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EULER CHARACTERISTICS OF ARITHMETIC GROUPS

I. Horozov

Abstract. We have developed a general method for computing the homological
Euler characteristic of finite index subgroups Γ of GLm(OK) where OK is the ring
of integers in a number field K. With this method we find, that for large, explic-
itly computed dimensions m, the homological Euler characteristic of finite index
subgroups of GLm(OK) vanishes. For other cases, some of them very important
for spaces of motivic multiple polylogarithms at n-th root of unity, we compute
non-zero homological Euler characteristic. Finally, our method allows us to obtain
a formula for the Dedekind zeta function at −1 in terms of the ideal class set and
the multiplicative group of quadratic extensions of the base ring.

0. Introduction

The homological Euler characteristic of a group Γ with coefficients in a rep-
resentation V is defined by

χh(Γ, V ) =
∑

i

(−1)i dimHi(Γ, V )

(see [S], [B1]). The main result of our paper is a general method that allows us
to calculate χh(Γ, V ). Toward the end of the introduction we describe briefly
this method. Before that we list the most important results of the paper which
demonstrate the scope of the method. Our first result is about vanishing of
homological Euler characteristics.

Theorem 0.1. Let Γ be a subgroup of GLm(K), commensurable to GLm(OK),
where OK is the ring of integers in a number field K. Let V be a finite dimen-
sional representation of Γ. Then χh(Γ, V ) = 0 if

(a) K = Q if m > 10

(b) K = Q(
√−d), where −d is the discriminant,

if d = 4 and m > 4
if d = 3 and m > 6
for the other d’s and m > 2

(c) for the remaining number fields K.

We obtain a similar result for SLm in place of GLm.
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Theorem 0.2. Let Γ be a subgroup of SLm(K), commensurable to SLm(OK),
where m ≥ 2 and OK is the ring of integers in a number field K. Let V be a
finite dimensional representation of Γ. Then χh(Γ, V ) = 0 if

(a) K = Q if m > 10

(b) K = Q(
√−d),

if d = 4 and m > 3,
if d = 3 and m > 5,
for the other d’s ,

(c) K is a totally real field and m > 2,

(d) for the remaining number fields K.

For Spm we have similar result.

Theorem 0.3. Let Γ be a subgroup of Spm(K), commensurable to Spm(OK),
OK is the ring of integers in a number field K. Let V be a finite dimensional
representation of Γ. Then χh(Γ, V ) = 0 if

(a) K = Q(i) if m > 1,

(b) K = Q(ξ3) if m > 2,

(c) K is different from the above two and not a totally real field.

We also compute the homological Euler characteristic of the arithmetic
subgroups Γ1(3, N) and Γ1(4, N) of GL3(Z) and GL4(Z), respectively, where
Γ1(m, N) is the subgroup of GLm(Z) that fixes the vector [0, . . . , 0, 1] mod N .

Theorem 0.4. The homological Euler characteristic of Γ1(3, N) and of Γ1(4, N)
for N not divisible by 2 and 3 is given by

χh(Γ1(3, N), Q) = − 1
12

ϕ2(N) +
1
2
ϕ(N),

χh(Γ1(4, N), Q) = ϕ(N),
where ϕ(N) is the Euler ϕ-function, and ϕ2(N) is the multiplicative arithmetic
function generated by ϕ2(pa) = p2a(1 − 1

p2 ) for a ≥ 1.

Using our method we also compute χh(GLm(Z), SnVm) for m = 3 and m = 4,
where SnVm is the n-th symmetric power of the standard m dimensional rep-
resentation of GLm(Z). The computation of χh(GL3(Z), SnV3) (see theorems
3.1 and 3.2) agrees with the computation of the Hi(GL3(Z), SnV3) in [G1],
which was used for computation of dimensions of spaces of certain motivic mul-
tiple polylogarithms. Also the homological Euler characteristic of Γ1(3, N) with
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trivial coefficients when N is an odd prime, greater that 3, agrees with the com-
putation of Hi

inf (Γ1(3, N), Q) in the corrected version of [G1]. We compute the
homological Euler characteristic of GL2(Z[i]) and GL2(Z[ξ3]) with coefficients
in the symmetric powers of the standard representations. Also we compute
the homological Euler characteristic of Γ1(2, a) for an ideal a in Z[i] and Z[ξ3],
respectively.

Theorem 0.5. (a) If 1+i does not divide a the homological Euler characteristic
of Γ1(2, a) ⊂ GL2(Z[i]) is given by

χh(Γ1(2, a), Q) =
1
2
ϕZ[i](a),

where ϕZ[i](a) is the multiplicative function defined on the ideals of Z[i], generated
by

ϕZ[i](pn) = NQ(i)/Q(p)n(1 − 1
NQ(i)/Q(p)

).

(b) If 1+ξ6 does not divide a the homological Euler characteristic of Γ1(2, a) ⊂
GL2(Z[ξ3]) is given by

χh(Γ1(2, a), Q) =
1
3
ϕZ[ξ3](a),

where ϕZ[ξ3](a) is the multiplicative function defined on the ideals of Z[ξ3], gen-
erated by

ϕZ[ξ3](p
n) = NQ(ξ3)/Q(p)n(1 − 1

NQ(ξ3)/Q(p)
).

In general the method works for any arithmetic subgroup of GLm(OK), where
OK is the ring of integers in a number field K.

Our approach is the following: we generalize a result of K. Brown [B2] that
relates the torsion elements in the group up to conjugation to the homological
Euler characteristic of the group. Namely,

χh(Γ, V ) =
∑
T

χ(C(T ))Tr(T−1|V ),

where the sum is over all torsion elements T of Γ up to conjugation and C(T )
is the centralizer of T in Γ. Let us recall the definition of orbifold Euler charac-
teristic of Γ, denoted by χ(Γ), which we simply call Euler characteristic. If Γ is
a torsion free group then χ(Γ) = χh(Γ). If Γ has torsion consider a finite index
torsion free subgroup Γ′. Then χ(Γ) is defined by

χ(Γ) = [Γ : Γ′]−1χ(Γ′).

Arithmetic groups do have a finite index torsion free subgroup. So for them the
Euler characteristic is defined. The main properties of the Euler characteristic
that we are going to use are:

χ(G) =
1
|G| for a finite group G,
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Given an exact sequence

0 → Γ1 → Γ → Γ2 → 0,

we have
χ(Γ) = χ(Γ1)χ(Γ2),

and
χ(SLm(OK)) = ζK(−1) . . . ζK(1 − m).

The first two properties can be found in K. Brown’s book [B1]. And the last one
is a difficult result due to Harder [H].

In order to use the Brown’s formula we need to know the torsion elements in
the group. We develop a method for finding the torsion elements in GLm(OK),
and consider another form of the above formula that requires very few of the
torsion elements ( in general they can be quite a large number). This method
involves linear algebra over number rings. More precisely is describes a normal
form of matrices over number ring. First we deal with matrices with irreducible
characteristic polynomial which lead to a relation to ideal classes (proposition
1.3). Then we examine matrices with reducible characteristic polynomials which
leads to resultants (lemma 2.2 and proposition 2.3). Then we examine the re-
lation between the torsion elements in GLm(OK) and the torsion elements in
an arithmetic subgroup Γ of GLm(OK). That gives us the homological Euler
characteristic of Γ with coefficients in a representation.

We obtain another interesting application of our method for computation of
the values of the Dedekind zeta functions at −1. Now we are going to explain
how this is related to our method. First, the Dedekind zeta function at −1
vanishes for number fields which are not totally real. For totally real number
fields K we consider the arithmetic group SL2(OK). By a result of Harder [H]
we have that the orbifold Euler characteristic of SL2(OK) is the Dedekind zeta
function at −1 ζK(−1). Also the homological Euler characteristic is always an
integer. Let us denote the homological Euler characteristic by an integer N , i.e

N = χh(SL2(OK)).

We also introduce the following notation. Let

Cl(OK [ξ]/OK)

be the set of ideal classes in OK [ξ] which are free as OK-modules. Let also
RI ⊂ OK [ξ] be isomorphic to the ring of matrices that commute with A, where
I the ideal corresponding to the matrix A by proposition 1.3.

Theorem 0.6. Let K be a totally real number field. Let R be the ring of integers
in K. Then the Dedekind zeta function at −1 can be expressed as

ζK(−1) = −1
4

∑
ξ

∑
I∈Cl(OK [ξ]/OK)

#O×
K/NK(ξ)/K(R×

I )
#(R×

I )tors

+
1
2
N,

where the the first sum is taken over all roots of 1 such that [K(ξ) : K] = 2,
the second sum over all ideal classes in OK [ξ] that are free as OK-modules, the
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ring RI sits between OK [ξ] and its integral closure OK(ξ). RI is as above, and
N = χh(SL2(OK), Q).

Note that this formula gives that the denominator of ζK(−1) is related to the
torsion elements of the quadratic cyclotomic extensions of K. This is the same
as the Tate constant w2 (see [T]).
The organization of the paper is the following. In section 1 we deals with linear
algebra over rings of algebraic integers. We give a method for classification of the
matrices with integer coefficients for the ones that are diagonalizable over the
complex numbers. In section 2 we give a method of computing the centralizer
of a matrix which leads to explicit formulas for the homological Euler charac-
teristics of GLmZ, GLm(Z[i]), GLm(Z[ξ3]) and GL2(OQ(

√−d)), see respectively
theorems 2.9, 2.10, 2.11 and 2.12. In section 3 we find the homological Eu-
ler characteristics of GLm(OK) with coefficients the symmetric powers of the
standard representation. Also, we find the homological Euler characteristics of
arithmetic groups Γ1(m, N) and Γ1(m, a). In the end of the section, we exam-
ine the groups SL2(OK) for totally real number fields K which gives a relation
to the Dedekind zeta function of the field. And in last section we prove the
generalization of Brown’s formula.

1. Conjugacy classes in GLm(OK)

In this section we describe the conjugacy classes of elements in GLm(OK),
which are semi-simple over the complex numbers, where OK is the ring of inte-
gers in a number field K. We approach the description of conjugacy classes in
the following way. We examine matrices in GLm(OK) whose characteristic poly-
nomial is irreducible over K. They are described by ideal classes of a larger ring.
And, finally, we construct an algorithm for matrices with reducible characteristic
polynomial that allows to consider instead matrices of smaller dimension. Using
this inductive step we can describe completely conjugacy classes of certain type,
knowing the conjugacy classes of matrices of smaller dimension.

This subsection deals with the case when the characteristic polynomial of a
matrix is reducible over a field K. The partition of a matrix into blocks will be
done in the following way: Given an m × m matrix A, let m = m1 + · · · + mk

be a partition of n. Then A can be thought of as a k × k block-matrix whose
Aij-entry, i, j = 1, . . . k is a block (and a matrix) of size mi × mj . This will be
the type of block-matrices that we consider. Note that the blocks Aii are square
matrices.

Definition 1.1. Let P be a finitely generated torsion free module over an inte-
gral Noetherian ring R of dimension 1. Let K be the field of fractions of R. Let
A be an endomorphism of P ,

A ∈ EndR(P ).
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Then A can be extended to an endomorphism of a finite dimensional vector
space P ⊗R K. Then the characteristic polynomial of A is defined to be the
characteristic polynomial of the induced map in EndK(P ⊗R K).

Theorem 1.2. Let R be a Dedekind domain. And let P be a finitely generated
projective module over R. Assume that the field of fractions K has characteristic
0. Let, also, A be an endomorphism of P . Then in a suitable basis we have

A =




A11 . . . A1d

0
. . .

...
0 0 Add


 ,

where Aij ∈ Hom(Pj , Pi), with P = P1 ⊕ · · · ⊕ Pd, so that Aij = 0 for i > j and
Aii has irreducible over K characteristic polynomial.

We have the following characterization of matrices with an irreducible char-
acteristic polynomial.

Proposition 1.3. Let f(t) be an irreducible monic polynomial. And let P be a
projective OK-module. Consider the set of all endomorphisms {Ai} of P which
have characteristic polynomial f(t) and which are not conjugate to each other
via an automorphism of P . This set is parameterized by the ideal classes in
OK [t]/(f(t)) which are isomorphic to P as OK-modules.

Corollary 1.4. Let f(t) ∈ OK [t] be an irreducible monic polynomial. Assume
that OK [t]/(f(t)) is a integrally closed. Then the conjugacy classes of matrices in
GLm(OK) with characteristic polynomial f(t) are in one-to-one correspondence
with the elements in

Ker(K0(OK [t]/(f(t))) → K0(OK)).

Using the Theorem 1.2 we obtain the following: If A is an m×m matrix with
coefficients in OK , or more generally, an endomorphism of projective OK-module
of rank m, having a reducible characteristic polynomial then A is conjugated by
an element of GLm(OK), or of Aut(P ), to a 2 × 2-block endomorphism

A =
[

A11 A12

0 A22

]
.

Let A11 and A22 be automorphisms of projective modules P1 and P2, with
P1 ⊕ P2 = P. Now we are going to describe a method that simplifies the block
A12 and leaves A11 and A22 unchanged. Conjugate A with an automorphism

B =
[

B11 B12

0 B22

]

of the some block form. that is B11 ∈ Aut(P1), B22 ∈ Aut(P2) and B12 ∈
Hom(P2, P1). We want the conjugation by P to preserve A11 and A22 that is[

B11 B12

0 B22

]
·
[

A11 A12

0 A22

]
=

[
A11 A′

12

0 A22

]
·
[

B11 B12

0 B22

]
.
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We do have that A12 is changed to A′
12. Then

B11A11 = A11B11, B22A22 = A22B22,

and

A′
12B22 − B11A12 = B12A22 − A11B12.

Denote by C(Aii) the centralizer of Aii. Then B11 ∈ C(A11) and B22 ∈ C(A22).
The block B12 could be any map in HomOK

(P2, P1). Let

PA11,A22 : B12 �→ B12A22 − A11B12

be a map from the space HomOK
(P2, P1) to itself. It is linear. Then the relation

A′
12B22 − B11A12 = B12A22 − A11B12,

between A′
12 and A12 can be written as

A′
12B22 ≡ B11A12 mod(ImPA11,A22).

Lemma 1.5. Let Pmod = Im(PA11,A22) where PA11,A22 : B12 �→ B12A22 −
A11B12 Let also Qmod = HomOK

(P2, P1)/Pmod. Then HomOK
(P2, P1), Pmod

and Qmod are C(A11) × C(A22)-modules.

Proof. Let B11 ∈ C(A11) and B22 ∈ C(A22). Then

(B11, B22) · PA11,A22(B12) = PA11,A22(B11B12B
−1
22 ).

Obviously, HomOK
(P2, P1) is a C(A11) × C(A22)-module. Thus, the quotient,

as abelian group, Qmod = HomOK
(P2, P1)/Pmod has the structure of a C(A11)×

C(A22)-module.

Proposition 1.6. Let A11 ∈ Aut(P1) and A22 ∈ Aut(P2). Suppose A11 and
A22 have no common eigenvalues. Then the matrices[

A11 A12

0 A22

]
and

[
A11 A′

12

0 A22

]

are conjugate to each other if and only if the projection of A12 and A′
12 onto the

finite set C(A11) × C(A22)\Qmod coincide.

Lemma 1.7. If
∏

i(t−αi) and
∏

j(t−βj) are the characteristic polynomials of
A11 ∈ GLm1K̄ and A22 ∈ GLm2K̄ then the characteristic polynomial of

PA11,A22 : X �→ XA22 − A11X

is
∏

i,j(t − βj + αi). In particular, If A11 and A22 have no common eigenvalue
then the map PA11,A22 is non-singular, and Qmod is finite, namely the norm of
the resultant.
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2. Centralizers and homological Euler characteristics

Lemma 2.1. Let A11 and A22 be square matrices with coefficients in OK . Sup-
pose that they have no common eigenvalues. And let

C =
[

C11 C12

C21 C22

]
commutes with A =

[
A11 A12

0 A22

]

Then the admissible matrices C are determined by the following properties:

C21 = 0,

C11 ∈ C(A11),

C22 ∈ C(A22),

C11A12C
−1
22 ≡ A12mod ImPA11A22 .

Also, the matrix C12 is uniquely determined by C11 and C22, and it is given by

C12 = P−1
A11A22

(A12C22 − C11A12).

In particular,

C(
[

A11 0
0 A22

]
) = C(A11) × C(A22),

where C(A) denotes the centralizer of A.

Lemma 2.2. Let A11 and A22 be invertible matrices with coefficients in OK ,
or automorphisms of projective modules having no common eigenvalues. Let f1

and f2 be the characteristic polynomials if A11 and A22, respectively. Then∑
χ(C(A)) = |NK/Q(R(f1, f2))|χ(C(A11))χ(C(A22)),

where the sum is taken over all non-conjugate torsion elements

A =
[

A11 A12

0 A22

]

with fixed A11 and A22, and R(f1, f2) is the resultant of the two polynomials.

Proof. By Proposition 1.6, taking the sum over all non-conjugate matrices with
fixed A11 and A22 is the same as varying A12 through representatives of

C(A11) × C(A22)\Qmod.

For a fixed A12 we have that the group C(A) is a finite index subgroup of
C(A11) × C(A22), and the index is equal to the number of elements in the
C(A11) × C(A22)-orbit of A12 in Qmod. Thus,

χ(C(A)) = #|orbit of A12| · χ(C(A11))χ(C(A22))

Summing over all orbits, we obtain∑
χ(C(A)) = #|Qmod| · χ(C(A11))χ(C(A22)).
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On the other hand, by lemma 1.7

#|Qmod| = |NK/Q(det(PA11A22))| = |NK/Q(R(f1, f2))|.
We are going to define a resultant of k polynomials f1, . . . , fk, k ≥ 2 by

R(f1, . . . , fk) =
∏
i<j

R(fi, fj).

Using the previous lemma as an induction step, we obtain the following propo-
sition

Proposition 2.3. Let A11, A22 , · · · , Akk be automorphisms of projective mod-
ules over OK such that Aii and Ajj have no common eigenvalues for i �= j. Let
fi be the characteristic polynomial of Aii. Then∑

χ(C(A)) = |NK/Q(R(f1, . . . , fk))| · χ(C(A11)) . . . χ(C(Akk)),

where the sum is taken over all non-conjugate torsion elements A is a block-
diagonal form such that the blocks on the diagonal are A11, . . . , Akk, and the
blocks under the diagonal are zero, and R(f1, . . . , fk) is the resultant of f1, . . . , fk

defined above.

Note that all A’s in the above sum have the same characteristic polynomial;
namely f1 · · · · · fk.

We need e few more lemmas on the size of the centralizer.

Lemma 2.4. Let A and B be matrices in GLmOK , or Aut(P ) which are con-
jugate as elements of GLmK the C(A) and C(B) are commensurable.

Proof. The group C(A) is an arithmetic subgroup of CGLmK(A), which is con-
jugate to CGLmK(B). Therefore CGLmOK

(A) and CGLmOK
(B) are commeasur-

able.

Lemma 2.5. Let Tn ∈ GLm(OK) be an n-torsion matrix with with irreducible
characteristic polynomial. Then the centralizer C(Tn) contains OK [ξn]×, and is
commensurable to it where ξn = e2πi/n.

Proof. The matrices in Matm,mK commuting with Tn are precisely

K[Tn] ∼= K(ξn)

because this is the maximal abelian sub-Lie algebra commuting with Tn; it is of
dimension m. Let the intersection of K[Tn] with Matm,mOK be

R ⊂ OK(ξn),

where R and OK(ξn) are commensurable by the previous lemma. In this inter-
section R the invertible elements are

C(Tn) ∼= R× ⊂ O×
K[ξn].
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Lemma 2.6. Let Tn ∈ GLmZ be an n-torsion matrix with irreducible charac-
teristic polynomial. Let T be a k×k-block matrix with blocks on the diagonal Tn

and the rest of the blocks being zero. Let R be the ring of endomorphisms that
commute with Tn. Then C(T ) ∼= GLkR.

Proof. Then the matrices commuting with T are

Q[Tn] ⊗ Matk,kK ∼= Matk,k(K(ξn)).

Among them the ones with integer coefficients are

CMatkmZ(T ) = CMatkmZ(Tn ⊗ Ik) = CMatkZ(Tn) ⊗ Matk,kZ ∼= Matk,kR,

where R is a order in OK(ξn) isomorphic to the ring of matrices (not necessarily
with unit determinant) with coefficients in OK commuting with Tn And the
invertible ones with integer coefficients are

C(T ) ∼= GLkR ⊂ GLk(OK(ξn)).

The following two propositions give bases for the proof of the vanishing results,
namely theorem 0.1 and theorem 0.2.

Proposition 2.7. Let A be a torsion element of GLmOK . Then χ(C(A)) �= 0
if and only if the set of eigenvalues of A is inside the set

(a) {1,−1, i,−i, ξ3, ξ̄3, ξ6, ξ̄6}, and the multiplicity of 1 and −1 is at most 2
and the multiplicity of the rest of the roots of unity is at most 1 if K = Q;

(b) {1,−1, i,−i}, and the multiplicities are at most 1 if K = Q(i);

(c) {1,−1, ξ3, ξ̄3, ξ6, ξ̄6} and the multiplicities are at most 1 if K = Q(ξ3);

(d) {1,−1}, and the multiplicities are at most 1 if K = Q(
√−d), d �= 3, 4.

(e) χ(C(A)) = 0 always when K �= Q, Q(
√−d).

For SLmOK we have a similar statement.

Proposition 2.8. Let A be a torsion element of SLmOK . Then χ(C(A)) �= 0
if and only if the set of eigenvalues of A is inside the set

(a) {1,−1, i,−i, ξ3, ξ̄3, ξ6, ξ̄6}, and the multiplicity of 1 is at most 2, the mul-
tiplicity of −1 is 0 or 2 and the multiplicity of the rest of the roots of unity is at
most 1 if K = Q;

(b) {1,−1, i,−i}, and the multiplicities are at most 1 if K = Q(i);

(c) {1,−1, ξ3, ξ̄3, ξ6, ξ̄6} and the multiplicities are at most 1 if K = Q(ξ3);
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(d) {ξ, ξ−1} where ξ is a root of 1 and the dimension of the matrix A is at
most 2, if K is totally real field different from Q.

(e) χ(C(A)) = 0 always when K is not totally real and different from Q(i)
and Q(ξ3).

The following theorems are very useful for computational purposes. They
express the homological Euler characteristics as a sum of very few terms. And
each of the terms can be easily computed. We use the following notation:

A = [A11, . . . All]

means that the square block A11 through All are placed on the block-diagonal
of A and the blocks of A outside the block-diagonal are zero blocks. Also, let

R(A) = R(f1, . . . , fl) =
∏
i<j

R(fi, fj),

where
A = [A11, . . . All],

and fi is the characteristic polynomial of Aii, and fi is a power of an irreducible
polynomial. As a consequence of proposition 2.3 and 2.7 we obtain theorems
2.9, 2.10, 2.11, and 2.12.

Theorem 2.9. Let V be a finite dimensional representation of GLm(Q). Then
the homological Euler characteristic of GLmZ with coefficients in V is given by

χh(GLm(Z), V ) =
∑
A

|R(A)|χ(C(A))Tr(A−1|V ),

where the sum is taken over torsion matrices A consisting of blocks A11, . . . All

on the block-diagonal and zero blocks off the diagonal. Also the matrices Aii are
in the set {+1,+I2,−1,−I2, T3, T4, T6}, where

T3 =
[

0 1
−1 −1

]
, T4 =

[
0 1

−1 0

]
, T6 =

[
0 −1
1 1

]
.

and the characteristic polynomial fi of Aii is a power of an irreducible polyno-
mial, and fi and fj are relatively prime.

Theorem 2.10. Let V be a finite dimensional representation of GLm(Q(i)).
Then the homological Euler characteristic of GLm(Z[i]) with coefficients in V is
given by

χh(GLm(Z[i]), V ) =
∑
A

|NQ(i)/Q(R(A))|χ(C(A))Tr(A−1|V ),

where the sum is taken over torsion matrices A consisting of blocks A11, . . . Amm

on the block-diagonal and zero blocks off the diagonal. Also the matrices Aii

are in the set {+1,−1, i,−i} and the characteristic polynomials fi of Aii are
relatively prime if i �= j.
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Theorem 2.11. Let V be a finite dimensional representation of GLm(Q(ξ3)).
Then the homological Euler characteristic of GLm(Z[ξ3]) with coefficients in V
is given by

χh(GLm(Z[ξ3]), V ) =
∑
A

|NQ(ξ3)/Q(R(A))|χ(C(A))Tr(A−1|V ),

where the sum is taken over torsion matrices A consisting of blocks A11, . . . Amm

on the block-diagonal and zero blocks off the diagonal. Also the matrices Aii are
in the set {+1,−1, ξ3, ξ3, ξ6, ξ6} and the characteristic polynomials fi of Aii are
relatively prime if i �= j.

Theorem 2.12. Let P be a projective module of rank 2 over the ring of integers
OK in a number field K = Q(

√−d) for d �= 3, 4. Let V be a finite dimensional
representation of GL2(Q(

√−d)) Then the homological Euler characteristic of
Aut(P ) with coefficients in V is given by

χh(Aut(P ), V ) = h · Tr([1,−1]|V ),

where h is the class number of Q(
√−d). In particular, if P is free we obtain

the homological Euler characteristic of GL2(OQ(
√−d)) with coefficients in any

representation of GL2(K).

3. Computation of homological Euler characteristics

With our method we obtain the following known results.

Theorem 3.1. Let SnV2 be the n-th symmetric power of the standard represen-
tation of GL2(Q). Then

χh(GL2Z, S12n+kV2) =




−n + 1 k = 0
−n k = 2
−n k = 4
−n k = 6
−n k = 8

−n − 1 k = 10
0 k = odd,

χh(GL2Z, S12n+kV2 ⊗ det) =




−n k = 0
−n − 1 k = 2
−n − 1 k = 4
−n − 1 k = 6
−n − 1 k = 8
−n − 2 k = 10

0 k = odd.

Using theorems 2.9, 2.10 and 2.11 we obtain the following four statements.

Theorem 3.2. Let V3 and V4 be the standart 3 and 4 dimensional representa-
tions of GL3Z and GL4Z over the rational numbers. Then

χh(GL4Z, SnV4) = χh(GL3Z, SnV3) = χh(GL2Z, SnV2),
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χh(GL4Z, SnV4 ⊗ det) = χh(GL2Z, Sn+2V2 ⊗ det)

Theorem 3.3.

χh(GL5Z, Q) = 0, χh(GL6Z, Q) = 1, χh(GL7Z, Q) = −1,

χh(GL8Z, Q) = 1, χh(GL9Z, Q) = −1, χh(GL10Z, Q) = 1.

Theorem 3.4. The homological Euler characteristic of GLm(Z[i]) with coeffi-
cients the symmetric powers of the standard representation are given by

χh(GLm(Z[i]), SnVm) =
{

1 n ≡ 0 mod 4,
0 otherwise. for m = 2, 3, 4,

and constantly zero for m > 4.

Theorem 3.5. The homological Euler characteristic of GLm(Z[ξ3]), where ξ3

is a non-trivial third root of 1, with coefficients the symmetric powers of the
standard representation are given by

χh(GLm(Z[ξ3]), SnVm) =
{

1 n ≡ 0 mod 6,
0 otherwise. for m = 2, 3, 4, 5, 6,

and constantly zero for m > 6.

Lemma 3.6. Let G be a group and Γ be a subgroup. Given an element A ∈ Γ,
the set of elements in which are conjugate to A in G but not in Γ is parameterized
by the elements of the double quotient

Γ\NΓ
G(A)/CG(A),

where NΓ
G(A) = {X ∈ G : XAX−1 ∈ Γ} and CG(A) is the centralizer of A

inside the group G.

Let Γ1(m, N) be the subgroup of GLm(Z) that fixes the covector [0, . . . , 0, 1]
modulo N .

Lemma 3.7. Let A ∈ Γ1(m, N) be a torsion element with χ(C(A)) �= 0, let N
be relatively prime with 2 and 3 and let f be the characteristic polynomial of A.
Then +1 is a root of f and it has multiplicity 1 or 2.

(a) If the root +1 has multiplicity 1 then the set

Γ1(m, N)\NΓ1(m,N)
CLmZ (A)/CGLmZ(A)

has 1
2ϕ(N) elements.

(b) If the root +1 has multiplicity 2 then the set

Γ1(m, N)\NΓ1(m,N)
CLmZ (A)/CGLmZ(A)

has one element.
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The proof is long and it can be found in [Ho].

Theorem 3.8. Let V be a representation of GLmZ, and let N be an integer
relatively prime to 2 and 3. Then

χh(Γ1(m, N), V ) = ϕ(N)
∑

A=[A1,1] R(A)χ(CGLm−1Z(A1))Tr(A−1|V )+
+ϕ2(N)

∑
A=[A2,I2]

R(A)χ(CGLm−2Z(A2))Tr(A−1|V ),

where A1 and A2 are block-diagonal matrices with zero blocks off the diagonal,
and with block on the diagonal Aii varying through

{−1,−I2, T3, T4, T6}
and Aii and Ajj have no common eigenvalues. We set

T3 =
[

0 1
−1 −1

]
, T4 =

[
0 1

−1 0

]
, T6 =

[
0 −1
1 1

]
.

Also ϕ(N) is the Euler function of N , and ϕ2(N) is the arithmetic function
generated by

ϕ2(pn) = p2k(1 − 1
p2

).

Corollary 3.9. For N not divisible by 2 and 3 the homological Euler charac-
teristics of Γ1(m, N) with coefficients the symmetric powers of Vm are given
by

χh(Γ1(2, N), S2n+kV2) =




− 1
24ϕ2(N)(2n + 1) + 1

2ϕ(N) k = 0

− 1
24ϕ2(N)(2n + 2) k = 1

χh(Γ1(3, N), Q) = − 1
12ϕ2(N) + 1

2ϕ(N).
χh(Γ1(4, N), Q) = ϕ(N),

where ϕ(N) is the multiplicative Euler function generated by ϕ(pn) = pn(1− 1
p )

and ϕ2(N) is the multiplicative function generated by ϕ2(pn) = p2n(1 − 1
p2 ).

For the rings Z[i] and Z[ξ3] we can similarly define Γ1(m, a) for an ideal a

to be the stabilizer of [0, . . . , 0, 1] in GLm over the ring, modulo a. For these
arithmetic groups we have similar formulas to lemma 3.7 part(a). Consequently,
we obtain the homological Euler characteristics given in theorem 0.5.

Proof. (of theorem 0.6) We use Brown’s formula. For SL2(OK) for totally real
number fields K, the torsion elements are either ±I2 or a matrix A with ir-
reducible polynomial over K with roots ξ and ξ−1 primitive n-root of 1. The
matrices I2 and −I2 give two copies of ζk(−1). For the matrices A, let I be the
corresponding ideal by proposition 1.3. And let RI ⊂ OK [ξ] be isomorphic to
the ring of matrices that commute with A. Then the centralizer of A in SL2(OK)
correspond to the torsion elements in RI . Also,

SL2(OK)\NSL2OK

GL2OK
(A)/CGL2OK

(A) = O×
K/NK(ξ)/K(R×

I ).

This proves the theorem.
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Note the units and the torsion elements in the orders RI give information
about the torsion part of ζK(−1).

Example 3.10. Consider K = Q(
√

5). Then all the quadratic extension of K
be n-th root of 1 lead to field with trivial class number. One can conclude that
by decomposing ζK(ξ)(s) as a product of Riemann zeta fuction and L-functions,
and using the residue formula at s = 1. From theorem 0.5 we obtain

χh(SL2(Z[(1 +
√

5)/2), Q) = 2 · ζQ(
√

5)(−1) + 3 +
14
15

.

Since the homological Euler characteristic is an integer, call it N , we obtain that

ζQ(
√

5)(−1) = −14
30

+
N

2
.

In fact, ζQ(
√

5)(−1) = 1/30 see [I] theorem 1. Thus, χh(SL2(Z[(1+
√

5)/2), Q) =
4.

4. Generalization of Brown’s formula

Theorem 4.1. The homological Euler characteristic of Γ with coefficients in V
is given by

χh(Γ, V ) =
∑

χ(C(A)) · Tr(A−1|V ),

where the sum is taken over all torsion elements of Γ counted up to conjugation,
C(A)) is the centralizer of A inside Γ and Tr(A−1|V ) is the trace of the action
of A−1 on the finite dimensional vector space V .

Proof. This proof follows more closely the paper of Brown [B2]. And it turn
out that the formula we need is a consequence of a more general formula of
Brown for a finite length chain C• of QΓ-modules that admit generalized Euler
characteristic.

For an endomorphism of a finitely generated projective QΓ-module P one can
define its trace with values in QΓ/[QΓ, QΓ]. Then E(Γ, P ) = TrQΓ(idP ). If a
QΓ-module V admits a finite length projective resolution P• then E(Γ, V ) =∑

i(−1)iE(Γ, Pi). For more information on this trace see [B1], [B2], [Ba]. For
the relation to the homological Euler chracteristic see [Ch]. Define

E(Γ, C•) =
∑

i

(−1)iE(Γ, Ci)

to be the generalized Euler characteristic Let

E(Γ, C•) =
∑
(A)

c(A) · (A).

Define
e(Γ, C•) = c(I),

where I is the identity element in Γ. We have that

e(Γ, Q) = χ(Γ).
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The general formula that Brown obtains is that c(A) coincides with the coefficient
next to (I) in TrQΓ(MA), where MA : (C•)A → (C•)A is multiplication by
A. Now, let X be a contractable CW complex on which Γ act properly and
discontinuously. One can assume also that a cell is mapped to itself by an
element of Γ then the entire cell is fixed by that element pointwise. One can
achieve that by subdivision of the cells. Then

E(Γ, V ) = E(Γ, C•(X, V )),

where C•(X, V ) is the cochain complex of X with coefficients in V . Let f ∈
Ci(X, V ) and A ∈ Γ. let also σ be an i-th cell and v ∈ V so that f(σ) = v.
Then A acts on f by (A · f)(Aσ) = A · v. Since we want to find the trace we
consider the fixed cells under the action of A. Consider a the following basis
for Ci(X, V ). Let v1, . . . , vn be a basis for V . Let fσ,vi be the function that
sends the cell σ to the vector vi, and sends all other cell to zero. Consider the
contribution of fσ,vi to the trace. We have that A ·fσ,vi maps σ to aii · vi, where
aii is a constant. But A · fσ,vi maps Aσ to Avi. Thus, we have a contribution
to the trace if

Aσ = σ.

Consider the space XA of cells which are fixed under the action of A. On XA

the centralizer C(A) acts properly and discontinuously. Also XA is contractable.
Thus

c(A) = e(C(A), C(XA, V )).
We have

(A · f)(σ) = A−1(f(Aσ)) = A−1(f(σ)).
When we take the trace the last equation leads to Tr(A−1|V ). Thus, we obtain

c(A) = e(C(A), C•(XA)) · Tr(A−1|V ) = χ(C(A)) · Tr(A−1|V ).
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Sci. École Norm. Sup.(4) 4 (1971), 409–455.
[Ho] I. Horozov, Euler characteristics of arithmetic groups, http://xxx.lanl.gov/, No:

math.GR/0311117, p. 94.
[I] K. Iwasawa, Lecutures on p-adic L-functions, Annals of Math Studies 74 Princeton

Univ. Press: Princeton, N.J., 1972.
[M] J. Milnor, Introduction to algebraic K-theory Ann. of Math Studies 72, Princeton

University Press, Princeton, 1971.
[S] Serre, J.-P.: Cohomologie des groupes discretes, Ann. of Math. Studies 70 (1971),

77-169.
[T] J. Tate, Symbols in Arithmetic, Proc. of Int Congress of Math. at Nice (1970).
[W] L. Washington, Introduction to cyclotomic fields Graduate Text in Mathematics,

Springer-Verlag: New York, 1982.

Max Planck Institut für Mathematik, Vivatsgasse 7, Bonn 53111, Germany
E-mail address: horozov@mpim-bonn.mpg.de


