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REMARKS ON SYZYGIES OF d-GONAL CURVES

Marian Aprodu

Abstract. We apply a degenerate version of a result due to Hirschowitz, Ra-
manan and Voisin to verify Green and Green-Lazarsfeld conjectures over explicit
open sets inside each d-gonal stratum of curves X with d < [gX/2] + 2. By the
same method, we verify the Green-Lazarsfeld conjecture for any curve of odd genus
and maximal gonality. The proof invokes Voisin’s solution to the generic Green
conjecture as a key argument.

1. Introduction

A result due to Green and Lazarsfeld, cf. [G, Appendix], shows that the
existence of special linear systems on a complex projective variety X reflects
into non-vanishing of certain Koszul cohomology groups Kp,1. Recall that for
two integers p and q and a line bundle L on X, the Koszul cohomology group
Kp,q(X, L) was defined in [G] as the cohomology of the complex:

∧p+1H0(L) ⊗ H0(Lq−1) → ∧pH0(L) ⊗ H0(Lq) → ∧p−1H0(L) ⊗ H0(Lq+1).

On a smooth, connected curve X, one expects that the Green-Lazarsfeld non-
vanishing result be revertible, that is non-trivial Kp,1 groups with values in line
bundles chosen in convenient ways would give rise to special linear systems on
the curves. This amounts to proving that particular Koszul cohomology groups
vanish if some linear series loci are empty.

For the canonical bundle, Green conjectured that Kg−c−1,1(X, KX) = 0 for
any curve X of genus g and Clifford index c, see [G]. Similarly, if X is of
gonality d, Green and Lazarsfeld predicted Kh0(L)−d,1(X, L) = 0 for any line
bundle L of sufficiently large degree, see [GL1]. Put in other words, the two
basic invariants of a curve, Clifford index and gonality, would be read off suitable
Koszul cohomology groups. It is important to mention that they are related by
the inequalities d − 3 ≤ c ≤ d − 2 ≤ [(gX − 1)/2], cf. [ACGH] and [CM].

Both Green, and Green-Lazarsfeld conjectures have been verified for general
curves of any genus (for Green’s conjecture see [V2] and [V3], and for the Green-
Lazarsfeld conjecture we refer to [AV] and [A2]) with the notable difference that
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in the odd-genus case, the Green conjecture is known to hold for any curve of
maximal gonality, as shown by Hirschowitz, Ramanan and Voisin, cf. [HR] and
[V3].

Theorem 1 (Hirschowitz-Ramanan-Voisin). Any smooth curve X of genus g =
2k + 1 ≥ 5 with Kk,1(X, ωX) �= 0 carries a pencil of degree k + 1.

The proof of this remarkable result relies on a comparison of two divisors in
the moduli space M2k+1, the one of curves which carry a g1

k+1 and, respectively,
the locus of canonical curves with extra-syzygies. Already showing that the
latter one is a genuine divisor, and does not cover the whole moduli space is
hard work, and was concluded only recently in Voisin’s tour de force [V2], [V3],
after having developed a completely new approach to the problem in [V2].

The Green conjecture is known to hold also for curves of non-maximal gonal-
ity which are generic in their gonality strata, and this happens for all possible
gonalities cf. [V2, Corollary 1] and [T, Theorem 0.4], see also [S1, Theorem].
It is well-known that by fixing the gonality d we obtain a stratification of the
moduli space of curves with irreducible gonality strata, the maximal possible
value for d corresponding to the open stratum. Therefore, it makes perfect sense
to speak about general points in a given gonality stratum.

Starting from the generic Green conjecture, Voisin had the idea to degenerate
smooth curves on a K3 surface to irreducible nodal curves, in the same linear
system, in order to make the Koszul cohomology of the latter ones vanish, and
so she verified the Green conjecture for the normalizations of these curves, cf.
[V2]. This fact resulted into a very short and elegant solution for the Green
conjecture for generic curves X of non-maximal gonality larger than gX/3. Then
she observed furthermore that exactly the same method yields, in completion to
[A1, Theorem 1], to a solution for the Green-Lazarsfeld conjecture for generic
curves of fixed gonality in the same order range, cf. [AV, Theorem 1.3] and [AV,
Theorem 1.4]. This strategy did much better than the partial [A1, Theorem 3],
see [AV, Remark 2] for some related comments.

At the other end of the spectrum, normalizations of irreducible nodal curves
on P

1 × P
1 have been used to verify the two conjectures for generic curves X

in any stratum of gonality bounded in the order
√

gX , cf. [S1, Theorem], and
[A1, Theorem 4], the vanishing of the Koszul cohomology having been proved, in
contrast to Voisin, directly on the normalizations. Further connections between
Green and Green-Lazarsfeld conjectures are emphasized in [A1, Appendix and
II].

Having had these indications pleading for unity, it seems natural to try to
find a common space of curves with fixed gonality on which the two conjectures
be treated in a unitary way – this is the goal of the present work. We use
degenerations, taking the path shown by Voisin, which is to compute the Koszul
cohomology directly on nodal curves, instead of normalizing them first. The
proof of our first result will show that this is a very natural thing to do.
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Theorem 2. Let d ≥ 3 be an integer, and X be a smooth d-gonal curve with d <
[gX/2]+2, and such that dim (W 1

d+n(X)) ≤ n for all 0 ≤ n ≤ gX −2d+2. Then
Cliff(X) = d − 2, and X verifies both Green, and Green-Lazarsfeld conjectures.

In the statement, W 1
d+n(X) denotes the subvariety of Picd+n(X) of bundles

with two or more independent sections. We mention that, since X is non-
hyperelliptic, we always have the bound dim (W 1

d+n(X)) ≤ d + n− 3 for all 0 ≤
n ≤ gX−2d+2, see [HMa]. Beside, according to a problem raised by G. Martens,
cf. [GMa, Statement (T), p. 280], it is very likely that the conditions appearing
in the statement of Theorem 2 be reduced to the single condition dim (W 1

d (X)) =
0. The locus of curves satisfying the hypotheses of the theorem is anyway non-
empty and open in the d-gonal stratum, and all but one possible gonality strata
are concerned. In particular, Theorem 2 gives an alternate proof to [T, Theorem
0.4], [S1, Theorem], [A1, Theorem 4], and, for the Green-Lazarsfeld conjecture,
it fills in the existing gap for generic d-gonal curves with d in order between

√
gX

and gX/3.
For small d one can specify the curves which do not satisfy the hypothesis, cf.

[ACGH], [HMa], [Mu], [Ke]. Among the new effective results that follow directly
from Theorem 2 we count then the validity of the Green-Lazarsfeld conjecture
for non-bielliptic tetragonal curves, and of the two conjectures for pentagonal
and for hexagonal curves which are neither trielliptic nor double coverings of
curves of genus three, see Corollary 10 in Section 3.

The extremal case gX − 2d + 2 = 0 indicates that both Green, and Green-
Lazarsfeld conjectures are verified for any curve X of even genus and maximal
gonality which carries finitely many minimal pencils. From the Green conjec-
ture point of view, this can be seen as a first step in finding a correspondent of
the Hirschowitz-Ramanan-Voisin Theorem in the even-genus case. Other conse-
quence of Theorem 2 regards curves of even genus and maximal Clifford index
on K3 surfaces, cf. Corollary 11.

The case not covered by Theorem 2 is, as expected, the case of curves of odd
genus and maximal gonality. The second result, which refines [A2, Theorem 1.1],
is concerned with the Green-Lazarsfeld conjecture for these curves, for which the
Green conjecture has already been settled.

Theorem 3. The Green-Lazarsfeld conjecture is valid for any smooth curve X
of genus gX = 2k − 1 and gonality k + 1, with k ≥ 3.

We obtain directly from Theorem 3 a version of the Hirschowitz-Ramanan-
Voisin Theorem for syzygies of pluricanonical curves.

Corollary 4. If X is a smooth curve of genus 2k − 1, where k ≥ 3, with

K2(2p−1)(k−1)−(k+1),1(X, ω⊗p
X ) �= 0

for some p ≥ 2, then X carries a g1
k.

Roughly speaking, the proof strategy of the two theorems above is the same,
namely to construct, starting from X, some suitable singular stable curves of
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genus g = 2k + 1 and analyze their syzygies. A degenerate version of the
Hirschowitz-Ramanan-Voisin Theorem, proved in Section 2, tells us that if these
stable curves have extra-syzygies, then they are limits of smooth curves with
extra-syzygies, and this fact translates into the existence of special torsion-free
sheaves of rank one, which will trace pencils on the original curve X. For Theo-
rem 2, the singular curves which we construct are irreducible, and this choice was
inspired directly by the ideas of Voisin applied in [V2] and [AV], and which we
have briefly explained above. This result is then a natural continuation of [V2,
Corollary 1] and [AV, Theorems 1.3 and 1.4]. The difference is that we work now
with abstract families of curves degenerating to a stable curve, whereas in [V2]
and [AV], these degenerations were always made on K3 surfaces. The freedom
we gain also reflects into the possibility of working with curves with arbitrarily
many nodes, getting rid of the main obstruction to improving the statements
quoted above. As for Theorem 3, the singular curves which we construct are
curves with one smooth rational component, similarly to [A2, Theorem 1.1].
These curves are themselves limits of irreducible curves with two nodes, indicat-
ing this case as being ”more degenerate” than the others, and giving a hint of
why should it be treated separately. The origin of this difference is that this is
the only case of a gonality stratum whose general members carry infinitely many
minimal pencils.

2. Syzygies of singular stable curves with very ample canonical
bundle

Throughout this section the arithmetic genus will remain fixed to g = 2k +1,
where k ≥ 2. We study the Koszul cohomology of a stable curve Y of genus g
in relation with its geometry. Recall that stable curves are reduced connected
curves with finite group of automorphisms, and with only simple double points
(nodes) as possible singularities. They have been introduced by Deligne and
Mumford with the aim of compactifying the moduli space Mg of smooth curves
of genus g. Singular stable curves of arithmetic genus g lie on a normal-crossing
divisor ∆0∪· · ·∪∆[g/2] in Mg, on the boundary of Mg, and the general element
in ∆0 is irreducible, whereas a general element in ∆i is the union of two curves
of genus i and g − i respectively, meeting in one point.

From now on, we shall work exclusively with stable curves with very ample
canonical bundle, see [C, Theorem F] and [CFHR, Theorem 3.6] for precise
criteria.

Notation. The open subspace in Mg of points corresponding to stable curves
of genus g with very ample canonical bundle, which can be easily shown to be
contained in Mg ∪ ∆0, will be denoted by M va

g .

Let [Y ] ∈ M va
g , and denote, for simplicity P := PH0(Y, ωY )∗, which contains

the image of Y , set Q = TP(−1) the universal quotient bundle, and QY the
restriction of Q to Y . The Koszul cohomology of Y with values in ωY has then
the following description, [HR, Proposition 2.1].
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Proposition 5 (Hirschowitz-Ramanan). With the notation above, for any n ≥
1, there exists an isomorphism

Kn,1(Y, ωY ) ∼= ker
(
H0(P,∧2k−n+1Q(1)) → H0(Y,∧2k−n+1QY ⊗ ωY )

)
.

Remark 6. For the choice n = k and for a smooth curve Y , Hirschowitz and
Ramanan remarked that the two spaces appearing in the description above,
namely H0(P,∧k+1Q(1)) and H0(Y,∧k+1QY ⊗ ωY ), have the same dimension,
cf. [HR, Proof of Proposition 3.1]. This observation was essential in the proof
of their main result. Applying the Riemann-Roch Theorem, and the Serre du-
ality we observe that the two spaces in question are still of the same dimension
even if Y was a singular stable curve with very ample canonical bundle, since
H0(Y,∧k+1Q∗

Y ) = 0. The vanishing of H0(Y,∧m+1Q∗
Y ) for any m ≥ 0 is a stan-

dard fact, and is implied by the following classical remarks. Firstly, we know
that there are natural exact sequences, for any p and q,

0→H0(Y,∧p+1Q∗
Y ⊗ωq−1

Y )→∧p+1H0(Y, ωY )⊗H0(Y, ωq−1
Y )→H0(Y,∧pQ∗

Y ⊗ωq
Y ).

Secondly, the Koszul differential ∧m+1H0(ωY ) → ∧mH0(ωY )⊗H0(ωY ) is injec-
tive, and it factors through the inclusion of H0(∧mQ∗

Y ⊗ωY ) into ∧mH0(Y, ωY )⊗
H0(Y, ωY ).

Convention. Hirschowitz and Ramanan used the term with extra-syzygies to
designate a smooth curve Y of genus 2k + 1 with Kk,1(Y, ωY ) �= 0. We adopt
this terminology and extend it to singular curves with the same non-vanishing
property.

From the syzygy point of view, singular stable curves with very ample canon-
ical bundle behave similarly to smooth curves. For instance, those which have
extra-syzygies, are degenerations of smooth curves with extra-syzygies.

Proposition 7. Let Y be a singular stable curve of genus g = 2k + 1 with very
ample canonical bundle. Then Y has extra-syzygies if and only if [Y ] belongs to
the closure of the locus of (k + 1)-gonal smooth curves.

Proof. We set some notation first. Following [HM], let Dk+1 be the divisor on
Mg of curves with a pencil of degree k + 1, let Dk+1 be its closure in Mg,
Dva

k+1 = Dk+1 ∩ M va
g , and ∆va

0 = ∆0 ∩ M va
g .

By semi-continuity, the locus of curves in M va
g with extra-syzygies is closed.

Similarly to [HR], we show that it is actually a divisor. It amounts to proving
that its inverse image on a covering Sva → M va

g is a divisor. We choose a
smooth Sva on which an universal curve exists. From [HR, Proof of Proposition
3.1] and from Remark 6 it follows that the locus of points on Sva corresponding
to curves with extra-syzygies is the degeneracy locus of a morphism of vector
bundles of the same rank. Then this locus is a divisor, since we know it is not
the whole space, cf. [V3, Theorem 4].

Back to M va
g , the computation of [HR] shows that the divisor of curves with

extra-syzygies is equal to a multiple of Dva
k+1 plus, eventually, a multiple of ∆va

0
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(recall that ∆0 is irreducible, and so is ∆va
0 ). The possibility that the whole

∆va
0 be contained in the locus of curves with extra-syzygies is ruled out by the

same result of [V3]. The example of a curve in ∆va
0 with no extra-syzygies given

by Voisin, and used in [AV, Proof of Theorem 1.4], is an irreducible curve with
one node lying on a K3 surface, compare to the proof of Theorem 2 in the next
section. In particular, it follows that a curve in ∆va

0 has extra syzygies if and
only if it belongs to Dva

k+1, which we wanted to prove.

We analyze next further consequences of having extra-syzygies, and show that
this condition yields to the existence of certain suitable sheaves. By means of
Proposition 7, a singular stable curve Y with ωY very ample and with extra-
syzygies lies in an one-dimensional flat family C → T of curves such that Ct0

∼=
Y , and Ct are smooth, and belong to Dk+1 for t �= t0. For safety, let us make
the further assumption that Y has trivial automorphism group, although this
extra-condition might be unnecessary. By shrinking T if needed, we can make
the same hypothesis for the curves Ct. By the compactification theory of the
generalized relative Jacobian, see [Ca] and [P], there exists a family J1−k(C /T ),
flat and proper over T , whose fiber over t �= t0 is just the Jacobian variety of line
bundles of degree k + 1, whereas the fiber over t0 parametrizes gr-equivalence
classes of torsion-free, ωY -semistable sheaves F of rank one on Y with χ(F ) =
1 − k; by definition, a coherent sheaf on Y is torsion-free if it has no non-zero
subsheaf with zero-dimensional support. It follows that the subspace of pairs
{(Ft,Ct) ∈ J1−k(C /T )×T C , h0(Ct,Ft) ≥ 2} is closed in the fibered product,
and, since [Ct] ∈ Dk+1 for all t �= t0, we are lead to the following degenerate
version of the Hirschowitz-Ramanan-Voisin Theorem.

Proposition 8. Let Y be a singular stable curve of genus g = 2k + 1 with very
ample canonical bundle and trivial automorphism group. If Y has extra-syzygies,
then there exists a torsion-free, ωY -semistable sheaf F of rank one on Y with
χ(Y, F ) = 1 − k and h0(Y, F ) ≥ 2.

In several particular cases, this sheaf can be analyzed even further to deduce
the existence of other suitable linear systems on the normalizations of compo-
nents of Y , see the proofs of Theorems 2 and 3, and compare to [HM, Corollary
1, p. 68].

3. Proof of Theorem 2 and consequences

We recall the following result from [A1], which will be used for the Green-
Lazarsfeld conjecture, see also [AV, Theorem 2.1]:

Theorem 9. If L is a nonspecial line bundle on a smooth curve X, which sat-
isfies Kn,1(X, L) = 0, for an integer n ≥ 1, then, for any effective divisor E of
degree e ≥ 1, one has Kn+e,1(X, L + E) = 0.

Proof of Theorem 2. We set some notation. Define k = gX − d + 1 ≥ 1 and
ν = gX − 2d + 2 ≥ 0, so that d = k − ν + 1, gX = 2k − ν, and 0 ≤ n ≤ ν.
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One should ensure firstly that curves satisfying the hypothesis of the theorem
exist. In the case ν = 0, this is automatic, but in the other cases it is less clear.
We assume therefore that ν ≥ 1, condition which is equivalent to d < gX/2 + 1,
and adopt the notation of [AC]. From [AC, Theorem (2.6)], we know that a
general d-gonal curve X has precisely one minimal pencil, and moreover, any
other base-point-free g1

h on X with h < gX/2 + 1 is composed with the given
g1

d. We count now the possible dimensions of the irreducible components of the
varieties G1

d+n(X) parametrizing the g1
d+n’s on a generic d-gonal curve X, and

prove that they cannot exceed n. Since G1
d+n(X) is the canonical blowup of the

W 1
d+n(X) endowed with the determinantal structure, [ACGH, Chapter IV.3], it

would prove our existence claim.
Let S be a smooth variety covering M2k−ν on which there exists an universal

curve C → S, let G 1
d , and G 1

d+n the varieties over S parameterizing pairs of
smooth curves of genus 2k − ν, and pencils of degree d, and respectively d + n,
and let X be an irreducible component of G 1

d ×S G 1
d+n which dominates G 1

d .
Since G 1

d is birational to the locus of d-gonal curves, cf. [AC, Theorem (2.6)] its
dimension equals 2(2k − ν) + 2d− 5. Therefore, we must prove that dim (X ) ≤
2(2k−ν)+2d+n−5, which would ensure that a general fibre Xξ of the projection
X → G 1

d is of dimension at most n.
Let us suppose first that the general element of X corresponds to a smooth d-

gonal curve X with a base-point-free g1
d+n which is not composed with a rational

involution. Since X dominates G 1
d , and minimal pencils on general d-gonal

curves are simple, the hypotheses of [AC, Proposition (2.4)] are fulfilled. Coupled
with [AC, Theorem (2.6)], it implies that either n = 0, and the two g1

d’s for a
generic point in X coincide, in which case the projection from X to G 1

d is
birational, or d + n ≥ (2k − ν)/2 + 1 and then dim (X ) = (2k − ν) + 2d + 2(d +
n) − 7 ≤ 2(2k − ν) + 2d + n − 5.

The other components have the following description. Suppose that there is a
non-empty open subspace U of X whose points correspond to smooth d-gonal
curves together with a g1

d+n having precisely µ base-points, where 0 ≤ µ ≤ n.
Then there is a natural map U → G 1

d ×s G 1
d+n−µ, obtained by erasing the

base points of the corresponding g1
d+n’s. Since U is irreducible, its image is

contained in an irreducible component Y of G 1
d ×S G 1

d+n−µ, whose generic point
corresponds to a d-gonal curve together with a base-point-free g1

d+n−µ (recall
that base-point-freeness is an open condition). The projections on G 1

d commute
with the corestriction U → Y , so that Y dominates G 1

d , too. If one denotes
C (µ) = (C ×S · · · ×S C )/Sµ → S, where the product was taken µ times, the
relative symmetric product, then the induced map U → Y ×S C (µ) defined by
splitting the corresponding g1

d+n’s into their free and fixed parts respectively, is
injective. In particular, dim (X ) ≤ dim (Y )+µ. We prove next that dim (Y ) ≤
2(2k− ν) + 2d +n−µ− 5. If the general element of Y corresponds to a smooth
d-gonal curve X with a base-point-free g1

d+n−µ which is not composed with a
rational involution, this inequality follows directly from what we have said above.
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Let us suppose then that a general point of Y corresponds to a smooth d-gonal
curve together with base-point-free g1

d+n−µ’s which is composed with a rational
involution of given degree γ ≥ 2. Then there exists 0 ≤ m < n such that
d + n − µ = γ(d + m), and there exists also a dominant map Z × G1

γ(P1) → Y

where Z is an irreducible component of G 1
d ×S G 1

d+m whose general member is a
d-gonal curve endowed with a base-point-free g1

d+m which is not composed with
a rational involution. This morphism maps a 4-tuple (X, f, f ′, λ) with f a g1

d

on X, f ′ a g1
d+m on X, and λ a covering P

1 → P
1 of degree γ, to (X, f, λ ◦ f ′).

Again, Z dominates G 1
d , which implies dim (Z ) ≤ 2(2k − ν) + 2d + m− 5, and

furthermore dim (Y ) ≤ 2(2k−ν)+2d+m−5+2γ−2 ≤ 2(2k−ν)+2d+n−µ−5.

We consider next (ν + 1) pairs of distinct points (xi, yi), with 0 ≤ i ≤ ν such
that for any choice of (n + 1) pairs among them, (xij , yij ), with 0 ≤ j ≤ n and
0 ≤ n ≤ ν, there exists no Ln ∈ W 1

d+n(X) such that h0(X, Ln(−xij − yij )) ≥ 1
for all 0 ≤ j ≤ n. The (ν + 1)-tuple of cycles (x0 + y0, . . . , xν + yν) can be
chosen to be generic in the space X(2) × · · · ×X(2). This is allowed by the easy
observation that, for any n, the incidence variety

{(x0 + y0, . . . , xn + yn, Ln), h0(Ln(−xi − yi)) ≥ 1 for all i}
is at most (2n + 1)-dimensional, whereas dim

(
X(2) × · · · × X(2)

)
= 2n + 2.

Indeed, the incidence variety in question is covered by the similar incidence
variety Ξ inside X2n+2 × W 1

d+n(X), and the fibers of the projection map from
Ξ to Xn+1 obtained by erasing the bundle Ln and the y’s are finite covers of
W 1

d+n(X) via the restriction of the canonical projection.

Then we construct an irreducible curve Y obtained by identifying xi to yi for
all i, and denote by pi the corresponding node of Y , and by f : X → Y the
normalization morphism. From the genericity of the cycles xi + yi, the curve
Y can be considered to be free from non-trivial automorphisms and with very
ample canonical bundle, apply [C, Theorem F], [CFHR, Theorem 3.6].

We prove first that Kk,1(Y, ωY ) = 0. Suppose that Kk,1(Y, ωY ) �= 0. From
Proposition 8, we obtain a torsion-free sheaf F of rank one on Y with χ(F ) =
1 − k, and h0(F ) ≥ 2. The sheaf F is either a line bundle, or the direct image
of a line bundle on a partial normalization of Y . Observe that this partial
normalization cannot be X itself. Indeed, if F = f∗L with L a line bundle on
X, then χ(L) = χ(F ) = 1 − k, and h0(L) = h0(F ) ≥ 2, which means that L
is a g1

d−1 on X, contradicting the hypothesis. Let us consider then ϕ : Z → Y
the normalization of the (ν − n) points pn+1, . . . , pν , for some 0 ≤ n ≤ ν.
Let furthermore ψ : X → Z be the normalization of the remaining (n + 1)
points p0, . . . , pn, and suppose F = ϕ∗L, for a line bundle L on Z. Under these
assumptions, we obtain χ(L) = χ(F ) = 1 − k, and so χ(ψ∗L) = 2 − k + n,
which implies that deg(ψ∗L) = d+n. Beside, ψ∗L has at least two independent
sections. Since for any node pi with 0 ≤ i ≤ n there is a non-zero section of F
vanishing at pi, it follows that h0(X, (ψ∗L)(−xi − yi)) ≥ 1 for all 0 ≤ i ≤ n,
which contradicts the choice we made.
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We proved Kk,1(Y, ωY ) = 0. To conclude, we apply [AV, Lemma 2.3] and
Voisin’s Remark [V2, p. 367], and have Kk,1(X, KX) ⊂ Kk,1(X, KX +xi +yi) ⊂
Kk,1(Y, ωY ), for all i. We obtain thence the vanishing of Kk,1(X, KX) and of
Kk,1(X, KX +xi+yi), for all i. The vanishing Kk,1(X, KX) = 0 is the statement
of the Green conjecture for X, the fact that Cliff(X) equals d−2 being implied by
the Green-Lazarsfeld non-vanishing theorem cf. [G, Appendix]. The vanishing
Kk,1(X, KX +xi +yi) = 0 is precisely the one predicted by the Green-Lazarsfeld
conjecture for the bundle KX +xi +yi. Then apply Theorem 9 to conclude that
the Green-Lazarsfeld conjecture is verified for any line bundle of degree at least
3gX on X, compare to [AV, Remark 1].

For small d, one can employ classical results due H. Martens, Mumford and
Keem on the dimensions of the Brill-Noether loci, cf. [ACGH], [HMa], [Mu],
[Ke] to obtain the following.

Corollary 10. Let X be a non-hyperelliptic smooth curve of gonality d ≤ 6, with
d < [gX/2] + 2, and suppose that X is not one of the following: plane curve,
bielliptic, triple cover of an elliptic curve, double cover of a curve of genus three,
hexagonal curve of genus 10 or 11. Then Cliff(X) = d − 2 and X verifies both
Green, and Green-Lazarsfeld conjectures.

Proof. For a trigonal curve X, one has to prove that dim (W 1
n+3(X)) ≤ n for

all 0 ≤ n ≤ gX − 4. This follows from [HMa, Theorem 1], as we know that
dim (W 1

n+3(X)) ≤ n + 1 and the equality is never achieved, since X is non-
hyperelliptic. If d = 4, one has to prove dim (W 1

n+4(X)) ≤ n for all 0 ≤ n ≤
gX − 6. In this case, we apply Mumford’s refinement to the Theorem of H.
Martens, cf. [Mu], which shows that dim (W 1

n+4(X)) ≤ n + 1, and equality
could eventually hold only for trigonal (which we excluded), bielliptic curves or
smooth plane quintics. The other cases d = 5 and d = 6 are similar, and follow
from [Ke, Theorem 2.1], and [Ke, Theorem 3.1], respectively.

Some cases in the Corollary 10 were known before, others are new. For trigo-
nal curves, Green’s conjecture was known to hold from Enriques and Petri, and
the Green-Lazarsfeld conjecture was verified by Ehbauer [Eh]. For tetragonal
curves, we knew that the Green conjecture was valid, cf. [S2], and [V1]. All
the other cases seem to be new. Plane curves, which were excepted from our
statement, also verify the two conjectures, cf. [Lo], and [A1]. Note that in a
number of other cases for which our result does not apply, Green’s conjecture is
nonetheless satisfied, for instance, for hexagonal curves of genus 10 and Clifford
index 3, complete intersections of two cubics in P

3, see [Lo].

For large d we cannot give similar precise results, but we still obtain a number
of examples for which Theorem 2 can be applied. For instance, curves of even
genus which are Brill-Noether-Petri generic satisfy the hypothesis of Theorem 2,
so they verify the two syzygy conjectures. Other cases are obtained by looking at
curves on some surfaces, when the special geometry of the pair (curve, surface)
is used, as in the following.
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Corollary 11. Let X be a smooth curve of genus 2k and maximal Clifford index
k−1, with k ≥ 2 abstractly embedded in a K3 surface. Then X verifies the Green
conjecture.

Proof. Since the Clifford index of X is maximal, and Clifford index is constant
in the linear system of X, cf. [GL2], the gonality is also maximal, and thus
constant for smooth curves in |X|. Then the hypotheses of [CP, Lemma 3.2
(b)] are verified, which implies that a general smooth curve in the linear system
|X| has only finitely many pencils of degree k + 1. From Theorem 2 it follows
that the Green conjecture is verified for a general smooth curve C ∈ |X|, that is
Kk,1(C, KC) = 0. By applying Green’s hyperplane section theorem [G, Theorem
(3.b.7)] twice, we obtain Kk,1(X, KX) = 0, which means that X satisfies Green’s
conjecture, too.

Note that Corollary 11 does not apply to the particular curves considered by
Voisin in [V2], [V3], as they are implicitly used in the proof.

In view of Theorem 2 and [HMa, Statement (T)], it seems that understanding
the geometry of curves which carry infinitely many minimal pencils plays a
crucial role in the quest for a complete solution to the two conjectures. The
problem of studying these curves has already been raised by Eisenbud, Lange,
G. Martens and Schreyer, [ELMS, Remark 3.8]. For the beginning, it would be
interesting to know whether the locus of smooth curves of even genus 2k with
maximal Clifford index and infinitely many g1

k+1’s is non-empty.

4. Proof of Theorem 3

Proof of Theorem 3. We start by noting that dim (W 1
k+1(X)) = 1, see [FHL],

[ACGH, Lemma IV.(3.3) p. 181 and Ex. VII.C-2, p. 329]. Then one can find
three distinct points x, y and z of X which do not belong at the same time to
a pencil of degree k + 1. As in the previous proof, the cycle x + y + z can be
generically chosen in X(3), since in our case the incidence variety {(x+y+z, L) ∈
X(3) ×W 1

k+1(X), h0(L(−x− y − z)) ≥ 1} is two-dimensional, so that the image
of its projection to X(3) is a surface.

For these three points, we shall prove that Kk,1(X, KX + x + y + z) = 0,
which will imply, by means of Theorem 9, that the Green-Lazarsfeld conjecture
is verified for any line bundle of degree at least 3gX + 1 on X, compare to [A2,
Remark 2.6].

We suppose to the contrary that Kk,1(X, KX + x + y + z) �= 0, and shall
reach a contradiction. For this aim, we adapt the arguments already used in
the proof of Theorem 2 to this new situation. We introduce a curve Y with
two irreducible components: the first one is X, and the second one is a smooth
rational curve E which passes through the points x, y and z. Then Y is a stable
curve of arithmetic genus g = 2k+1, and Kk,1(Y, ωY ) ∼= Kk,1(X, KX +x+y+z),
compare to [A2, Proof of Lemma 2.4]. As before, from the genericity of the cycle
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x + y + z, we can suppose Y free from non-trivial automorphisms and with very
ample canonical bundle, cf. [C, Theorem F], [CFHR, Theorem 3.6].

From Proposition 8, we obtain a torsion-free, ωY -semistable sheaf F of rank
one on Y with χ(F ) = 1− k and h0(Y, F ) ≥ 2. We show that F yields either to
a pencil of degree k + 1 on X which passes through x, y, and z or to a pencil of
degree at most k. Let FE , and FX be the torsion-free parts of the restrictions
of F to E and X, respectively. It is well-known that there is a natural injection
F → FE ⊕FX whose cokernel is supported at the points among x, y and z where
F is invertible. We distinguish now four cases according to the number of nodes
where F is invertible.

(i) F is invertible at all three x, y, and z.
In this case, F|E = FE , F|X = FX , and we have two exact sequences

0 → FE(−3) → F → FX → 0,

and, respectively,

0 → FX(−x − y − z) → F → FE → 0.

The subsheaves FE(−3) and FX(−x − y − z) are of multiranks (1, 0) and,
respectively (0, 1), and, since deg(ωY |E) = 1, and deg(ωY |X) = 2gX + 1, their
ωY -slopes are equal to

µ(FE(−3)) = χ(FE(−3)) = deg(FE) − 2,

and, respectively,

µ(FX(−x − y − z)) =
χ(FX(−x − y − z))

2gX + 1
=

deg(FX) − 2 − gX

2gX + 1
,

see, for example [P, Definition 1.1]. The ωY -slope of F equals

µ(F ) =
1 − k

2gX + 2
.

From the ωY -semistability of F , we obtain deg(FE) − 2 ≤ µ(F ) < 0, which
implies deg(FE) ≤ 1, and also (deg(FX)−1−2k)/(4k−1) ≤ (1−k)/(4k), which
shows that deg(FX) ≤ k + 2.

The first exact sequence implies χ(FX) = χ(F )−χ(FE(−3)) = 3−k−deg(FE),
so deg(FX) = k + 1 − deg(FE).

Let us suppose deg(FX) = k + 2, which implies FE
∼= OE(−1). Then any

global section of F vanishes along E, and thus it vanishes at all the three points
x, y, and z. Since F has at least two sections, the sublinear system H0(F ) ⊂
H0(FX) on X has x, y, and z as base-points, in particular h0(FX(−x−y−z)) ≥ 2.
Then X would carry a g1

k−1, fact which contradicts the hypothesis.
Supposing now deg(FX) ≤ k + 1, from the first exact sequence we obtain

h0(X, FX) ≥ h0(Y, F ) ≥ 2, and since X does not carry a g1
k, it follows that

FE = OE , and FX is a base-point-free g1
k+1 on X. Let σ be a non-zero global

section of FX which vanishes at x; such a σ exists as h0(X, FX) = 2. Then σ is
the restriction of global section σ0 of F , as the restriction morphism on global
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sections is in this case an isomorphism. Since FE = OE , the restriction of σ0 to
E is a constant function. But σ0 vanishes at x, so it vanishes on the whole E.
In particular, σ0 vanishes at y and z, and thus σ vanishes at y and z as well.
This is a contradiction, as we supposed that there was no such a σ.

(ii) F is invertible at y, and z, and is not invertible at x.

Let f : Z → Y be the normalization of the point x. Then F is the direct
image of a line bundle L on Z. Observe that χ(Z, L) = χ(Y, F ) = 1 − k, and
h0(Z, L) = h0(Y, F ) ≥ 2. We consider the exact sequences

0 → FE(−2) → L → FX → 0,

and, respectively,
0 → FX(−y − z) → L → FE → 0,

push them forward on Y , and argue as before. Since χ(FE(−2)) = χ(f∗(FE(−2)))
(and the same for the other sheaf), we deduce, via the semistability of F , that
deg(FE) ≤ 0, and deg(FX) ≤ k + 1. The relation between the degrees of FE

and FX is now deg(FX) = k − deg(FE). Since FE can not be trivial (this
would imply that FX is a g1

k), this shows that FE can only be equal to OE(−1),
and FX is a g1

k+1. Then any global section of L will be identically zero on
E, so it will vanish at y and z. By the assumption on the gonality we obtain
h0(Z, L) = h0(X, FX) = 2, which implies that any non-zero global section of FX

vanishes at y, and z, so y and z are base points of the linear system |FX |. Then
FX(−y − z) is a g1

k−1 on X, which contradicts the hypothesis.

(iii) F is invertible at x, and is not invertible at y and z.

Is similar to the previous case. Let f : Z → Y be the normalization of the
points y and z. Then F is the direct image of a line bundle L on Z with
χ(L) = χ(F ) = 1 − k, and h0(Z, L) = h0(Y, F ) ≥ 2. We consider the exact
sequences

0 → FE(−1) → L → FX → 0,

and, respectively,
0 → FX(−x) → L → FE → 0,

and prove that deg(FE) ≤ −1, and deg(FX) ≤ k. Then FX is a g1
k on X,

contradiction.

(iv) F ∼= FE ⊕ FX .

In this case, since F is semistable, on the one hand, we have χ(FE) ≤ χ(F )/(4k),
and χ(FX) ≤ χ(F )(4k−1)/(4k), and on the other hand χ(FE)+χ(FX) = χ(F ).
This implies that the two inequalities above must be equalities, which is actually
impossible, since (1 − k)/(4k) is not an integer if k ≥ 2.

Remark 12. Stable curves with one smooth rational irreducible component
have already been used in connection with the Green conjecture, cf. [Ei, Proof
of Theorem 4], but with a somewhat different purpose.
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