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KAWAMATA–VIEHWEG VANISHING AS KODAIRA
VANISHING FOR STACKS

Kenji Matsuki and Martin Olsson

Abstract. We associate to a pair (X, D), consisting of a smooth variety with
a divisor D ∈ Div(X) ⊗ Q whose support has only normal crossings, a canonical
Deligne–Mumford stack over X on which D becomes integral. We then reinterpret
the Kawamata–Viehweg vanishing theorem as Kodaira vanishing for stacks.

1. Introduction

Let k be a field, and suppose given a pair (X, D), where X/k is a smooth
variety and D ∈ Div(X)⊗Q is a divisor whose support has only normal crossings.
Suppose further that there exists an integer n, prime to char(k), for which nD
is integral. Our aim in this note is to explain how one can associate to (X, D) a
Deligne–Mumford stack X/X, which is the “minimal covering” of X on which
D becomes integral (see (4.1) for the precise properties of X ). In addition, we
explain, using the stack X , how the Kawamata–Viehweg vanishing theorem ([4],
[7], [11]) can naturally be interpreted as an application of Kodaira vanishing for
stacks.

There are no new vanishing theorems in this paper, except for explicitly stat-
ing a Kodaira vanishing theorem for Deligne–Mumford stacks, following Deligne,
Illusie, and Raynaud.

The note is organized as follows. In section 2 we present a Kodaira vanish-
ing theorem for Deligne–Mumford stacks. A Hodge theoretic approach to the
characteristic 0 version of this theorem had previously been considered by Starr
(private communication). In section 3 we recall some definitions and make a
few basic observations concerning log structures in the sense of Fontaine and
Illusie which will be needed in the construction of X . In section 4 we construct
the stack X and describe its basic properties. Then in section 5, we discuss the
Kawamata–Viehweg vanishing theorem.

2. Kodaira vanishing for stacks

Theorem 2.1. Let k be a field, and let X/k be a smooth proper tame Deligne–
Mumford stack of dimension d with projective coarse moduli space π : X → X.
Suppose that π is flat and let L be an invertible sheaf on X such that some power
of L descends to an ample invertible sheaf on X.
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(i). If char(k) = 0, then Hj(X ,Ωi
X/k ⊗ L−1) = 0 for i + j < d.

(ii). If char(k) = p > 0, k is perfect with ring of Witt vectors W (k), and X
admits a smooth lifting to W2(k) := W (k)/(p2), then Hj(X ,Ωi

X/k ⊗ L−1) = 0
for i + j < inf(d, p).

Theorem (2.1) is proven by the same argument used in the proof by Deligne,
Illusie, and Raynaud of the Kodaira vanishing theorem ([2], 2.8). We indicate
here only the argument needed for the reduction from characteristic 0 to charac-
teristic p, and a basic proposition. The rest of the proof can then be transcribed
word for word from (loc. cit.).
Reduction to positive characteristic.

This is fairly standard using the classical argument for schemes ([3]. IV.8.10.5
(xii)). However, we explain the reduction since it uses a non–trivial result about
stacks: Chow’s lemma for Deligne–Mumford stacks ([9], 16.6.1). So consider
X/k where k is a field of characteristic 0, and choose a presentation for X .
That is, suppose X is defined by affine schemes U and R together with maps
s, b : R → U (source and target), ε : U → R (identity), i : R → R (inverse),
m : R ×s,U,b R → R (composition), such that the finitely many conditions for
these to define an étale groupoid in schemes are satisfied ([9], 2.4.3). Since all
these schemes are affine of finite type over k, we can find a finitely generated
integral Z–algebra A ⊂ k, and an étale groupoid in schemes (Ũ , R̃, s̃, b̃, , ĩ, m̃)
over A inducing our groupoid over k. Thus we obtain a Deligne–Mumford stack

g : X̃ −→ Spec(A)(2.1.1)

inducing X . Now by ([9], 16.6.1), there exists a projective scheme Y/k together
with a proper surjective morphism f : Y → X . After localizing on Spec(A)
(and using ([9], 4.18)), we can therefore find a projective scheme Ỹ and a map
f̃ : Ỹ → X̃ . Now the condition that the map f̃ is proper and surjective is
equivalent to the condition that the induced map of schemes Ỹ ×X̃ Ũ → Ũ is
proper and surjective, and hence after localizing on Spec(A) we can assume that
f̃ is proper and surjective. From this it follows that X̃ is proper over Spec(A).
Let π̃ : X̃ → X̃ be its coarse moduli space. There is a maximal open substack
of X̃ which is smooth over Spec(A) and flat over X̃, and since X̃ is proper over
Spec(A) this implies that after localizing on Spec(A), we can assume that X̃/A
is tame and smooth and that π̃ is flat. Now giving the invertible sheaf L on X is
equivalent to giving a morphism X → BGm. Hence by ([9], 4.18), we can after
further localization on Spec(A) find a sheaf L̃ on X̃ inducing L such that some
tensor power of L̃ descends to an ample invertible sheaf on X̃.

Lemma 2.2. Let X/S be a tame Deligne–Mumford stack of finite type over a
noetherian scheme S, and suppose the map π : X → X from X to its coarse
moduli space is flat. Then
(i). If F is a coherent sheaf on X , then Riπ∗F = 0 for i > 0, and the formation
of π∗F is compatible with arbitrary base change S′ → S.
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(ii). If E is a locally free sheaf on X , then π∗E is locally free on X.
(iii). If X is Cohen–Macaulay, then X is Cohen–Macaulay.

Proof. It is well known that étale locally on X, the stack X is isomorphic to
[U/Γ], where U = Spec(R) is an affine scheme and Γ is a finite group of order
invertible in R acting on U (see for example ([1], 2.2.3)). Moreover, in this
situation X = Spec(RΓ). Now if M is any RΓ–module with action of Γ, then
the invariant MΓ is a direct summand of M . Indeed, the map

m �−→ 1
|Γ|

∑
γ∈Γ

mγ ,(2.2.1)

defines a retraction M → MΓ. From this (i) and (ii) follow. Statement (iii)
follows from this discussion combined with ([5], remark 2.3).

It follows from the lemma and standard base change theorems for cohomology
on projective schemes, that after localizing on Spec(A), we may assume that the
groups Rjg∗(Ωi

X̃/A
⊗ L̃−1) are locally free on Spec(A) of constant rank, and

compatible with base change. Let T be the scheme–theoretic closure of a closed
point of Spec(A⊗Q). The scheme T is quasi–finite and flat over Spec(Z). Choose
a closed point t ∈ T at which T/Z is étale and for which char(k(t)) > d. Then
X̃ ⊗ k(t) admits a lifting to W2(k(t)), and so it suffices to prove the theorem
for the pair (X̃ ⊗ k(t), L̃ ⊗ k(t)). This concludes the reduction to the positive
characteristic case.

Proposition 2.3. Let k be a field, X/k a smooth tame Deligne–Mumford stack,
and π : X → X its coarse moduli space. Assume that X is projective and
that π is flat. Then if L is an invertible sheaf on X such that some tensor
power descends to an ample sheaf on X, there exists an integer N0 such that
Hj(X ,Ωi

X/k ⊗ L−N ) = 0 for j < d, all i, and all N ≥ N0.

Proof. Let b be an integer such that L⊗b = π∗M for some ample line bundle M
on X.

Because X is Cohen–Macaulay (2.2 (iii)), X has a dualizing sheaf ωX . Since
M is ample, there exists an integer l0 such that for j < d, all i, 0 ≤ r < b, and
l ≥ l0

Hd−j(X, ωX ⊗ (π∗(Ωi
X/k ⊗ L−r))∗ ⊗ M l) = 0,(2.3.1)

where (π∗(Ωi
X/k ⊗L−r))∗ denotes the dual of the locally free (by (2.2 (ii))) sheaf

π∗(Ωi
X/k ⊗ L−r). We claim that N0 = bl0 works in the proposition. Indeed, for

any N ≥ N0, write N = r + bl, where 0 ≤ r < b and l ≥ l0. Then applying (2.2
(i)) and Serre duality, we have

Hj(X ,Ωi
X/k ⊗ L−N ) = Hd−j(X, ωX ⊗ (π∗(Ωi

X/k ⊗ L−r))∗ ⊗ M l)∗ = 0(2.3.2)

for j < d.
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3. Locally free log structures

The stack X in (4.1) will be constructed as a moduli space classifying certain
log structures (in the sense of Fontaine and Illusie ([6])). Thus before giving
the construction and proving (4.1) in the next section, we review some basic
definitions and results concerning log structures and introduce some terminology.
For more details about log structures see ([6]).

Fix a scheme X. In what follows all monoids are commutative with unit.

Definition 3.1 ([6], 1.1 and 1.2). A prelog structure on X is a sheaf of monoids
M on the étale site of X together with a map of sheaves of monoids α : M → OX ,
where OX is viewed as a monoid under multiplication. We usually abuse notation
and write simply M for the prelog structure (M, α). A prelog structure M is
a log structure if the map α−1(O∗

X) → O∗
X is an isomorphism. A morphism of

(pre-)log structures (N , β) → (M, α) is a map ρ : N → M of sheaves of monoids
such that α ◦ ρ = β.

Observe that for a log structure α : M → OX , the isomorphism α−1(O∗
X) �

O∗
X identifies the sheaf of invertible elements in M with O∗

X . We denote by M
the quotient of M by O∗

X .
By ([6], 1.3), the inclusion functor

(log structures on X) → (prelog structures on X)(3.1.1)

has a left adjoint which we denote by N �→ N a. The log structure N a is called
the log structure associated to N . Explicitly for a prelog structure α : N → OX

the log structure N a is obtained as the pushout of the diagram

α−1(O∗
X) −−−−→ N�

O∗
X

(3.1.2)

with the natural map N a → OX . A log structure M on X is called fine if étale
locally on X there exists a finitely generated integral monoid P and a map of
monoids P → Γ(X,M) such that the induced map P → M from the constant
sheaf P identifies M with the log structure associated to the prelog structure

P → M → OX .(3.1.3)

Such a map P → Γ(X,M) is called a chart for M.

Example 3.2 ([6], 1.5 and 2.5). Let X/k be a smooth scheme over a field k and
let D ⊂ X be a divisor with normal crossings. Define M ⊂ OX to be the
subsheaf of monoids which to any étale map U → X associates the monoid of
functions f ∈ OX(U) whose restriction to U ×X (X −D) is invertible. Then M
is a log structure on X. Moreover, by our assumptions there exists étale locally
on X an étale morphism

X → Spec(k[x1, . . . , xn]),(3.2.1)
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for some n, such that D is equal to the inverse image of the divisor {x1 · · ·xr = 0}
for some r ≤ n. In this local situation, the log structure M can be described as
the log structure associated to the chart Nr → OX sending the i–th generator
ei of Nr to xi. In particular, M is a fine log structure on X.

The following result is a key technical tool used to construct charts:

Lemma 3.3 ([6], 2.10). Let M be a fine log structure on X and x̄ → X a
geometric point. Assume given a surjection of groups G → Mgp

x̄ (where Mx̄ →
Mgp

x̄ denotes the universal map from Mx̄ to a group) and set P := G×Mgp
x̄
Mx̄.

Then any lifting P → Mx̄ of the projection P → Mx̄ extends to a chart for M
in some étale neighborhood of x̄.

Remark 3.4. In the above Lemma, and in the discussion below, we freely use the
notion of the stalk of an étale sheaf F at a geometric point x̄ → X. Recall that
for such a sheaf F , the stalk Fx̄ is the limit lim−→F(U) taken over the inductive
system of commutative diagrams

(3.4.1)

X,

U x̄
✛

❄

�
�

�
�✠

where U/X is étale. In particular, the stalk OX,x̄ denotes the strict henselization
of the local ring of X at the image of x̄.

Recall that if P is a unit free monoid (i.e. the unit element 0 ∈ P is the only
invertible element in P ), then an element p ∈ P is called irreducible if for every
p1, p2 ∈ P for which p = p1 + p2, either p1 = p or p2 = p. We denote the set of
irreducible elements in P by Irr(P ).

Definition 3.5. (i). A monoid F is called free if it is isomorphic to Nr for some
r. The integer r is uniquely determined and is called the rank of F .
(ii). A morphism ϕ : F1 → F2 between free monoids is called simple if F1

and F2 have the same rank, ϕ is injective, and if for every irreducible element
f1 ∈ F1 there exists an irreducible element f2 ∈ F2 and an integer n such that
nf2 = ϕ(f1).
(iii). A locally free log structure on X is a fine log structure M on X such that
for every geometric x̄ → X the monoid Mx̄ is free.
(iv). A morphism ϕ : M1 → M2 between locally free log structures on X is
called simple if for every geometric point x̄ → X, the map ϕx̄ : M1,x̄ → M2,x̄

is simple in the sense of (ii) above.

Remark 3.6. If ϕ : F1 → F2 is a simple morphism as in (3.5 (ii)), then for each
f1 ∈ Irr(F1), the element f2 ∈ Irr(F2) for which there exists an integer n such
that nf2 = ϕ(f1) is uniquely determined. From this it follows that ϕ induces a
canonical bijection Irr(F1) → Irr(F2).
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Lemma 3.7. Let ϕ : M1 → M2 be a simple morphism of locally free log struc-
tures on X, and let β1 : Nr → M1 be a chart for M1. Let x̄ → X be a geometric
point, and suppose given a surjective map β̄2 : Nr → M2,x̄ and integers {bi}r

i=1

prime to the characteristic of k(x̄) such that the diagram

Nr ρ−−−−→ Nr

β̄1

� �β̄2

M1,x̄
ϕ̄x̄−−−−→ M2,x̄

(3.7.1)

commutes, where ρ := ⊕(×bi). Then in some étale neighborhood of x̄, there
exists a chart β2 : Nr → M2 lifting β̄2 such that the diagram

Nr ρ−−−−→ Nr

β1

� �β2

M1
ϕ−−−−→ M2

(3.7.2)

commutes.

Proof. By (3.3), it suffices to find a lifting β2 : Nr → M2,x̄ lifting β̄2 such that
the diagram

Nr ρ−−−−→ Nr

β1

� �β2

M1,x̄
ϕ−−−−→ M2,x̄

(3.7.3)

commutes. For this, choose for each 1 ≤ i ≤ r a lifting mi ∈ M2,x̄ of β̄2(ei),
where ei denotes the i–th standard generator for Nr. By the commutativity of
(3.7.1), there exists a unit ui ∈ O∗

X,x̄ such that λ(ui) + bimi = ϕ(β1(ei)), where
λ : O∗

X,x̄ → MX,x̄ denotes the canonical inclusion. Since by assumption bi is
invertible on X, there exists a unit vi ∈ O∗

X,x̄ such that vbi
i = ui. Replacing mi

by mi+λ(vi), we can therefore find units mi ∈ M2,x̄ such that bimi = ϕ(β1(ei)).
That is, a map β2 : Nr → M2,x̄ such that (3.7.3) commutes.

4. Construction of X
Theorem 4.1. Let X/k be a smooth scheme over a field k, D =

⋃
i∈I Di ⊂ X

a divisor with normal crossings, and {bi}i∈I a collection of positive integers
prime to char(k). Attached to this data is a canonical pair (X , D̃ =

⋃
i∈I D̃i),

consisting of a smooth tame Deligne–Mumford stack π : X → X together with a
normal crossings divisor D̃ ⊂ X such that:
(i). The map π is finite and flat, identifies X with the coarse moduli space of
X , and is an isomorphism over X − D.
(ii). The pullback π∗OX(−Di) is equal to OX (−biD̃i) as a subsheaf of OX .
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(iii). For any collection {ai}i∈I of positive integers with bi � ai, there is a natural
quasi–isomorphism

Ωj
X/k(log D) ⊗OX(−

∑
i

�ai/bi�Di) −→ Rπ∗(Ω
j
X/k ⊗OX (−

∑
i

aiD̃i)),

(4.1.1)

where for q ∈ Q, we denote by �q� := inf{p ∈ Z|p ≥ q}.
(iv). Let MX denote the log structure on X associated to the divisor D, and
suppose A → k is a surjective map from an Artin local ring A. Then associated
to any log smooth lifting (X̃,MX̃) of (X,MX) to Spec(A), there is a canonical
smooth lifting X̃ of X to Spec(A).
(v). If f : Y → X is a finite flat morphism from a smooth variety Y/k for which
f∗(

∑
i

1
bi

Di) is integral with support a divisor with normal crossings, then there
exists a unique map Y → X over X.

Proof. Let MX be the locally free log structure associated to the divisor D as in
(3.2). If x̄ → X is a geometric point, let C(x̄) denote the irreducible components
of the inverse image of D in Spec(OX,x̄).

Lemma 4.2. For every geometric point x̄ → X there is a canonical isomor-
phism MX,x̄ � ⊕

C(x̄) N.

Proof. It suffices to establish a bijection Irr(MX,x̄) → C(x̄). We do so by
sending an irreducible element m̄ to the component defined by the ideal (α(m)),
where m ∈ MX,x̄ is any lifting of m and α : MX,x̄ → OX,x̄ is the logarithm
map. That this is well–defined and a bijection can be verified after replacing
X by an étale cover. Hence it suffices to consider the case when x is the point
x1 = · · · = xn = 0 on X = Spec(k[x1, . . . , xn]) and D = Z(x1 · · ·xr), for some n
and r. In this case the result is clear.

If f : Y → X is any morphism of schemes, and f∗MX → M is a simple
morphism on Y , where MX and M are locally free log structures on X and Y
respectively, then for every geometric point ȳ → Y with image x̄ = f(ȳ), the
map

MX,x̄ −→ Mȳ(4.2.1)

has by (4.2) and (3.6) a canonical decomposition

⊕(×ci) :
⊕
C(x̄)

N −→
⊕
C(x̄)

N,(4.2.2)

where {ci} is a collection of positive integers indexed by C(x̄).
Define π : X → X to be the fibered category whose fiber X (Y ) over f : Y → X

is the groupoid of simple morphisms of log structures ϕ : f∗MX → M, such
that for each geometric point ȳ → Y with x̄ = f(ȳ), the integer ci associated to
a component Ci ∈ C(x̄) is equal to the integer bi attached (by our assumptions)
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to the component Di ⊂ X containing the image of Ci under the natural map
Spec(OX,x̄) → X. A morphism

ρ : (ϕ1 : f∗MX → M1) −→ (ϕ2 : f∗MX → M2)(4.2.3)

in X (Y ) is an isomorphism of log structures ρ : M1 → M2 such that ρ◦ϕ1 = ϕ2.
With the natural notion of pullback, X is a fibered category. Moreover, because
X classifies étale sheaves, X is a stack with respect to the étale topology.

Lemma 4.3. The stack X is a Deligne–Mumford stack. If X is equal to
Spec(k[x1, . . . , xn]) and Di = Z(xi) for 1 ≤ i ≤ r, then X is canonically isomor-
phic to

[Spec(k[y1, . . . , yn])/µb1 × · · · × µbr ],(4.3.1)

where k[y1, . . . , yn] is viewed as a k[x1, . . . , xn]–algebra via the map induced by

xi �→
{

ybi
i if i ≤ r
yi if i > r,

(4.3.2)

and µb1 × · · · × µbr
acts by

(u1, . . . , ur) · yi =
{

uiyi if i ≤ r
yi if i > r.

(4.3.3)

Proof. Since X is a stack with respect to the étale topology, the assertion that X
is a Deligne–Mumford stack can be verified étale locally on X. Thus it suffices
to prove the second statement. Let us temporarily denote the stack (4.3.1) by
X ′. By ([10], 5.20), X ′ is canonically isomorphic to the stack which to any
f : Y → X associates the groupoid of morphisms of log structures f∗MX → M
together with a map β̄′ : Nr → M which étale locally lifts to a chart, such that
the diagram

Nr ⊕(×bi)−−−−→ Nr

β̄

� �β̄′

f−1MX −−−−→ M

(4.3.4)

commutes, where β̄ denotes the map induced by the standard chart on MX .
It follows that there is a natural functor F : X ′ → X which simply forgets the
additional data of the map β̄′. By (3.7), every object of X (Y ) is étale locally
in the essential image of F , so to prove that F is an equivalence, it suffices to
prove that it is fully faithful. This amounts to the following statement. Given
two objects (ϕi : f∗MX → Mi, β

′
i) of X ′(Y ), any isomorphism ρ : M1 → M2,

such that ρ ◦ ϕ1 = ϕ2, has the property that ρ̄ ◦ β̄′
1 = β̄′

2, where ρ̄ : M1 → M2

denotes the map induced by ρ. But this is clear, for since M2 has no units, two
maps Nr → M2 are equal if and only if their restrictions to the image of ⊕(×bi)
are equal. Thus F is fully faithful, and the lemma follows.



KAWAMATA–VIEHWEG VANISHING AS KODAIRA VANISHING FOR STACKS 215

We can now complete the proof of (4.1). We define D̃i to be the unique
reduced closed substack of X whose support is equal to the support of the
closed substack defined by π∗OX(−Di). By the local description of X given
above, D̃ :=

⋃
D̃i is a reduced divisor with normal crossings, and (4.1 (ii))

holds. Also the local description of X in (4.3) implies that X is the coarse
moduli space of X (see for example ([1], 2.3.3)).

To see (4.1 (iii)), note first that since Ωj
X/k(log D̃) = π∗Ωj

X/k(log D) and
ai < bi�ai/bi� for all i (since bi � ai), there is a natural map

π∗(Ωj
X/k(log D) ⊗OX(−

∑
i

�ai/bi�Di)) −→ Ωj
X/k ⊗OX (−

∑
i

aiD̃i),(4.4.1)

which by adjoint induces a map

Ωj
X/k(log D) ⊗OX(−

∑
i

�ai/bi�Di) −→ π∗(Ω
j
X/k ⊗OX (−

∑
i

aiD̃i)).(4.4.2)

Moreover, Riπ∗(Ω
j
X/k ⊗OX (−∑

i aiD̃i)) = 0 for i > 0 by (2.2 (i)), so there is a
natural quasi–isomorphism

π∗(Ω
j
X/k ⊗OX (−

∑
i

aiD̃i)) � Rπ∗(Ω
j
X/k ⊗OX (−

∑
i

aiD̃i)).(4.4.3)

Thus to show (4.1 (iii)), it suffices to show that the map (4.4.2) is an isomor-
phism. This can be verified étale locally on X, and so we need only consider X
and X as in (4.3). In this case, the assertion amounts to the statement that a
j–form

yα1
1 · · · yαr

r dyi1 ∧ · · · ∧ dyij
,(4.4.4)

with αi ≥ ai for all i, is invariant under the action of µb1 × · · · × µbr if and only
if bi|αi and αi/bi ≥ �ai/bi� for i /∈ {i1, . . . , ij} and bi|(αi + 1) and (αi + 1)/bi ≥
�ai/bi� for i ∈ {i1, . . . , ij}. This follows immediately from the definition of the
action.

As for (4.1 (iv)), let X̃ be the fibered category on the category of X̃–schemes,
which to any f : Y → X̃ associates the groupoid of morphisms of log structures
f∗MX̃ → M which when pulled back to Y ⊗A k defines an object of X (Y ⊗A k).
Since (X̃,MX̃) is log smooth over Spec(A), it follows from the structure theorem
for log smooth morphisms ([6], 3.4) that étale locally on X̃, the log scheme
(X̃,MX̃) is isomorphic to Spec(A[x1, . . . , xn]) with log structure defined by

Nr −→ A[x1, . . . , xn], (i1, . . . , ir) �→ xi1
1 · · ·xir

r ,(4.4.5)

for some n and r. From this and the same argument used in the proof of (4.3),
it follows that X̃ is a smooth lifting of X .

To prove (4.1 (v)), we have to attach to any f : Y → X as in the theorem,
a unique (up to unique isomorphism) object f∗MX → M of X (Y ). Since f is
flat, f∗MX is a subsheaf of OY . From this it follows that M is also a subsheaf
of OY . Moreover, we can completely characterize the sheaf M as follows. Etale
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locally on X, we can find a chart Nr → MX for the log structure on X. For each
generator ei ∈ Nr, let fi be its image in OX and let bi denote the corresponding
integer attached to the component of D defined by fi. By assumption, there
exists étale locally on Y an element gi ∈ OY , well defined up to multiplication
by a root of unity, with gbi

i = fi. The log structure M is then the subsheaf of
monoids of OY generated by the gi and O∗

Y . This also proves the existence.

5. The Kawamata–Viehweg vanishing theorem

Let k be a field, X/k be a smooth projective variety of pure dimension d,
and E =

∑
i aiDi ∈ Div(X) ⊗ Q a Q–divisor, where the Di are the distinct

irreducible components. Define the integral part [E], the round up �E�, and the
fractional part 〈E〉 by

[E] :=
∑

[ai]Di(5.0.1)

�E� :=
∑

�ai�Di = −[−E](5.0.2)

〈E〉 :=
∑

〈ai〉Di = E − [E],(5.0.3)

where for r ∈ R we write [r] := max{t ∈ Z|t ≤ r}. We suppose that the support
of 〈E〉 is a divisor D with normal crossings, and denote by MX the associated log
structure on X (3.2). The following version of the Kawamata–Viehweg vanishing
theorem can be found in ([8], 1–2–2):

Theorem 5.1. Let X/k and E ∈ Div(X) ⊗ Q be as above, and assume in
addition that E is ample.
(i). Suppose char(k) = 0. Denote by Ω1

X(log D) the sheaf of differentials on X
with log poles along D, and by Ωi

X(log D) its i–th exterior power. Then

Hj(X, Ωi
X(log D) ⊗OX(−�E�)) = 0 for i + j < d.(5.1.1)

(ii). Suppose k is perfect and let W2(k) denote the reduction modulo p2 of the
ring of Witt vectors of k. Suppose further that the smooth log scheme (X,MX)
admits a log smooth lifting to W2(k). Then

Hj(X, Ωi
X(log D) ⊗OX(−�E�)) = 0 for i + j < inf(d, p).(5.1.2)

Proof. Write 〈E〉 =
∑

i(ai/bi)Di with (ai, bi) = 1. Note that by the openness of
the ample cone, we can replace the rational numbers ai/bi by any other rational
numbers sufficiently close to the ai/bi without changing the statement of the
theorem. Thus in the positive characteristic case, we may assume that the
integers bi are prime to p. Let π : X → X be the stack associated to the data
(X, D, {bi}) as in (4.1). Then by (4.1 (iii)), and the projection formula, we have

Hj(X, Ωi
X(log D) ⊗OX(−�E�)) = Hj(X ,Ωi

X/k ⊗OX (−π∗[E] −
∑

i

aiD̃i)).

(5.1.3)

Since (
∏

i bi)OX (π∗[E]+
∑

i aiD̃i) descends to an ample sheaf on X, the theorem
therefore follows from (2.1).
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Remark 5.2. The above theorem plays a crucial and indispensible role in car-
rying out the proofs for many key ingredients of the so-called Minimal Model
Program (MMP for short). The call for Kawamata–Viehweg vanishing, going be-
yond the classical Kodaira vanishing, is more apparent when we have to deal with
the singularities that MMP inevitably brings in higher dimensions (dim ≥ 3).
This is usually perceived as a technical calamity rather than an indication of any
essential point. We wonder and/or speculate, however, that, once we have an
interpretation of Kawamata–Viehweg vanishing as a version of Kodaira vanish-
ing for stacks as in this note, there may be some smooth stacks floating around
behind the whole game of MMP, and the singularities of MMP we only observe
as we look at the coarse moduli of these smooth stacks.
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