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DIMENSION VIA WAITING TIME AND RECURRENCE

STEFANO GALATOLO

ABSTRACT. Quantitative recurrence indicators are defined by measuring the first
entrance time of the orbit of a point x in a decreasing sequence of neighborhoods
of another point y. It is proved that these recurrence indicators are a.e. greater
or equal to the local dimension at y. Moreover, the estimation is sharph if some
mild assumptions on the statistic of return times are satisfied. These recurrence
indicators can hence be used to have an efficient numerical estimation of the local
dimension of an invariant measure.

1. Introduction

The first well known results about recurrence in a dynamical system (X, T")
state that under suitable assumptions a typical trajectory of the system comes
back infinitely many times in any neighborhood of its starting point. These
qualitative results does not give an estimation about the speed of this coming
back to the starting point.

A more precise analysis of recurrence was done by defining quantitative recur-
rence indicators. In the literature such indicators have been defined in several
ways by measuring the first return time of an orbit in a decreasing sequence
of neighborhoods of the starting point. These sequences of neighborhoods have
been defined by the metric of the space X, considering a decreasing sequence of
balls ([Bo],[BS]) or with respect to the symbolic dynamics induced by a parti-
tion, considering a decreasing sequence of cylinders ¢ on the associated symbolic
space ([OW]). Other definitions consider the forward images of the whole cylin-
der ¢, and consider as a first return for the cylinder the minimum n such that
T™(ck) Nex # 0 ([HSV],[ACS2],[STV],[BGI],[CD]). In the above cited papers
many relations have been then proved between these indicators and other im-
portant features of dynamics (for example dimension, entropy, orbit complexity,
Lyapunov exponents, mixing properties).

Barreira and Saussol in [BS] prove some relations between quantitative re-
currence and the local dimension of an invariant measure. If some technical
assumptions are satisfied their recurrence indicator is indeed a.e. equal to the
dimension of the invariant measure. Their assumptions are satisfied for example
in C'® systems, with an equilibrum measure supported on a locally maximal
hyperbolic set.
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In computer simulations or experimental situations, the quantitative recur-
rence indicators can be easily estimated by looking to the behavior of a ”typical,
random” orbit and to its first entrance time in a sequence of balls centered in
the starting point. By the above results this can give in principle an efficient
an efficient numerical estimation of the pointwise dimension of the underlying
invariant measure, which is not easy to be known in general. In general systems
(where the additional assumptions are not satisfied) however the Barreira and
Saussol recurrence indicator gives only a lower bound on the dimension and
indeed there are examples were the estimation is not sharph.

We remark that an efficient estimation of the local dimension is important to
compute the multifractal spectra that are more and more used in the scientific
literature. In the physical literature the recurrence time was already used to
investigate some system where the usual box counting tecniques are not efficient
(see [HJ] and the references therein for some examples of computations of local
dimension on the Lorenz and Rayleigh-Benard systems). The use of recurrence
time however was made on an euristic basis. As we said before there are systems
such that the connection between Poincare recurrence and dimension fails. In
the present paper we want to provide some rigorous results that can be useful
to support an efficient tecnique to calculate local dimension by recurrence and
its generalization, the waiting times.

A natural generalization of the quantitative recurrence indicators can be de-
fined by measuring how fast the orbit of a point x approaches near to another
point y. In the literature about finite alphabet stochastic processes and symbolic
systems, indicators of this type were called waiting times. Relations between
waiting time and entropy similar the Oerstein Weiss theorem ([OW]) have been
proved ([Sh]). Such relations hold for Markov chains and in a weaker version
in weak Bernoulli processes. Other results relating waiting time with dimension
and entropy in the case of finite type shifts with a Gibbs measure or expanding
rational maps on the Riemann sphere were given by [Ch] and [HV]. A recent
work ([KS]) calculates the waiting time for irrational translations on the circle.

In this work we consider general systems acting on a metric space and we
consider a waiting time indicator measuring how much time is needed for the
orbit of a point = to enter in a ball centered in y. Then we prove some result
relating this general indicator to the local dimension (of a measure defined on
the space were the dynamics acts).

In [BGI] and [DG] a quantitative recurrence argument of this kind was used
to estimate the initial condition sensitivity and the orbit complexity of interval
exchange transformations and of the Casati-Prosen map (a map arising from
poligonal billiards) !. In the present work this argument is presented in a general
setting. The results we present give an upper bound to the local dimension of

Tn these maps a main source of initial conditions sensitivity is given by the fact that nearby
starting orbits can be separated by the discontinuities of the map. For this reason the initial
condition sensitivity is estimated when we estimate how fast we go near to the discontinuity
points.
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the measure at each point y € X via the waiting time indicator (Thm, 4). This
is done in several ways giving also weaker results which holds even if the measure
 is not invariant (Thm. 10,11).

Moreover, if the measure is ergodic and a further tecnical assumption on the
statistics of return times is verified the lower waiting time indicator is a.e. equal
to the lower local dimension d,(z) proving that in this case the bound is sharp
(Thm. 6). As a partial converse, the bound on the upper dimension can be not
sharph in general, as remark 8 shows.

These waiting time indicators are also easy to be estimated numerically by
looking to the behavior of a ”typical” orbit, measuring its first entrance time in
a decreasing sequence of balls centered in y. These results and the ones given in
[BS] can be combined togheter to have upper and lower bounds on the (upper
and lower) local dimension of general systems, thus having a new numerical
method to estimate the local dimension in dynamical sytems. One last remark
is that most of the following results also hold in systems with an infinite invariant
measure.

2. Main Results

In the following we will consider a discrete time dynamical system (X, T') were
X is a separable metric space equipped with a Borel locally finite measure p and
T : X — X is a measurable map (we remark that we do not assume p(X) = 1).

Let us consider the first entrance time of the orbit of = in the ball B(y,r)
with center y and radius r

Tr(x,y) = min({n € N,n > 0,7"(x) € B(y,7)}).

By this let us define the quantitative waiting time indicators

r—o  —log(r) n—00 n

r—0 —l09(7"> n—oo n
If for some r 7,.(z,y) is infinite then R(x,y) and R(x,y) are set to be equal to
infinity. The indicators R(x) and R(z) of quantitative recurrence defined in [BS]
are obtained as a special case, R(z) = R(z, ), R(z) = R(z, ).
We state some first properties of R(x,y). The proof follows directly from the
definitions.

Proposition 1. R(z,y) satisfies the following properties
* R(z,y) = R(T(x),y), R(z,y) = R(T(x),y).

o If T is Lipschitz, then R(x,y) > R(z,T(y)), R(x,y) > R(z, T(y)).
o IfT is a — Hoelder, then R(z,y) > aR(z,T(y)), R(x,y) > aR(x,T(y)).
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Now we are interested to prove relations with dimension. If X is a metric
space and p is a measure on X the upper local dimension at x € X is defined as

_ L log(p(B(z,r))) . —log(p(B(z,27%)))
WO TS T g ek

the lower local dimension d,,(r) is defined in an analogous way by replacing
limsup with liminf.

In general (even in examples which are interesting in dynamical system the-
ory) d,,(x) and d,(z) can differ on a positive measure set. If d,(z) = d,,(z) = d
almost everywhere the system is called exact dimensional. In this case many
notions of dimension of a measure will coincide (see for example the book [P])
and then we have a precise description of the fractal structure of the system.
For these and other reasons is important to have estimations for both d, (x) and

d,,(r). With the above notations, Theorem 1 of [BS] can be rewritten as follows

Theorem 2. If (X, T, u) is a measure preserving transformation, u(X) =1, X
is a measurable subset of R™ then for almost each x € X

R(z,z) < dy(z) , R(z,z) <d,(2).

For an equilibrium measure supported on a locally maximal hyperbolic set
of a C**% diffeomorphisms [BS] also proved that recurrence and dimension are
a.e. equal. The equality also holds in some nonuniformly hyperbolic example,
however it is not difficult to see ([BS] example 3) that there are uniquely ergodic
irrational rotations (S*,z — x + a(mod 1)) such that R(z,z) < d,,(x) for each
x € S*. In such systems and in general systems R(z,z) then gives only a lower
bound for the dimension.

We will see how it is possible to obtain a general upper bound for the dimen-
sion in term of R(z,y). In [BGI] is indeed proved

Lemma 3. Let (X,T) be as at the beginning of this section, p is an invariant
measure, and y € X. If a > du(y)_1 then for p-almost all x € X it holds

lim inf n® min d(y, T'z) = oco.
n— oo i<n

Here we reformulate and extend this fact in the following way
Theorem 4. If (X,T) is as above, for each fized y
(1) R(z,y) > d,(y) , R(z,y) > d,(y)
holds for v almost each x.

Proof. First we prove R(x,y) > d,(y). We remark that if « > 0 and (n +
1)~ <r < (n)~?, since 7,(z,y) is decreasing in r then

log(tn-(x,y)) _ log(r(z,y)) _ L0g(Tn+1)-=(2,Y))
—log((n+1)=2) = —log(r) —  —log(n=®)
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log(7,—a (z,y))

log(r,(x.y)) _ EHCE
e

o9 (1) . Now Lemma

by this we can see that limin f
r—0

limin f
neN,n—oo

3 implies that if n is big enough 7,-«(z,y) > n for each a > m. Then
=
liminf % > é Since « can be chosen as near as we want to 7 1(y)
“n

neN,n—oo
we have the statement.

Now we prove R(z,y) > d,(y). Suppose d’ < d,,(y), let us consider
A(d',y) = {z € X[R(z,y) < d'}.

By the assumption on the dimension at y, if 0 < d’ < d < d,,(y) then there is a
sequence ny such that

(2) w(B(y,27™)) < 279 for each k.

On the other side for each 2 € A(d', y) the relation 7o—n (z;,3) < 2% must hold
eventually. Let us consider C(m) = {z € A(d',y)|¥n > m,mo-n(z,y) < 297}
This is an increasing sequence of sets “converging” to A. If we prove that
liminf pu(C(m)) = 0 the statement is proved. By the definition of C'(m) we see

m—0o0

that
Clu) €U T(B(y,27™)
i<2d'ngk

the latter is made of 2% sets, whose measure can be estimated by Eq. 2,
because T' is measure preserving. Then p(C(ny)) < 297 279 and p(C/(ng))
goes to 0 as k — oco. O

We remark that the above results give an upper bound of the local dimension
at each y € X, while the Poincare recurrence based methods works for y—almost
each x. This gives the possibility in investigate non typical points. Another
interesting possibility given by the use of waiting times for numerical purposes is
that for the estimation of the dimension at a certain y one can use different initial
points xg, z1, ... and improve the convergence speed of the dimension estimator
by performing some average of the result over such different initial points (a
numerical investigation on this line will appear in [CG]).

In the next result we see that under certain hypotesys one of the above in-
equalities can be reversed.

Definition 5. Let us consider the set

A(y,r) = {z € Bly,r) : 7(2,9) < lu(B(y,r)) '}
We say that the system has a reasonable return time statistic at y if there is an

I > 0 such that liTjéLp % <L

The return time statistic is an important and widely studied feature of dy-
namics. We say that the return time statistics of (X,7T") converges to f at the
point y if

i n({z € By, r), 7(2,9) = wmiy D

r—0 w(B(y;r))

= f(®).
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If f(t) = e we say that the system has an exponential return time statistic
at y (see for example [BSTV] and the references therein for other papers on
the subject). If a system has exp. ret. time statistic at some point it has
also reasonable return time statistic, moreover this also happen if the statistic
converges to any nontrivial f. Exponential return time statistic can be found
in some systems with uniformly hyperbolic behavior but also in nonuniformly
hyperbolic systems like maps on the interval with an indifferent fixed point,
complex quadratic maps or in maps of the interval with no dense critical orbits
([BSTV]).

Theorem 6. If (X, T, u) is ergodic, the measure is finite, nonatomic and it has
a reasonable return time statistic at y, then for almost each x

(3) R(z,y) =d,(y).

Proof. R(z,y) > d,(y) is already proved in Thm. 4. Now we prove R(z,y) <
d,,(y). Let us consider the set

C =B(y,r)— A ={x € B(y,r),7(x,y) > lu(B(y, 7)) "'}

and the sets T~1(C), T~2(C), ..., T~ tuBur) ") (). All these sets are dis-
joint because if there was z € T—*(C)NT~7(C) with i,5 < I int(u(B(y,r))™1)
then 7,(T™"(9)(z),y) < |i — j| and by definition of C', T™"(%3) () cannot be
contained in C, leading to a contraddition. The set U, = T-1(C) U T—2(C) U
LU Tl int((Bur) ™) (C) is then such that u(U,) > 1 int(u(B(y,r)) 1) u(C).
If y has a reasonable statistic of return times then there is a ¢ > 0 s.t. p(C) >

cp(B(y,r)) for each n then p(U,) > ¢ mjég((]j%’)r_));l) >cd > 0.

If d,(y) = d then for each § > 0 there is a sequence r, — 0 such that
w(B(y,mn)) > rp@°. Since u(U,, ) > ¢’ > 0 we remark that the set of points

G = {z s.t. x is contained in U, for infinitely many n}

has positive measure.

Finally we remark that if a point x is contained in U, for some n then
Ti(z) € B(y,ry) for i <1 int(u(B(y,r)))"" and u(B(y,rn)) > r,%°. Since §
—log(7r, (z,y))

log(rn)
R(x,y) < d. This is true for x belonging in a positive measure set G, since p is

ergodic, then by proposition 1 we have the statement.O

is small as wanted and < d + 9 is true for infinitely many n then

Remark 7. With similar tecniques it is possible to prove that if
A

(4) liminf Ay, 7))

r—0" u(B(y,7))

then R(z,y) < d,(y) then having a lower bound on the dimension even with a
constderably weaker assumption on the return time statistic.

<1

In general one cannot expect stronger results like B(z,y) = d,(y). This is
W oa.e.

shown in the following examples.
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Remark 8. Let us consider a periodic rotation (S',x — z + a, \) with a € Q
and X is the Lesbeque measure, here R(x,y) = R(z,y) = oo for each y that is
not contained in the orbit of x (that is a finite set) while X has dimension 1.
This example is in some sense trivial because the system is not ergodic.

A less trivial example is in a certain sense a small perturbation of this latter
one. An irrational « is said to be of type v if

v = sup{B| liminf j°(min |ja —n| = 0)}.
n— 00 neN

Lesbegue almost each irrational is of type 1, but there are irrationals with type
> 1. From the main result of [KS| it can be deduced (with some techical work)
that an irrational rotation with angle o of type v > 1 satisfies R(x,y) = v > 1
for almost each x,y (while R(z,y) <1 a.e.).

In the previous results the invariance of the measure was an important in-
gredient. The following results (where z is fixed and y varies) are more general,
they do not require the invariance of u.

Remark 9. If the measure p is not invariant inequality 1 can fail on a positive
measure set at some point y. For example let us consider a system (X, T), where
the map T sends all the space X in a point y (Yo, T(x) = y) with d,(y) > 0.
Here R(z,y) < d,(y). We remark that in this ezample the inequality fails only
at one point (y). Next results shows that even when the measure is not preserved
the inequality can fail only on a zero measure set (if we fix x and let y vary).

Theorem 10. For each x € X
R(z,y) > du(y) , R(z,y)>d,(y)
for u almost each y.
Theorem 11. For each x € X the set Y, C X such that
Y, ={y € X,R(z,y) < h}
has Hausdorff dimension < h.

We remark that since obviously R(z,y) > R(z,y) then the above result holds
also with R(x,y) instead of R(x,y).

3. Proof of Theorems 10 and 11

Theorems 10 and 11 come from the following more general results. Let us
consider a sequence x; : N — X, we define recurrence indicators indicating how
the sequence comes near some given points. For this let us consider y € X, and
the first entrance time of x; in a ball with center y

(25, y,7) = min{n € N,n > 0,z,, € B(y,r)}.

Let us define the quantitative recurrence indicators
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R ! ERCA) . l i 72—?7,
Ftery) <limsup ‘9T E ) o log(7(2iy,27))

r—0 —lOg(T) n—oo n
! irYs o iy, 27
Rlzi,y) =timing 9T@VT) ¢ log(rl@iy, 277)).
r—0"  —log(r) i "

Theorem 11 comes from the following proposition

Proposition 12. For each sequence x; the set Y, C X such that Yy = {y €
X, R(z;,y) < h} has Hausdorff dimension < h.

Proof. We have that Vy € Y}, mkz'nlim w < h. This means that
— 00

Ve > 0,Vy € Y}, and Vkg € N there is k > kg and an index j with j < 2(h+ek
with y € B(z;,27%).
Let us call S the union of all the balls B(z;,27%) for all index j such

that j < 2(P+9% that is, S, = (LA . B(z,27%). For each kg it then holds
j<2(hte
Y Ckyk Se k- By this Y}, (and each S¢ i, k > ko) is covered by a family of balls
Fatly0)

of diameter less than 2750 and we can estimate the d—dimensional Hausdorff
measure of S¢ j
Hg_k+1(56 k) < o(h+e)k+1g(—k+1)d _ gk(h+e—d)+1+d

and
Hg—ko (Yh) < Z 9ltdgk(h+e—d)
k<ko

if d > h+e€ we can set kg so big that Hg,ko (Yy,) < 9 for each fixed § and Y}, is cov-
ered by balls of arbitrary small size. This proves H%(Y3,) :klim H_ . (Xp) =0
0—00

2~ ko

for each d > h + €. Since € is arbitrary the statement follows. O

Remark 13. By [BS] (example 3) we have that if a is of type > 1 (see remark
8) then R(x,x) < 1. By theorem 11 the set of other points y such that R(x,y) =
d < 1 is very small, indeed it must have dimension less or equal than d.

Theorem 10 comes from
Proposition 14. For pu almost each y € X
R(zi,y) > du(y) , R(zi,y) > d,(y).
The proof of proposition 14 is based on the following lemmas
Lemma 15. Let A= {y € X,d,(y) > d}. If h <d and
Y, ={y € A, s.t. R(x;,y) < h}
then u(Yy) = 0.
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Proof. Let us consider 0 < ¢ < |h — d| and
Yhn = {y € As.t.VYm > nT(xi,y,Q*m) < 2(h+5)m}'

We have that ¥, € U Y and Y* C Y;""'. If we prove that u(Y;*) = 0

n>ngo
eventually with respect to n the assertion is proved.

If y € V)" then Vm > n3i,s.t. y € B(x;,27™) where i < 2m(h+e) in other
words if we consider the set B™ of all ball of radius 2™ with centers x; with
i < 27(e) (that is B™ = {B(x;,27™) s.t.i < 2(m+9)1) we have that VYm >
n,YC U B

peB™

For each y € A we have that d(y) =limsup —logu(Bw.2 1))+ g this implies

n
n— 00

that Vy € A there exist an infinite sequence B(y,27"*) of balls centered in y
with radius 27" such that u(B(y,27 ")) < 27 . Let us call this family of
balls y—estimated balls.

Now let us consider the balls in B™ for which we have an estimation about
their measure: we say that a ball in § € B™ is “nice” if there exist an y such that
(3 is contained in some y-estimated ball of radius 27 "*! found above (we recall
that all the balls in B” have radius 2~"), thus if § is nice then p(3) < 2=,
Every y € Y} has a sequence of y—estimated balls, let us consider one of these
balls B(y,27%*1): y is also contained in a ball 3 € B¥ then 8’ C B(y,27%+!).
This implies that Vj > n each point of Y," is contained in some “nice” ball with
radius not greater than 277 that is: V;* C | U (. Now we can

m>n gGe{niceballs € Bm}
estimate the total measure of the nice balls: we remark that the number of nice
balls with radius 2™ is not greater than 2("+)+1 and the measure of a nice
ball is not greater than the measure of the corresponding y— estimated ball.
This implies that Vj > n

N(Y}?) SZ 2m(h+e)+12—(m—1)d
m2j
if n is big enough the sum can be set as small as wanted, then p(Y;*) =0 O

Lemma 16. Let d,c,6 > 0, let B = {y € X,d,(y) >d+c}. IfA={y ¢
B s.it. R(xz;,y) < d— 0}, then p(A) = 0.

Proof. Conversely let us suppose that j(A) > 0. Since Vo € A, d,(z) > d+c
then = € A, implies that if m is big enough (depending on x)

(5) p(B(r,27m)) < 27 mEHe)

then there is an m > 0 and a set A” C A with p(A’) > 0 such that if z € A’
vm >m p(B(z,27™)) < 27™@+3) yniformly on all A’.

By the definition of A’ for each k > T, each y € A’ is contained in some ball
B(z,27%) with j > k and j < 24.
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Now the measure of these balls can be estimated as before using Eq. 5 and
then the total measure of A’ can be estimated as in the previous proof, concluding
that p(A) = 0. O

Proof of proposition 14. If conversely R(z;,vy) < d(y) on a set A’ with u(A’) > 0
we can find a constant ¢ and a set A”, u(A”) > 0 such that R(z;,y) < ¢ < d(y)
on A", by lemma 16 we obtain pu(A”) = 0. Similarly the other inequality can be
obtained O

References

[ACS2] V. Afraimovich, J. R. Chazottes, B. Saussol, Pointwise dimensions for Poincaré
recurrences associated with maps and special flows, Disc. Cont. Dyn. Syst. - A 9
(2003), 263-280

[BS] L. Barreira, B. Saussol, Hausdorff dimension of measures via Poincaré recurrence,
Commun. Math. Phys., 219 (2001), 443-463.

[BGI] C. Bonanno, S. Isola, S. Galatolo Recurrence and algorithmic information Nonlin-
carity 17 (2004), 1057-1074.

[Bo] M. D. Boshernitzan, Quantitative recurrence results, Invent. Math. 113 (1993),
617-631

[BSTV] H. Bruin, B. Saussol, S. Troubetzkoy, S. Vaienti Return time statistics via inducing.
Ergodic Theory Dynam. Systems 23 (2003), 991-1013.

[CG] T. Carletti, S. Galatolo Numerical estimation of local dimension by Waiting times
Work in preparation.

[CD] J. R. Chazottes, F. DurandLocal rates of Poincar recurrence for rotations and weak
mixing, to appear in Disc. Cont. Dyn. Sys. A (2003).

[Ch] J. R. ChazottesDimensions and waiting times for Gibbs measures. J. Statist. Phys.
98 (2000), 305-320.

[KS] D. H. Kim, B. K. Seo The waiting time for irrational rotations, Nonlinearity 16,
Sept. 2003

[DG] M. D. Esposti, S. Galatolo, Recurrence near given sets and the complexity of the
Casati-Prosen map Chaos Solitons Fractals 23 (2005), 1275-1284.

[HJ] T. Halsey, M. Jensen Hurricanes and Butterflies Nature, 428 (2004), 127-128.

[HV] R. Hill, S. Velani, The ergodic theory of shrinking targets. Invent. Math. 119 (1995)
175-198.

[HSV] M. Hirata, B. Saussol, S. Vaienti, Statistics of return times: a general framework
and new applications, Commun. Math. Phys. 206 (1999), 33-55

[OW] D. S. Ornstein, H. Weiss, Entropy and data compression schemes, IEEE Trans. Inf.
Th. 39 (1993), 78-83

[P] Y. Pesin Dimension theory in dynamical systems Chicago lectures in Mathematics
(1997).

[STV] B. Saussol, S. Troubetzkoy, S. Vaienti, Recurrence, dimensions and Lyapunov ex-
ponents, J. Stat. Phys. 106 (2002), 623-634

[Sh] P. C. Shields Waiting times: positive and negative results on the Wyner-Ziv problem.

J. Theoret. Probab. 6 (1993), 499-519.

DIPARTIMENTO MATEMATICA APPLICATA, UNIVERSITA DI PisA, ITALY
E-mail address: galatolo@dm.unipi.it
E-mail address: d802880@ing.unipi.it



