HOLOMORPHIC DISCS WITH DENSE IMAGES

FRANC FORSTNERIČ AND JÖRG WINKELMANN

ABSTRACT. Let Δ be the open unit disc in \mathbb{C} , X a connected complex manifold and D the set of all holomorphic maps $f: \Delta \to X$ with $\overline{f(\Delta)} = X$. We prove that \mathcal{D} is dense in $Hol(\Delta, X)$.

1. Introduction

Let $\Delta_r = \{z \in \mathbb{C} : |z| < r\}$ and $\Delta = \Delta_1$. In [8] the second author proved that for any irreducible complex space *X* there exists a holomorphic map $\Delta \rightarrow X$ with dense image, and he raised the question whether the set of all holomorphic maps $\Delta \to X$ with dense image forms a dense subset of the set $Hol(\Delta, X)$ of all holomorphic maps $\Delta \to X$ with respect to the topology of locally uniform convergence.

In this paper we show that the answer to this question is positive if *X* is smooth, but negative for some singular space.

Theorem 1. For any connected complex manifold *X* the set of holomorphic maps $\Delta \rightarrow X$ with dense images forms a dense subset in $Hol(\Delta, X)$. The conclusion fails for some singular complex surface *X*.

The situation is quite different for *proper discs*, i.e., proper holomorphic maps $\Delta \rightarrow X$. The paper [4] contains an example of a non-pseudoconvex bounded domain $X \subset \mathbb{C}^2$ such that a certain nonempty open subset $U \subset X$ is not intersected by the image of any proper holomorphic disc $\Delta \to X$. On the other hand, proper holomorphic discs exist in great abundance in *Stein manifolds* [6], [1], [2] and, more generally, in *q*-complete manifolds *X* for $1 \leq q < \dim X$ [3].

2. Preparations

Lemma 1. Let W_n be a decreasing sequence (i.e., $W_{n+1} \subset W_n$) of open sets with Δ ⊂ W_n ⊂ Δ_2 for every *n*. Let $K = \cap_n \overline{W}_n$ and assume that the interior of *K* coincides with ∆. Furthermore assume that there are biholomorphic maps $\phi_n : \Delta \to W_n$ with $\phi_n(0) = 0$ for $n = 1, 2, \ldots$.

Received October 23, 2004.

²⁰⁰⁰ *Mathematics Subject Classification.* 32H02.

Key words and phrases. Holomorphic discs, complex spaces.

Research of the first author was supported by grants P1-0291 and J1-6173, Republic of Slovenia.

Then there exists an automorphism $\alpha \in \text{Aut}(\Delta)$ and a subsequence (ϕ_{n_k}) of the sequence (ϕ_n) such that $\phi_{n_k} \circ \alpha^{-1}$ converges locally uniformly to the identity map *id*∆ on Δ .

Proof. Montel's theorem shows that, after passing to a suitable subsequence, we have $\lim_{n\to\infty}\phi_n = \alpha: \Delta \to K$ and $\lim_{n\to\infty}(\phi_n^{-1}|\Delta) = \beta: \Delta \to \overline{\Delta}$. Since the limit maps are holomorphic and satisfy $\alpha(0) = 0$ and $\beta(0) = 0$, we conclude that $\alpha(\Delta) \subset \text{Int } K = \Delta \text{ and } \beta(\Delta) \subset \Delta.$ Moreover $\alpha \circ \beta = id_{\Delta} = \beta \circ \alpha$, and hence both α and β are automorphisms of Δ (indeed, rotations $z \rightarrow ze^{it}$). \Box

We also need the following special case of a result of the first author (theorem 3.2 in [5]):

Proposition 1. Let *X* be a complex manifold, $0 < r < 1$, *E* the real line segment $[1,2] \subset \mathbb{C}$, $K = \overline{\Delta} \cup E$, *U* an open neighbourhood of $\overline{\Delta}$ in \mathbb{C} , *S* a finite subset of *K* and $f: U \cup E \to X$ a continuous map which is holomorphic on *U*.

Then there is a sequence of pair of open neighbourhoods $W_n \subset \mathbb{C}$ of K and holomorphic maps $g_n: W_n \to X$ such that:

1. $g_n|_K$ converges uniformly to $f|_K$ as $n \to \infty$, and

2. $g_n(a) = f(a)$ for all $a \in S$ and $n \in \mathbb{N}$.

3. Towards the main result

In this section we prove the following proposition which is the main technical result in the paper. The first statement in theorem 1 $(\S1)$ is an immediate corollary.

Proposition 2. Let *X* be a connected complex manifold endowed with a complete Riemannian metric and induced distance *d*, *S* a countable subset of *X*, *f* : $\Delta \rightarrow X$ a holomorphic map, $\epsilon > 0$ and $0 < r < 1$.

Then there exists a holomorphic map $F: \Delta \to X$ such that

- (a) $S \subset F(\Delta)$, and
- (b) $d(f(z), F(z)) \leq \epsilon$ for all $z \in \Delta_r$.

Proof. Let *s*1*, s*2*, s*3*, ..* be an enumeration of the elements of *S*. We shall inductively construct a sequence of holomorphic maps $f_n: \Delta \to X$, numbers $r_n \in (0,1)$ and points $a_{1,n}, \ldots, a_{n,n} \in \Delta$ satisfying the following properties for $n = 0, 1, 2, \ldots$:

- 1. $f_0 = f$ and $r_0 = r$,
- 2. $(r_n+1)/2 < r_{n+1} < 1$,
- 3. $f_n(a_{j,n}) = s_j$ for $n \ge 1$ and $j = 1, 2, ..., n$,
- 4. $d(f_n(z), f_{n+1}(z)) < 2^{-(n+1)} \epsilon$ for all $z \in \Delta_{r_n}$, and
- 5. $d_{\Delta}(a_{i,n}, a_{i,n+1}) < 2^{-n}$ for $j = 1, 2, \ldots, n$ where d_{Δ} denotes the Poincaré distance on the unit disc.

Assume inductively that the data for level *n* (i.e., f_n , r_n , $a_{j,n}$) have been chosen. (For $n = 0$ we do not have any points $a_{i,0}$.) With *n* fixed we choose an increasing sequence of real numbers λ_k with $\lambda_k > r_n$ and $\lim_{k\to\infty} \lambda_k = 1$.

For every $k \in \mathbb{N}$ the map $\widetilde{g}_k(z) \stackrel{def}{=} f_n(\lambda_k z) \in X$ is defined and holomorphic on the disc Δ_{1/λ_k} ⊃ $\overline{\Delta}$. After a slight shrinking of its domain we can extend it continuously to the segment $E = [1, 2] \subset \mathbb{C}$ such that the right end point 2 of *E* is mapped to the next point $s_{n+1} \in S$ (this is possible since X is connected).

Applying proposition 1 to the extended map \widetilde{g}_k we obtain for every $k \in \mathbb{N}$ and open neighbourhood $V_k \subset \mathbb{C}$ of $K = \overline{\Delta} \cup E$ and a holomorphic map $g_k : V_k \to X$ such that

- (i) $|g_k(z) f_n(\lambda_k z)| < 2^{-k}$ for all $z \in \overline{\Delta}$,
- (ii) $g_k(2) = s_{n+1}$, and
- (iii) $g_k(a_{j,n}/\lambda_k) = f_n(a_{j,n}) = s_j$ for $j = 1, ..., n$.

Next we choose a decreasing sequence of simply connected open sets $W_k \subset \mathbb{C}$ $(k \in \mathbb{N})$ with $K \subset W_k \subset V_k$ and $K = \cap_k W_k$. Notice that $\text{Int } K = \Delta$. By lemma 1 there is a sequence of biholomorphic maps $\phi_k : \Delta \to W_k$ with $\lim_{k \to \infty} \phi_k = id_{\Delta}$.

Consider the holomorphic maps $h_k = g_k \circ \phi_k : \Delta \to X$. By our construction we know that $\lim_{k\to\infty} h_k = f_n$ locally uniformly on Δ .

To fulfill the inductive step it thus suffices to choose $f_{n+1} = h_k$ for a sufficiently large *k*, $a_{j,n+1} = a_{j,n}/\lambda_k$ ($j = 1, ..., n$), $a_{n+1,n+1} = \phi_k^{-1}(2)$. Finally we choose a number r_{n+1} satisfying

$$
\max\{|a_{n+1,n+1}|, \frac{r_n+1}{2}\} < r_{n+1} < 1.
$$

This completes the inductive step.

By properties (2) and (4) the sequence f_n converges locally uniformly in Δ to a holomorphic map $F: \Delta \to X$. Aided by property (1) we also control $d(f(z), F(z))$ for $z \in \Delta_r$. Since the Poincaré metric is complete, property (5) insures that for every fixed $j \in \mathbb{N}$ the sequence $a_{j,n} \in \Delta$ $(n = j, j + 1, \dots)$ has an accumulation point b_j inside of Δ , and (3) implies $F(b_j) = s_j$ for $j = 1, 2, \ldots$. Hence $S \subset F(\Delta)$. \Box

4. Singular spaces

We use an example of Kaliman and Zaidenberg [7] to show that for a complex spaces X with singularities the set of maps $\Delta \to X$ with dense image need not be dense in $Hol(\Delta, X)$. We denote by $Sing(X)$ the singular locus of X.

Proposition 3. There is a singular compact complex surface *S*, a non-constant holomorphic map $f: \Delta \to S$ and an open neighbourhood Ω of f in $Hol(\Delta, S)$ such that $g(\Delta) \subset Sing(S)$ for every $g \in \Omega$.

Proof. In [7] Kaliman and Zaidenberg constructed an example of a singular surface *S* with normalization $\pi: Z \to S$ such that *S* contains a rational curve $C \simeq \mathbb{P}^1$ while *Z* is smooth and hyperbolic. Denote by d_Z the Kobayashi distance function on *Z*. We choose two distinct points $p, q \in C$ and open relatively compact neighbourhoods *V* of *p* and *W* of *q* in *S* such that $\overline{V} \cap \overline{W} = \emptyset$. The preimages $\pi^{-1}(\overline{V})$ and $\pi^{-1}(\overline{W})$ in *Z* are also compact, and since *Z* is hyperbolic we have

$$
r = \min\{d_Z(x, y) \colon x \in \pi^{-1}(\overline{V}), y \in \pi^{-1}(\overline{W})\} > 0.
$$

Fix a point $a \in \Delta$ with $0 < d_{\Delta}(0, a) < r$ and let Ω consist of all holomorphic maps $g: \Delta \to S$ satisfying $g(0) \in V$ and $g(a) \in W$. Since both p and q are lying on the rational curve *C*, there is a holomorphic map $g: \Delta \to C$ with $g(0) = p \in V$ and $g(a) = q \in W$; hence the set Ω is not empty. Clearly Ω is open in $Hol(\Delta, S)$.

To conclude the proof it remains to show that $g(\Delta) \subset Sing(S)$ for all $g \in$ $Ω.$ Indeed, a holomorphic map $g: Δ → S$ with $g(Δ) ∉ Sing(S)$ admits a holomorphic lifting $\widetilde{g}: \Delta \to Z$ with $\pi \circ \widetilde{g} = g$. If $g \in \Omega$ then by construction

$$
d_Z(\widetilde{g}(0), \widetilde{g}(a)) \ge r > d_\Delta(0, a)
$$

which violates the distance decreasing property for the Kobayashi pseudometric. This contradiction establishes the claim. \Box

In particular, we see that in this example the set of all holomorphic maps $f: \Delta \to S$ with dense image *does not* constitute a dense subset of $Hol(\Omega, S)$.

References

- [1] B. Drinovec-Drnovšek, *Discs in Stein manifolds containing given discrete sets*, *Math. Z.*, **239** (2002), 683–702.
- [2] ———– , *Proper discs in Stein manifolds avoiding complete pluripolar sets*, *Math. Res. Lett.*, **11** (2004), 575–581.
- [3] ———– , *Proper discs in q-convex manifolds*, Preprint, March 2005. http://arXiv.org/abs/math/0503449
- [4] F. Forstneriˇc, J. Globevnik, *Discs in pseudoconvex domains*, *Comment. Math. Helv.*, **67** (1992), 129–145.
- [5] F. Forstneriˇc, *Holomorphic Submersions from Stein Manifolds*, *Ann. Inst. Fourier*, **54** (2004), 1913–1942.
- [6] J. Globevnik, *Discs in Stein manifolds*, *Indiana Univ. Math. J.*, **49** (2000), 553–574.
- [7] S. Kaliman, M. Zaidenberg, *Non-hyperbolic complex space with a hyperbolic normalization*, *Proc. Amer. Math. Soc.*, **129** (2001), 1391–1393.
- [8] J. Winkelmann, *Non-degenerate Maps and Sets*, *Math. Z.*, to appear. Online access: http://www.springerlink.com/index/10.1007/s00209-004-0732-2

Institut of mathematics, physics and mechanics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

E-mail address: franc.forstneric@fmf.uni-lj.si

Institut Elie Cartan (Mathématiques), Université Henri Poincaré Nancy 1, B.P. 239, F-54506 Vandœuvre-les-Nancy Cedex, France

E-mail address: jwinkel@member.ams.org Webpage: http://www.math.unibas.ch/~winkel/