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LAPLACIANS ON FRACTALS WITH SPECTRAL
GAPS HAVE NICER FOURIER SERIES

ROBERT S. STRICHARTZ

ABSTRACT. On the Sierpinski gasket and related fractals, partial sums of Fourier
series (spectral expansions of the Laplacian) converge along certain special sub-
sequences. This is related to the existence of gaps in the spectrum.

Laplacians on fractals have been studied intensively using both probabilistic
and analytic tools, as a “rough” counterpart to Laplacians on smooth Riemann-
ian manifolds ([B], [Ki], [S1]). This research has succeeded in establishing many
“expected” analogs of results from the smooth theory, but has also turned up
some startling differences. For example: there exist localized eigenfunctions [F'S];
the square of a nonconstant function in the domain of the Laplacian is never in
the domain of the Laplacian [BST]; the energy measure is singular [Kul; the
wave equation has infinite propagation speed [DSV]; the Weyl ratio does not
have a limit [F'S], [KL]; the Laplacian does not behave like a second order oper-
ator [S2]; to mention just a few. One might be tempted to say that the fractal
world resembles the smooth world to some degree, but everything is worse.

On the other hand, recent numerical experiments hint that when it comes to
convergence of Fourier series, things might be better on fractals. To be specific,
consider the standard Laplacican A on the Sierpinski gasket SG. With either
Dirichlet or Neumann boundary conditions, there is a complete orthonormal
basis of eigenfunctions, say —Au; = \ju;, j =1,2,3,..., and every L? function
f has a Fourier series

o0
f= chuj with ¢; :/ fujdp,

the analog of Fourier sine and cosine series on the interval. The partial sums
N
Snfx) =Y cju;()
j=1
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may be expresed as an integral

Snf(x) = o Dy (z,y) f(y)du(y)

against a Dirichlet kernel

N

Dy(z,y) =D u;(@)u;(y).

Jj=1

Because many eigenvalues have nontrivial multiplicities, it does not make sense
to allow all values of IV, but only those that do not split multiple eigenspaces.
Even among these allowable values, some are more natural than others. In
[OSS], computations of Dy for these natural choices (for small values of N)
showed a clear approximate identity behavior. This stands in striking contrast
to the wooly behavior of the usual Dirichlet kernel, and leads to the hope that for
continuous functions, Sy f might converge uniformly to f along an appropriate
subsequence. In this note we will provide a proof of this fact. Also, in [CDS]
it was observed numerically that for some functions with a jump discontinuity,
Sy f exhibits a Gibbs’ phenomenon, but not as strong as the usual one. This
means that

/ D ()l du(y)

is uniformly bounded, but does not converge to 1.

The key observation is that the spectrum of the Laplacian on SG and other
fractals is very “lumpy”. One manifestation of this is the occurrence of large
gaps. Also, the particular partial sums Sy f that we consider extend up to the
beginning of a gap. This means that the partial sum is equal to an approximation
obtained by using a summability method

onf(z) = Z?P(AJ/AN)CJUJ (z)

where 9 is a smooth cutoff function satisfying ¢ (¢t) = 1 for t < 1 and ¢ (¢) = 0 for
t > An+1/An. Note that we require a uniform lower bound for (Ayy1/An) — 1
in order to use the same cut—off function . It is then not too surprising that
the summability method is well-behaved.

Theorem 1. a) Let {N,,} be a sequence of integers such that (An, +1/AN,,) —1
is bounded away from zero. Then Sy, f — f as m — oo in L9 if f € L9,
1 < g < o0, and uniformly if f is continuous.
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b) There exist infinitely many disjoint sequences { N,,} such that AN, +1/\N,, =
C > 1. One exzample is Ny, = (3™ — 3) (Dirichlet) or Ny, = (3™! + 3)
(Neumann). There is also an example with C' > 2.

Proof: The details are easy because all the work has already been done. An
exact description of the spectrum (Dirichlet and Neumann) of the Laplacian
on SG was given by Fukushima and Shima [F'S| using analytic methods (spec-
tral decimation). The spectral gaps are implicit in this work, and are stated
explicitly in Theorem 5.1 of [GRS]. The “natural” choices for N in [DSS] are
Ny, = 3(3™*! —3) for Dirichlet and N,,, = 1(3™*! 4 3) for Neumann boundary
conditions, for m > 2, since these are the number of (nonboundary) vertices in
the mth graph approximation to SG. The corresponding eigenvalues are \y, =
5m_2)\§6) and Ay, +1 = 5m_1)\§5) where )\(15) ~ 172.364 and )\§6) ~ 677.859 (us-
ing notation of [GRS] and [DSV]). It follows that the gap ratio An,,+1/An,, is
always the same, 5)\§5) / /\56) ~ 1.271. In fact there are infinitely many choices
of sequences Ay such that Ay and Ayy1 increase by multiples of 5, so the gap
ratio is constant. In fact the biggest gap ratio occcurs if we choose the eigenvalue
5’"*1)\(()5) (/\(05) ~ 55.885) which occurs immediately before Ay, . Then the gap
ratio is )\g(6) / 5)\85) ~ 2.425. All these eigenvalues have high multiplicities; in fact
the multiplicity grows exponentially with m as m — oo. This undoubtedly is
related to the existence of the gaps, although a direct argument is not available.

The next ingredient in the argument is a “generic” spectral multiplier theorem
of Duong, Ouhabaz and Sikora ([DOS], Theorem 6.2), which yields o f — f in
L2if fe L9 1<qg< oo, and onyf — f uniformly if f is continuous. In order to
verify the hypothesis of that theorem (with p = oo), the essential requirement
is the appropriate heat kernel estimates. These were originally established for
SG by Barlow and Perkins [BP], and have since been extended to a variety of
fractals (se [BB] and [HK], for example). All proofs of heat kernel estimates on
fractals use probabilistic methods. O

A related result is the L? boundedness, above and below, for 1 < g < oo, of
the Littlewood—Paley function:

Theorem 2. Let

57w = (3 15us@p) "

Nom

Smf@)= > cuyx),

J=Nm-1+1
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where {N,,} is any sequence as in Theorem 1 b). Then Ayl flly < [ISfllq <
Byl fllq for 1 < g < oco.

Proof: The Rademacher function argument given in Stein [St] Chapter 4, section

oo
5, requires the uniform boundedness in L9 of Z emSm f(x) for any choice of
m=1
€m = £1. Once again we can write

oo

Smf(@) =D 0(A;j/AN, )eju;(z)

j=1

o0
for the appropriate smooth cut—off function %, and so Z EmSm f(x) is a spectral

m=1

0
multiplier operator with multiplier Z em®(N;/An,,) satisfying a Hormander—
m=1

type condition with bounds independent of the choice of {€,,}. Then Theorem
3.1 (with p = c0) of [DOS] gives the desired bounds on the spectral multiplier
operator. O

The same results should be valid for many other fractals. For post—critically
finite (pcf) fractals for which the spectral decimation method is valid ([Sh]), one
can use essentially the same reasoning. A larger class of pcf fractals, those with
large enough symmetry groups, has been shown to have localized eigenfunctions
associated with eigenvalues of high multiplicity [BK]. It is reasonable to expect
that these examples will also have the required spectral gaps. One such example,
the pentagasket, which does not allow spectral decimation, has been examined in
detail in [ASST]. Numerical data presented there (more data is available on the
website www.mathlab.cornell.edu/~sas60/) supports this, and Conjecture 4.2 of
[ASST] shows exactly where in the spectrum to find the gaps. Again there is a
pair of consecutive eigenvalues Ay, Ay 41, with ratio ~ 1139.548/520.308 ~ 2.190
greater than 2, and p™ Ay, p An_1, are also eigenvalues for every positive integer
m, for p = 40/(v/161 —9) ~ 10.84289. The only thing that remains to be shown
is that the pairs p™ Ay, p"* An+1, are always consecutive eigenvalues.

Another class of examples are the compact fractafolds based on SG, described
in [S3]. Basically, these are obtained by taking a finite number of copies of SG
and identifying certain pairs of boundary points. A complete description of the
spectrum of the Laplacian is given in Theorem 4.3 (in the case of no boundary)
and Theorem 5.1 (Dirichlet and Neumann boundary conditions) of [S3], and the
identical spectral gaps as for SG appear.

Products of SG are discussed in [S4]. These are self-similar fractals that
are not pcf, but it is easy enough to understand the spectral theory of the
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Laplacian as a tensor product of the single SG: For the double product SG?, the
eigenfunctions are u; ® uy with eigenvalues A\; + Ai. It is easy to see that the
“square” partial sums

m N‘ﬂL
SNmf = cj’kuj X UL
=1 1

<
e
Il

will have the same convergence properties as in the single SG case (the associated
Dirichlet kernel will just be the tensor product of single SG Dirichlet kernels).
Of course the more natural “circular” partial sums would be of the form

Suf= Z Cj kU @ Ug.
Aj+Ag <M
But if we choose N,, so that the ratio of the eigenvalues (An,, +1)/An,, exceeds
2, then Sy,, = Sax ~,,, - Of course this coincidence does not occur for products of
3 or more copies of SG, since no ratio exceeds 3. But the same argument could
be applied to the product of 2 copies of the pentagasket.

Another interesting non—pcf example is the Sierpinski carpet. The required
heat kernel estimates are known [BB], but nothing is known about the structure
of the spectrum of the Laplacian.

Another interesting consequence of spectral gaps will be reported in [BS] (see
the website www.math.cornell.edu/~stu28041/fem/index.htm).

Note added in proof

In a recent preprint ”Convergence of Mock Fourier Series”, we give another
example of a fractal analog of Fourier Series (with respect to certain Cantor
measures) that enjoys similar convergence properties.
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