∑
1

(2k − 1)!
k!(k − 1)!

Rk, with R = S0 − S2
0(11)

(the degree of R is < 0); this is equivalent to (2S−1) = (2S0−1)[(1−2S0)2]−
1
2 .

Deformation : let S0, S1 be two Toeplitz projectors, C0, C1 their canonical
relations. It is clear from 4.1 that there exists a smooth family Ct of canonical
relations as above linking them. It is clear from 4.2 that there exists a smooth
family st of symbol projectors linking the symbols of S0, S1 and a smooth family
of Fourier integral operators S′

t with symbol st (not yet projectors). Formula 11
finally gives a smooth family of projectors linking S0 and S1 mod. C∞.

Remark 2. There in an analogue of Proposition 3 for Toeplitz projectors, that
we do not use: the set of pseudo-differential operators such that PS ∼ 0, resp.
SQ ∼ 0 is a positive left, resp. right, ideal I±, whose complex characteristic
manifold is Σ±, and S mod. smoothing operators is uniquely determined by the
fact that it is an elliptic Fourier integral projector, and I+S ∼ S I− ∼ 0. There
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is no economic substitute for the function δ in that proposition; �b does play
this role for the Szegö projector (�bS = S�b = 0) but in general the fact that
an operator P kills S, i.e. P ∈ I−I+, cannot be read on the principal symbol
alone.

Remark 3. The argument above gives a projector mod. C∞; it does not re-
quire that X be compact. Compacity is required to define the trace, and also to
construct a true projector out of the approximate one, which is the useful thing
for analysis. This construction is indicated in [6] or [8], and we do not repeat it
since it is not needed here. Modifying S by a smooth projector of finite rank will
of course not change its singularity, so there always remains an index ambiguity.

If X is of real dimension 3 (n = 2), and equipped with a pseudo-convex CR
structure, the singularity of the Szegö kernel is still well defined. The construc-
tion of loc.cit. gives a Toeplitz projector with the right singularity, but this is
not the Szegö projector if ∂̄b is not well behaved. The true Szegö projector (i.e.
the orthogonal projector on the space of holomorphic functions) is a Toeplitz
projector essentially only if X is holomorphically embeddable.

5. Case of the 3-sphere

In this section we examine the case where the base space is the oriented
3-sphere, X = S3 :

Proposition 4. For any contact form λ on the 3-sphere, we have L(λ) = 0

Proof: we identify the 3-sphere with the unit quaternion sphere SU2, set of
all quaternions

x = x0 + Ix1 + Jx2 + Kx3 with xx̃ = x2
0 + x2

1 + x2
2 + x2

3 = 1

x̃ = x0−Ix1−Jx2−Kx3 denotes the conjugate quaternion; to avoid confusions
with complex conjugation, which is also needed. The complex coordinates are

z1 = x0 + ix1 = r1e
iθ1 , z2 = x2 + ix3 = r2e

iθ2

The standard contact form is

λst = 〈dx, Ix〉 = −i dz.z̄ = (x0dx1 − x1dx0) + (x2dx3 − x3dx2) = r2
1dθ1 + r2

2dθ2.

(12)

We have λst dλst = 2 dσ, twice the canonical volume. The conjugate form, giving
the opposite orientation, is

λ̃st = − r2
1dθ1 + r2

2dθ2

We make use of the following facts

1. Contact forms, just as three-manifolds, can be glued together: if (X1, λ1),
(X2, λ2) are two oriented contact manifolds, they are glued together to give
(X1#X2, λ1#λ2) in the following manner: we choose base points p1, p2 and
local coordinates so that a neighborhood of p1, resp. p2, X1 is identified with
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the spherical cap x0 < 1
2 (p1 the south pole x = −1), resp. X2 with the opposite

cap x0 > − 1
2 (p2 the north pole x = 1), in the three sphere, and so that λ1, resp.

λ2 coincide with the standard form on these coronas. Gluing is then obvious:
X1#X2 is obtained by gluing X1, X2 along the corona − 1

2 < x0 < 1
2 using

the identity map (the contact forms patch together). Singularities of Szegö or
Toeplitz kernels can be glued in the same manner (remember that they live on
the diagonal; they must be deformed so as to coincide with the standard Szegö
kernel on the two glued hemispheres). Since the logarithmic term of the standard
Szegö kernel vanishes, we get

L(λ1#λ2) = L(λ1) + L(λ2)(13)

2. Note that in real dimension 3 a Toeplitz projector can always be chosen so as
to correspond to a formally integrable boundary complex structure: the manifold
Σ+ is of codimension 1 so the Frobenius integrability condition is empty, and its
equation can always be chosen linear in to ξ. So the Toeplitz projector is a “Szegö
projector mod. C∞”. This can be useful because the singularity of the (formal)
Szegö kernel is local and computable using Fourier integral operator calculus.
Formally integrable tangent complex structures in dimension 3 are usually not
embeddable (in particular they never are when the corresponding contact form is
over-twisted), so the Toeplitz projector analysis remains unavoidable. In higher
dimension (n ≥ 3) tangent complex structures on a compact manifold are always
embeddable (cf. [3]), but contact structures do not necessarily contain any
complex structure: what is gained on one side is lost on the other.

3. The cotangent bundle of S3 is trivial. We identify it with E×S3, V � R
3 the

space of pure imaginary quaternions, by (v, x) �→ (xv, x), so that the standard
contact form corresponds to the constant map v(x) = I. The map which to
the homotopy class of a continuous function u : S3 → S3 = SU2 assigns the
homotopy class of the vector field v(x) = u(x)Iu(x)−1x, or of the map x �→
v(x) = u(x)Iu(x)−1 ∈ S2, is the canonical isomorphism π3(S3) = Z → π3(S2).

It follows from Eliashberg’s analysis [10, 11, 12], that any homotopy class of
such maps contains an over-twisted oriented contact form with the right orien-
tation, and this is unique up to isomorphism (deformation, preserving the right
orientation). The standard form corresponds to the constant map u(x) = 1,
the zero element of π3(S2), so the trace integral defines a group homomorphism
L : π3(S2) = Z → R (L(λ) is real because the Toeplitz projector can be chosen
self-adjoint).

With the notations above, and with ( r2
r1

)2 = tanφ (0 ≤ φ ≤ π
2 ), we set

λn = cos(2n + 1)φ dθ1 + sin(2n + 1)φ dθ2.(14)

This is a contact form (a(φ) dθ1 + b(φ) dθ2 is a contact form with the right
orientation iff ab′− ba′ > 0, cf. [1]); the coefficient of dθ2, resp. dθ1, must vanish
for φ = 0, resp. φ = π

2 , so that λn is the pull-back of a contact form on the
3-sphere; we have λ0 = (cos φ + sinφ)λst.
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As a non vanishing form, λn is homotopic to cos φ dθ1 ± sinφ dθ2, with ± =
sin(2n+1)π

2 = (−1)n: one can first deform linearly to λn+χ dφ with χ a positive
function vanishing near the ends, then still linearly, to χdφ+cos π dθ1±sinφ dθ2,
finally back to cosφ dθ1 ± sinφ dθ2 (in the deformation one must take care that
the coefficient of dθ1, resp. dθ2, must vanish for φ = π

2 , resp. 0; the sign at one
end does not matter so long as the other coefficient is �= 0). Thus the homotopy
class of λn as a non-vanishing form is the trivial class for n even; for n odd it is
−1, the class of λ̃st.

Let us set ψ = (2n + 1)φ (0 ≤ ψ ≤ (2n + 1)π
2 ), so λn = cos ψdθ1 + sinψdθ2.

Because it can easily be deformed (cf. cor.1), we can construct our Toeplitz
(or Szegö) projector singularity so that it is the standard Szegö projector for
0 ≤ ψ < π

4 or its pgll-back by a suitable change of variables as below for
nπ + π

4 ≤ ψ ≤ (2n + 1)π
2 (for n odd we get the complex conjugate complex

structure corresponding to −λst), and so that is is invariant under the map
(ψ, θ1, θ2) �→ (ψ + π

2 ,−θ2, θ1) in between (as is λn). Then the logarithmic term
vanishes near the ends and repeats itself periodically 2n times so we get :

L(λn) = nL(λ1)(15)

Now it follows from the analysis of Eliashberg (cf. (13)) that we have L(λn) =
0 if n is even, so L(λ1) = 0, and finally L(λ) = 0 for any λ because the class of
λ1 is the negative generator of π3(S2).

This ends the proof, and shows that the logarithmic trace vanishes for all
contact forms on the three sphere.
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