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EXISTENCE AND UNIQUENESS OF THE SOLUTION TO
THE MODIFIED SCHRODINGER MAP

JUN KATO

ABSTRACT. We prove the local existence of the solution to a certain system of
nonlinear Schrédinger equations arising from Schrodinger maps for the initial data
in H*(R?) with s > 1/2. The uniqueness of the solution is also proved when the
data belong to H!(R?).

1. Introduction

We consider the initial value problem for the system of the nonlinear Schré-
dinger equations in two space dimensions

(i 0y + Auy = —2i A - Vug + Buy + |A]*uy
+ i Im(ua®y )ug, (t,z) € (0,T) x R,
(MSM) { i Osug + Aug = —2i A - Vug + Bug + |APus
+ i Im(uiTo)uy, (t,2) € (0,T) x R,

u1(0,z) = ué(m), uz(0,x) = u%(x), z € R?,

where uq, ug are complex valued functions (we set u = (uy,u2) in the following),
and A = (Aq[u], A2[u]), B = Bu] are defined by

(11) AJ['LL] =312 Gj * Im(ulﬂg), j = 1,2,
1 2 1 =
1.2 = = -
(1.2) Gi(2) 27 |z|?’ Ga(2) 27 |x|?’
2
(1.3) Blul = F ) 2R;RiRe(u;tx) T 2ul>.
G k=1

Here, for a complex number z, Re z and Im z denotes the real part of z and the
imaginary part respectively, and R; = 9; (—A)~'/2 denotes the Riesz transforms.
We notice that

divA=0 and rotA= 81142 — 82141 =42 Im(ulﬂg)

hold from the definition of A. These properties are used effectively to construct
the solution to (MSM) for the low regularity initial data.
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The system (MSM) above is called the modified Schrédinger map which is
derived by Nahmod-Stefanov-Uhlenbeck [11] from Schrédinger maps from RxR?
to the unit sphere S? or to the hyperbolic space H? by using appropriate gauge
change. The sign + corresponds to the each case respectively. As for the modified
Schrodinger map, Nahmod-Stefanov-Uhlenbeck [12] showed the existence and
uniqueness of the solution for the data ug € H*(R?) with s > 1 by using the
energy method. In this paper, we show the improvement of their result.

Theorem 1.1. Let uy € H*(R?) with s > 1/2. Then, there exists T > 0
satisfying

min{1, O/ ((1 + [luoll =) luollfe) } <T <1,
and at least one solution u € L>(0,T; H®) N C([0,T]; L?) to (MSM) such that
(1.4) Jou € LP(0,T; L9),
where JO = (I —AY/2, s —1/2>8>2/¢>0, and 1/p=1/2—1/q.

Remark 1.2. (1) The modified Schrédinger map is invariant with respect to the
scale transformation

u(t, ) — Au(\?t,A\x), X > 0.

Then, the scaling argument suggests that the critical space for the local well-
posedness of the Cauchy problem (MSM) is L?(R?). We also notice that (MSM)
conserves the L?-norm (see Proposition 2.5 below).

(2) Since the modified Schrodinger map is derived as the first order derivatives of
the original Schrodinger map (see [11, Theorem 2.1]), the local well posedness of
(MSM) in H® corresponds to the local well-posedness of the original Schrodinger
map in H5t1

(3) As is pointed out in [11, §3], it is not possible to go back directly from
the solution of the (MSM) to the original Schrédinger map. However, a priori
estimate and the estimate on the time of existence on the smooth solution to
(MSM) are made use of in order to construct the low regularity solution to the
Schrédinger map. See [11, §3] for details.

(4) After this work was completed, the author was informed that Kenig-Nahmod
obtained the similar result for the Ishimori system ([7]). For the Ishimori sys-
tem, see [9] and references therein. It is known that the Ishimori system is a
generalization of the Heisenberg model for a ferromagnetic spin system, which
is equivalent to the Schrédinger map in the case where the target manifold is S?
(see [4, §1]).

In Theorem 1.1, the uniqueness of the solution is not obtained. However, for
the uniqueness of the solution to (MSM) we obtain the following result by using
the Vladimirov’s argument [17] (see also [14]).
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Theorem 1.3. Let ug € L?>(R?). We assume that u and v are solutions to
(MSM) on (0,T) x R? in the distribution sense with the same data uqy satisfying

u, v € C([0,T]; L*(R?)),
lullLeerrs < M, |vl|peems < M,

for some constant M > 0. Then, we have u(t) = v(t) in L*(R?) for 0 <t <T.

Corollary 1.4. If we assume ug € H'(R?), then the solution in the class of
Theorem 1.1 is uniquely determined.

For the proof of Theorem 1.1 we use the compactness argument. Because the
local well-posedness for smooth data is already known, our task is to show a
priori estimate for the solution to (MSM). To recover the loss of the derivatives
caused by the nonlinearity, the following type of estimate

(15) 7o wl228 S Nl e geasorer + IF g e

for the solution to i0;w + Aw = F is crucial in our argument, where p, ¢ are the
admissible exponent for Strichartz estimates (see Proposition 2.6 below for the
precise statement). Compared with the usual Strichartz estimate

[P wllzg g S lw(O)[as + [1Flly e

estimate (1.5) says that we have a gain of the regularity 1/2 on the inhomoge-
neous term at the cost of a loss of the regularity 1/2 4+ &’ on the homogeneous
term. This type of estimate is first appeared in Koch-Tzvetkov [10] in the context
of the Benjamin-Ono equation.

Throughout this paper we use the following notation. We denote by for Ff
the Fourier transform of f. We denote J° = (I — A)*/? and D* = (—A)%/2.
H* is the Sobolev space whose norm is defined by || f||zs = ||J*f||12, and H*
is the homogeneous Sobolev space whose semi-norm is defined by | flz4. =
|D* fll2. The function space LP(0,T; L4(R?)) is simply described by LY.L4,
and L>(0,T; H*(R?)) is also L HS. We also denote U (t) = 2.

This paper is organized as follows. In section 2, we prepare the basic esti-
mates. In section 3, we show a priori estimates of the solution and give the proof
of Theorem 1.1. In section 4, we give the proof of Theorem 1.3.

Acknowledgement. The author would like to thank Professor Yoshio Tsutsumi
for valuable advice and encouragement.

2. Linear estimates and the energy estimate

In this section, we prepare the linear estimates and the energy estimate which
we use for the proof of Theorems 1.1, 1.3. We first state the Strichartz estimates.
For the proof, see [2] for example.
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Lemma 2.1. Let n = 2. We assume 2 < p < 00, 2 < ¢ < oo, and 1/p =
1/2 —1/q. Then, the following estimates hold.

(2.1) U@ fllzes S IFNz2s

(2.2) H/ (t— ) F(¢)

Lemma 2.2. For s> 0,1 <p < 0o, we have

ID*(f9)llLe S NF e 1D?gllLee + llgllzr [D* fllzr,
172 Dllee S M fllzes [T gllLez + llgllr 197 fllr2

where 1/p=1/p1 + 1/pa = 1/r1 + 1/ry with p < py,7r1 < 0.

g 5 1F ey
T T

~ || D® f||» and
Fe, = ||J°fllre for 1 < p < oco. O

Proof. See [3, Proposition 1.2], for example.

The Hardy-Littlewood-Sobolev inequality below is used to estimate the po-
tential term of the equation. For the proof, see [15, V. §1] for example.

Lemma 2.3. Let n =2. For 0 < o < 2, we define the operator I, by

B f()
Iaf($) - /RZ |SU _ y|2_a dy

If1/qg=1/p—a/2, 1 < p < 2/a, then we have
o flloam2)y S I fllzer2)-
Below we collect the estimates on the potential term A defined by (1.1).

Lemma 2.4. We assume s >0, 1 >0 >2/qg >0, and 2 < p < o0 if s > 0;
2<p<ifs=0. Then, we have

(2.3) IVAl g S lullzee llull -
(2.4) VAl < llullpe | ul o,
(2.5) 1Az < 21l Lo,
(2.6) 1D AllLe S llullze l[ull .

Proof. We first notice that

(2.7) OkA; = CRL Ry Im(uiTg),

where 7/ =2 if j =1, and j/ = 1 if j = 2. This is a consequence of the fact that
FlonA;) = C&.G;(€) Flim(ui)],

and (/;\](é) = C¢&;/|¢|?, since the Riesz transforms R; is defined by f%:f =
—i&;/|€| f. For the Fourier transform of G, see [15, III. §3] for example.
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Using (2.7) and Lemma 2.2 it is easy to see that

2

IVAll e S D I RiR; D Tm(un i) 2
ij=1

S

D® Im(uyuiz) |2 S llullze< [|ul 4

since the Riesz transforms are bounded on LP for 1 < p < co. Similarly, using
(2.7) and the Sobolev embedding, we have

2
IVA| e S 1T RiRjTm (usThy )| Lo
ij=1
SN Im(un o)l S [lull o< || 72wl 1o,
where § > 2/q, and we applied Lemma 2.2 for the last inequality. For the proof
of (2.5) we use Lemma 2.3. In fact, since |G;(z)| S 1/|z|, we have

1Az S 17° AllLe < [[12]° ()|

[
Since ¢ > 2, we are able to apply Lemma 2.3 for 1/g = 1/r — 1/2 to obtain

11117 T (ur@i2) || o S 1197 Im(ua@o) | e S Mlullz2 | 70wl o

The proof of (2.6) are divided into three cases. The case s = 0 is similar to
(2.5). In fact, we have

1Allze S Ialulllze S Ml < llullzellullze,

where r is determined by 1/p = 1/r — 1/2 with 2 < p < co. We next consider
the case 0 < s < 1. In this case, we first notice that

&

&2

Since FY¢;0 /I€177%]) = Cayr /|z]?T* (see [15, 111 §3] for example), we have
ID*Allze < [[Ti—slul[| 1, < Ml S Null zollull 2ra-o,

where r is determined by 1/p = 1/r — (1 — 5)/2 with 2 < p < co. Then, the

Sobolev embedding H*(R?) — L?>/(1=%)(R2?) (note that v € LP) enables us to

obtain (2.6). In the case where s > 1, we observe that from (2.8) F[D*®A;] is
written as
§jr

§12==

for 0 < ¢ < 1. Thus, similarly as above, we obtain
ID*Allr S |[Ti—|D* = Im(uy W) ||,
S D Im(ua )| 2

S ullze ID* ullp2ra-o S llullLe [ D*ul| L2,

~

(2.8) FID*Aj] = CIEP* G (€) Fllm(ww)] = C

F[Im(ulﬂg)]

FlD* 4] =C €17 F [ (w1 u)]

where 7 is determined by 1/p=1/r — (1 — ¢)/2 with 2 < p < 0. O
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We next prove the energy estimate for the solution to the modified Schrodinger
map.

Proposition 2.5. Let s > 0 and let u be a solution to (MSM) on (0,T) x R?.
Then, for T > 0, we have

(2.9) lull gerz = lluoll L2,
(210) HUHL%OHﬁ S ||U0HH3 exp{C(l + ||’LL0H%2) T2/q||J§U||%§Lg}7
where 6 >2/q¢>0,1/p=1/2—-1/q.

Proof. The conservation of the L2-norm (2.9) is easily obtained from the equa-
tion (MSM). In fact, multiplying the first equation in (MSM) by @; and inte-
grating over R”, and then taking the imaginary part, we obtain

Otl|ur(V)||72 = 2/Im(u2H1)Re(u2ﬂ1)dx,
since div A = 0, and B is real valued. Similarly, we obtain
Otl|uz(t)||72 = 2/Im(u1ﬂ2)Re(u1E2)d:U

= —2/Im(uQﬂ1)Re(u2E1)dx.

Thus, we obtain 9y ||u(t)||22 = O¢lju1 (¢)]|2 5+ ¢l|ua(t)||2. = 0 which implies (2.9).
For the proof of the energy estimate (2.10), we employ [12, Propositions 2]
which states

(2.11)
Aillu®)l%. S (IVAWD g llu(®) [ o + IVA@ oo 1wl o + 1 BE)u)]] g
HTA@ Pu®) || 7. + [T (@)m2 () u ) | ) 1u@)] .-

In what follows, we estimate each term on the right hand side of (2.11) to obtain
(2.10) assuming s > 0.
From (2.3) we have

(212) VAWl g-

ut)lpe S lu) e lu)ll o S 12w 20 lut)l] 4.
by the Sobolev embedding, where § > 2/q. Similarly, from (2.4) we have
IVAWD o= u)l e S )z | T u()]|allu(®)] g

S TP u®) 7o llul)]] .-

(2.13)

From the definition (1.3) we have

(2.14) [ B@u®)l g < D || (R RaRe(u; (8 (6))u(t)|| ;. + [[Ju®)Pu(®)]] ;.-
k=1
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As for the first term on the right hand side of (2.14), we apply Lemma 2.2 to
get

HDS (RijRe(ujﬂk) u) HLQ

S lulle | D* Ry Ry Re(u;tiy)| L2 + || Ry ReRe(u;tg) || | D ul| L2
< Mlull o= [|D*Re(wyig)[| 22 + [1° Ry RiRe(wyti) || Lo | D*ul| 12

S MullZ [1D%ul L2 + [|T° Re(ujtig) || Lal| Dl 2

S lullze 1D%ul 2 + [l oo | 2wl o | D*ul | 2.

Meanwhile, the following estimate of the second term on the right hand side of
(2.14)

(2.15) [D* (JulPu) || 2 < lullZoe [|D*ull 2

L2 ~

is also derived by applying Lemma 2.2 repeatedly. Thus, combining estimates
above we obtain

(2.16) 1B@u®) e < 170w Lallu(®)] gy

Here, we notice that the following estimate of the fifth term on the right hand
side of (2.11)

(2.17) |[Tm (s (8)a2 (1)) u(t) || . S Ilu() [ 1D ()] 2

is similarly obtained as (2.15). Finally we estimate the fourth term on the right
hand side of (2.11). Applying (2.5) and (2.6) we have

[D*(JAPu) || 12 < llullzes [ D*JAP]| 2 + 1AL D] e
S lullp=llAllz< | D* Al Lz + | AllZe< 1Dl 2

Sl lull oo (170wl ol e + [l 2ol T ul Lol ul -

2

(2.18)

< Nluoll 7= 12wl Za 1l 4o
Combining (2.11), (2.12), (2.13) (2.16), (2.17), and (2.18), we obtain
Bellu(®)[I%. < O+ [luollZ) T ul®) o lu(t)]| .-

Thus, applying the Gronwall inequality we have

T
o)l < ol exp (€1 + aali) [ 170t o)

Therefore, (2.9) and the Hoélder inequality with respect to the time integral
enables us to obtain (2.10). O

We finally state the crucial estimate for the proof of Theorem 1.1. This type
of estimate was first given by Koch-Tzvetkov [10] and refined by Kenig-Koenig
[8] in the context of the Benjamin-Ono equation.
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Proposition 2.6. Let T' < 1. We assume that w is a solution to the equation
(2.19) 10w+ Aw = Fy + Fy, (t,x) € (0,T) x R?.

Then, for s € R, & >0, we have

(2.20) 12wl zp g S 1wl pge provrsaee + 1 F1 o gyamrrz + 1 F2l Ly ag
where 1/p=1/2—1/q, 2 < q < oc.

Proof. The proof is essentially due to [8, Proposition 2.8]. We first introduce the
Littlewood-Paley decomposition. Let ¢ € C§°(R?) satisfy ¢(¢) = 1 for |£] < 1/2,

(&) = 0 for [¢] > 1. And we set 1(&) = (£/2) — ¢(€) and set (&) = 1(£/2")
for k > 0 so that suppn, C {2k=1 < J¢| < 2’““} and 1 = (&) + > o0 o me(€)-

Then, we define Ay by Akf = ka and Sy by Sof = gaf where g denotes the
Fourier transform of g. Using the notation above, it is known that

LT (R™)

ey = [ (19057 + S 1es1) |
k=0

holds for 1 < r < oo.

We next prepare the disjoint decomposition of the time interval [0,7] =
UT I, where I = laj, ajq1) satisfy |[;] = 277 for 1 < j < m —1 and
277 < |I,| < 277FL Then, we have m < 27, since (m — 1)277 + |[I,,| = T
implies 27 9m < T —277 4277 =T < 1.

Since 2 < ¢ < 00, using the Littlewood-Paley decomposition of J*w we have

Lerd

o 1/2
|7 wligas S || (1807 wl + 3 1Ak w?) |
k=0

2 — 2 1/2
S (17 SowliZy g + 1T Brwldy o)
k=0

For the last inequality above we used Minkowski’s integral inequality, since
p,q > 2. Before applying Strichartz estimates, we use the decomposition [0, 7] =
U7, I; to estimate JeALw as follows.

17°Akwll e g S 2% || Apw| L g

=2t (Z N
1/2
S 2 (Z ||Ak:w||2L§_Lg) ;
=1 ’

since [? — [P for p > 2. Since Ajw satisfies the following integral equation

(2.21) Agw(t) = U(t)Agw(a;) — z‘/t Ut —t")Ag(FL(t) + Fa(t))dt’

J
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for t € I;, applying Lemma 2.1 we have
1Akwliey rs S |Agw(ay)|7: + 1ARF Ly r2 + |1 ARE2 1y 12

Thus, we obtain

m

1/2

2Sk< 1ARw][7 L")

j=1

) m 1/2

<2 (1Aw(a)lGe + 1ARRE, ra + AR, 1) }

j=1

. , m ) 1/2 k
S 2 {mlavwlte s + Y ILINAEG, ra | + 2 1Ak Pall g 2

j=1 ’

S 26T 2R Al pee 2 + 207 VR AR Py 2 12 + 2% | Ak Fallpy g2
S 27 Ml grrsner + AT 2R 1z + 1A Ballg 2.

For the last term in the second inequality above, we used the triangle inequality
in {2 and then applied I* < [2. Combining the estimates above we obtain

|J°Agw| e ra

S 27wl o rosrvzver + 86T T2 P13 12 + | Ak Fal| Ly, 22
Meanwhile, applying Lemma 2.1 it is easy to see that

[°Sowllze r2 < [[Sow ()22 + [[SoF1llLyrz + [[SoF2ll Ly re
S lwllzzerz + 15072 Fillp2.p2 + 1907 Fall 1 pa
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Therefore, we obtain

(1750wl + 3 17 Avwly )
0¥l Le i EWILE LY

> 1/2
S (D22 Ml s )
T x
k=0

o 1/2
+ (HSOJS_I/zFlH%zTLg +y HAkJS_l/ZFlﬂizTLg)
k=0

el 1/2
+ (IS0 Bol3y 12 + DI AF P2, 12 )
k=0

> 1/2
!/
S (D027 ) il e
k=0

> 1/2
(o SR
k=0

L7L3

+] (18071 + kzzo ]AkJSF2\2>1/2‘

S ||w”L%°H;+1/2+E/ + HJS_1/2F1||L2TL§ + ”JSFzHLlTLg,

LY L2

where we applied Minkowski’s integral inequality again for the second inequality
above. This completes the proof of Proposition 2.6. O
3. A priori estimate

In this section, we prove a priori estimate for the solution to the modified
Schrodinger map applying the estimates in the preceding section. Then, using
the a priori estimate, we give the proof of Theorem 1.1.

Theorem 3.1. Let ug € H*(R?) and let u be a solution to (MSM). Then, for
any € > 0, there exists T satisfying

min{1,C/((1 + [|uol|%2)luol % or-)} T <1
and M > 0 such that
(3.1) 1 7%ull pg < Mluol groseve,
where e > 6 >2/g>0,1/p=1/2-1/q.

Proof. Applying Proposition 2.6 for s = §, F1 = —2iA - Vu;, and F» = Bu; +
| A]?u; + Im(ug®; )uj, we obtain

6
H‘] uHL‘%Lg IS ||u||L%oH;/2+5 + HA ’ VUHL%H;U%";

+ 1 Bull s + |[1APu]] 1y s + [T (u2t)ull oy s,
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where we substituted § + ¢’ = e. In what follows we estimate each term on the
right hand side of (3.2) to obtain (3.1).
The first term is easily estimated by applying energy estimate (2.10) directly,

ol e ar2e < ol gra/ave exp{C (1 + [|uollZ) T2/ ul7p 19 }-

As for the second term we notice that A-Vu = div (Au), since div A = 0. Using
this, we have

1AVl 3y oa2es S 1TV (Au) | g 02
S IDYVEH(Au) gz 2 + [ Aull 2 12
S lullzz poe D270 Al poo 12
+ [ Allzz o (IDY**oul e 2 + l|ullLger2)-
Then, applying (2.5), (2.6), we have
HDI/Q—H;AHL%"Lg < HUHL%OL:%HD1/2+5U||L;°Lg,
[Allz2 L < ||U||L;°L§||J6U||L2TL3-
Thus, combining (2.9) and the energy estimate (2.10), we obtain
1A Vull 2 1205 S Nullog e Il g no lull g praeves
< (U ol Ze 17l Zz o) lull oo prir2es
S lluollg/2+s exp{ C(1 + uollF2) T || ul|Z 10 }-

As for the third and the fifth term, we are able to use (2.16), (2.17) to obtain

[Bullpy prs + [T (uztin)ull 12 s

S ||=]6U”2L2TL3HUHL%°H6

S lluollss exp{C (L + |fuol|Z2) T/ 4|7 ul7p 14 }-
Similarly, we are able to use (2.18) to obtain

AR s S ol 150025 1o g s
< ol s exp{C(1 + uoll32) 970wl 1o .

Combining estimates above, we obtain
(33)  [1V%ullLg s < Colluollgraave exp{Cr (1 + [luoll72) T*/(| T ul| s o }-

Now we set K(T) = ||J°ul|2, ;4. Then, K(T) is a continuous function with
T xT

respect to T since 2 < p < oo, and (3.3) implies
(34)  K(T) < C2lluolPyuser. exp{2Cs (1 + luoll2) T>4K(T)}.
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If K(T) < Cge |lugl31/24. holds for 0 < T <1, then the conclusion of Theorem
3.1 follows. On the other hand, in the case of there exists T} € (0,1) such that
K(T1) > Cge |luol|3 2+, we set
To = inf{T > 0; K(T) > C{e||uo|31 /21 }-

Then, Ty > 0 and we have K(Ty) = Cge|luol[%1/21.. Thus, (3.4) with T = T
implies that

e < exp{2C1 (1 + l|uol132) To"*Ce uo 31 v }-
Therefore, we obtain the lower bound of Ty,

1
20§C1€)9/2 (1 + JJuol|72) luollfpa o

and for 0 < T < Ty, K(T) < K(Ty) = Cge |luol31/24. holds. This completes
the proof of Theorem 3.1. U

Tp >
(

Using Theorem 3.1, we are able to prove Theorem 1.1 as follows.

Proof of Theorem 1.1. Let p € C§°(R?) satisfy p(x) = 1 if |z| < 1, p(x) = 0 if
|z| > 2. Then, for ug € H*(R?) with s > 1/2 we define py(z) = 1/ ?p(z/))
and set u) = px * up and the corresponding solution u*. The existence of such
solution is assured by [12, Theorem 4] (see also [1, Theorem 2.1]).

From Theorem 3.1, u* has a priori uniform bound

(3.5) 17°uM e s < Mgl grove < CM o] grr/ose,
fore >§>2/¢q>0,1/p=1/2—1/q. Thus, by Proposition 2.5 we obtain
(3.6) luM | gz < Clluol = exp(CM?(1+ [[uol|Z2) w0l F1/24-)

where we notice that e can be chosen so that s > 1/2+ ¢ with £ > §. Note that
we may consider the solution u* exists on [0, T] satisfying (3.5), (3.6), where the
lower bound of 7" is determined independently of A\ satisfying

min{1, C/((1 + [luollf2)lluollf/oee) } < T
Using (3.5), (3.6), and the equation (MSM), we also obtain

‘ A L, <M.
(3 7) Hatu ”L?mHmQ ~ M

Form uniform estimates on u* above, we observe that there exist subsequence
{uN} and w € L HE N LY.(J°L%), such that

’
ud —u  x-weakly in L H?,

v\ —u  weakly in L2(J7°LY),,

(3.8) v —u in L2L

loc, x>
as \ — 0. As for the convergence (3.8), we refer to [16, Ch. III, Theorem 2.1].

Using convergence above, we are able to observe that the limit u satisfy (MSM)
in the distribution sense. In fact, we observe that ug\ satisfy
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soy U9t ) Ag) = ~2i(A e, V)
(Bl 9) + (AWM, @) £ ifTm(u}@)ed, o)
for ¢ € C*(R?), j = 1,2, where j/ =2 if j =1, and j' = 1 if j = 2. As for
the convergence of the first term on the right hand side of (3.9), we consider
(A[u3, V) — (Alu]uj, Vo)
= (A (uf —u;), V) + ((A[u’] = Alu])uy, Vep).

Now we set suppy C Br = {z € R"; || < R}. Then, applying (2.5) we
obtain

(A (=), Vo) S M2 [0 pallw? = ull 28, [ Vol 2
Similarly, we have
[{(Afu?] = Alu))uz, Vo)l S AR = Al Lagp lull 2 [ Vel o,

where 1/q + 1/p = 1/2. To show the convergence, we set L > 2R to estimate

|A[u?] — Alull|La(BR)

< 1 e+ Dl = ulxs, o+ TGP+ 0P8 H o

S+ Dl = ulxa, || + B L{ (0P + Jal?)xas |

S (leMlza + llullza) e = ullpaepy) + B4 (luMZa + [lulZ2)/L,
where Bf = {z € R"; |z| > L}, r is determined by 1/¢ = 1/r —1/2, and xg
denotes the characteristic function of a set E. For the last inequality above, we
used the estimate

L + )y } (@) = C / !

y|>L |$ - y‘

(Br)

([u*@)* + [u(y)])dy

C
<7 [ (WP +ul))dy,
for || < R < L/2, since |z —y| > |y| — |x| > L/2. Thus, using the uniform
bound (3.5), (3.6), we obtain
T o T
[ a1 Ve [ (A, Vet

S fut - ullp2 128, +1/L,

which converges to zero as X' — 0, L — oco. The convergence of other terms of
(3.9) is also proved in the same manner. O

Remark 3.2. Tt is worth noticing that the solution u also belongs to C/([0, T]; H*')
for s < s, since dyu € L’%/sz_Q.
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4. Uniqueness of H! solution

In this section, we give the proof of Theorem 1.3. For the proof, the following
Gagliardo-Nirenberg inequality with the specific constant, which we refer to [14,
Lemma 2], is essentially used.

Lemma 4.1. For 2 < g < oo, we have
lull Laqrey < (4m) @072 (q/2) 2|l 7o g o) [Vl 1225
Proof of Theorem 1.5. If we set w; = u; — vj, then w; satisfies
(10 + A)w; = — 2iAu] - Vw; + BluJw; + |A[u]|?w; & ilm(uiT2)w;
(4.1) — 2i(A[u] — A[v]) - Vv; + (B[u] — Blv])v;
+ (JA[u]|* = |A[v][*)v; £ i(Im(uits) — Im(v102)) v,

for j = 1,2, where j' denotes 2 if j = 1, 1 if j = 2. Multiplying w; by the
equation (4.1), integrating over R", and then taking the imaginary part, we
obtain

(4.2) aullw ()32 < gM>T9(1 + M) |w(t)[75 /0

for ¢ > 2. Note that as we shall see below we finally take the limit ¢ — oo, so it
is important to investigate the dependence on g of the constant appeared in the
estimate. Once we obtain (4.2), then substituting ¢ = 2/q we have

1 1
gatHw(t)HQﬁ S EM2+25(1 + M?).
Since ||w(0)||z2 = 0, we obtain
w(t)|| e < (CM?**2(1 + M*)T)

for 0 < ¢t < T. Thus, if we take 7" satisfying CM?*2¢(1 + M?)T" < 1, then
letting e — 0 we conclude that ||w(t)||z = 0 for 0 < ¢t < T’. Using this
argument repeatedly, the uniqueness holds for 0 <t < T.

In what follows, we devote to derive (4.2) by estimating the right hand side
of (4.1). As for the first term, integrating by parts it is easy to see that

Im{i/A[u] . (ij)w_jdac} = %/(divA[u])|wj|2dm =0,

since divA[u] = 0. The second and the third terms are also 0, since Blu] and
|A[u]|? are real valued. To estimate other terms, we set p, ¢ satisfying
1/2=1/p+1/q, 2<p<4, 4<g<o0.

Then, the fourth term is estimated by applying Lemma 4.1 as follows.

1/2¢e

[ 1wy s <l ol
4 2—4 4 2—4
< qllul IVl 2w | YR Vw24

2—4
< gMPHYa ||| 3,49
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since 4/p = 2—4/q, where M is the upper bound of H! norm in the assumption.
As for the fifth term, we have

(4.3) ‘/(A[u] ~ A[e]) Vo e || Alu] — ALl 9l 2 o]
Since |Im(ustq) — Im(vavy)| < (Jul + |v])|w|, we have
Alu] = Al S I ((Jul + [o])]w]).
Then, applying Lemma 2.3 we obtain
[ALu] = Al o < ([ (ul + o) lwl]] .
S (lullze + [lvllza) Jwl| e,

where r is determined by 1/q¢ = 1/r — 1/2. Thus, applying Lemma 4.1 again,
the right hand side of (4.3) is estimated by a constant multiple of

(4.4)

g MR 120 < A | 7
Similarly, since |[Re(u;Ty) — Re(v,;0x)| < (Ju| + |v])|w|, we have
[Blu] = Bl > < (llullze + [[v]lza) [lwl o

Thus, we obtain
| [(Bl - Bl)vywyds] < 1Bl - Bl lolello]

< (lullze + llvllze) llollz wl 2o

Then, we are able to estimate in the same way as the fourth term. We note that
the eighth term is estimated in the same manner.
Finally, as for the seventh term, we use (4.4) to estimate

‘/(\A[u]\z — | AW)[*)v; wjd:E]

S (AWl o + AW o) | ALl = AR ool 2o wll 2o
S M([[ullze + [vlZa) loll 2o lwl co 1wl 22

5 QM4+2/q||U)”i;2/q

< gMA 75

Therefore, we obtain (4.2). O
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