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EXISTENCE AND UNIQUENESS OF THE SOLUTION TO
THE MODIFIED SCHRÖDINGER MAP

Jun Kato

Abstract. We prove the local existence of the solution to a certain system of
nonlinear Schrödinger equations arising from Schrödinger maps for the initial data
in Hs(R2) with s > 1/2. The uniqueness of the solution is also proved when the
data belong to H1(R2).

1. Introduction

We consider the initial value problem for the system of the nonlinear Schrö-
dinger equations in two space dimensions

(MSM)




i ∂tu1 + ∆u1 = −2i A · ∇u1 + Bu1 + |A|2u1

± i Im(u2u1)u2, (t, x) ∈ (0, T ) × R2,

i ∂tu2 + ∆u2 = −2i A · ∇u2 + Bu2 + |A|2u2

± i Im(u1u2)u1, (t, x) ∈ (0, T ) × R2,

u1(0, x) = u1
0(x), u2(0, x) = u2

0(x), x ∈ R2,

where u1, u2 are complex valued functions (we set u = (u1, u2) in the following),
and A = (A1[u], A2[u]), B = B[u] are defined by

Aj [u] = ±2 Gj ∗ Im(u1u2), j = 1, 2,(1.1)

G1(x) =
1
2π

x2

|x|2 , G2(x) = − 1
2π

x1

|x|2 ,(1.2)

B[u] = ∓
2∑

j,k=1

2RjRkRe(ujuk) ∓ 2|u|2.(1.3)

Here, for a complex number z, Re z and Im z denotes the real part of z and the
imaginary part respectively, and Rj = ∂j(−∆)−1/2 denotes the Riesz transforms.
We notice that

div A = 0 and rotA = ∂1A2 − ∂2A1 = ±2 Im(u1u2)

hold from the definition of A. These properties are used effectively to construct
the solution to (MSM) for the low regularity initial data.
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The system (MSM) above is called the modified Schrödinger map which is
derived by Nahmod-Stefanov-Uhlenbeck [11] from Schrödinger maps from R×R2

to the unit sphere S2 or to the hyperbolic space H2 by using appropriate gauge
change. The sign ± corresponds to the each case respectively. As for the modified
Schrödinger map, Nahmod-Stefanov-Uhlenbeck [12] showed the existence and
uniqueness of the solution for the data u0 ∈ Hs(R2) with s > 1 by using the
energy method. In this paper, we show the improvement of their result.

Theorem 1.1. Let u0 ∈ Hs(R2) with s > 1/2. Then, there exists T > 0
satisfying

min
{
1, C/

(
(1 + ‖u0‖q

L2)‖u0‖q
Hs

)} ≤ T ≤ 1,

and at least one solution u ∈ L∞(0, T ; Hs) ∩ C([0, T ]; L2) to (MSM) such that

Jδu ∈ Lp(0, T ; Lq),(1.4)

where Jδ = (I − ∆)δ/2, s − 1/2 > δ > 2/q > 0, and 1/p = 1/2 − 1/q.

Remark 1.2. (1) The modified Schrödinger map is invariant with respect to the
scale transformation

u(t, x) 
→ λu(λ2t, λx), λ > 0.

Then, the scaling argument suggests that the critical space for the local well-
posedness of the Cauchy problem (MSM) is L2(R2). We also notice that (MSM)
conserves the L2-norm (see Proposition 2.5 below).
(2) Since the modified Schrödinger map is derived as the first order derivatives of
the original Schrödinger map (see [11, Theorem 2.1]), the local well posedness of
(MSM) in Hs corresponds to the local well-posedness of the original Schrödinger
map in Hs+1.
(3) As is pointed out in [11, §3], it is not possible to go back directly from
the solution of the (MSM) to the original Schrödinger map. However, a priori
estimate and the estimate on the time of existence on the smooth solution to
(MSM) are made use of in order to construct the low regularity solution to the
Schrödinger map. See [11, §3] for details.
(4) After this work was completed, the author was informed that Kenig-Nahmod
obtained the similar result for the Ishimori system ([7]). For the Ishimori sys-
tem, see [9] and references therein. It is known that the Ishimori system is a
generalization of the Heisenberg model for a ferromagnetic spin system, which
is equivalent to the Schrödinger map in the case where the target manifold is S2

(see [4, §1]).

In Theorem 1.1, the uniqueness of the solution is not obtained. However, for
the uniqueness of the solution to (MSM) we obtain the following result by using
the Vladimirov’s argument [17] (see also [14]).
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Theorem 1.3. Let u0 ∈ L2(R2). We assume that u and v are solutions to
(MSM) on (0, T )×R2 in the distribution sense with the same data u0 satisfying

u, v ∈ C([0, T ]; L2(R2)),

‖u‖L∞
T H1

x
≤ M, ‖v‖L∞

T H1
x
≤ M,

for some constant M > 0. Then, we have u(t) = v(t) in L2(R2) for 0 ≤ t ≤ T .

Corollary 1.4. If we assume u0 ∈ H1(R2), then the solution in the class of
Theorem 1.1 is uniquely determined.

For the proof of Theorem 1.1 we use the compactness argument. Because the
local well-posedness for smooth data is already known, our task is to show a
priori estimate for the solution to (MSM). To recover the loss of the derivatives
caused by the nonlinearity, the following type of estimate

‖Jsw‖Lp
T Lq

x
� ‖w‖

L∞
T H

s+1/2+ε′
x

+ ‖F‖
L2

T H
s−1/2
x

(1.5)

for the solution to i∂tw +∆w = F is crucial in our argument, where p, q are the
admissible exponent for Strichartz estimates (see Proposition 2.6 below for the
precise statement). Compared with the usual Strichartz estimate

‖Jsw‖Lp
T Lq

x
� ‖w(0)‖Hs + ‖F‖L1

T Hs
x
,

estimate (1.5) says that we have a gain of the regularity 1/2 on the inhomoge-
neous term at the cost of a loss of the regularity 1/2 + ε′ on the homogeneous
term. This type of estimate is first appeared in Koch-Tzvetkov [10] in the context
of the Benjamin-Ono equation.

Throughout this paper we use the following notation. We denote by f̂ or Ff
the Fourier transform of f . We denote Js = (I − ∆)s/2 and Ds = (−∆)s/2.
Hs is the Sobolev space whose norm is defined by ‖f‖Hs = ‖Jsf‖L2 , and Ḣs

is the homogeneous Sobolev space whose semi-norm is defined by ‖f‖Ḣs =
‖Dsf‖L2 . The function space Lp(0, T ; Lq(R2)) is simply described by Lp

T Lq
x,

and L∞(0, T ; Hs(R2)) is also L∞
T Hs

x. We also denote U(t) = eit∆.
This paper is organized as follows. In section 2, we prepare the basic esti-

mates. In section 3, we show a priori estimates of the solution and give the proof
of Theorem 1.1. In section 4, we give the proof of Theorem 1.3.

Acknowledgement. The author would like to thank Professor Yoshio Tsutsumi
for valuable advice and encouragement.

2. Linear estimates and the energy estimate

In this section, we prepare the linear estimates and the energy estimate which
we use for the proof of Theorems 1.1, 1.3. We first state the Strichartz estimates.
For the proof, see [2] for example.
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Lemma 2.1. Let n = 2. We assume 2 < p ≤ ∞, 2 ≤ q < ∞, and 1/p =
1/2 − 1/q. Then, the following estimates hold.

‖U(t)f‖Lp
T Lq

x
� ‖f‖L2 ,(2.1) ∥∥∥∫ t

0

U(t − t′)F (t′)dt′
∥∥∥

Lp
T Lq

x

� ‖F‖L1
T L2

x
.(2.2)

Lemma 2.2. For s > 0, 1 < p < ∞, we have

‖Ds(fg)‖Lp � ‖f‖Lp1‖Dsg‖Lp2 + ‖g‖Lr1‖Dsf‖Lr2 ,

‖Js(fg)‖Lp � ‖f‖Lp1‖Jsg‖Lp2 + ‖g‖Lr1‖Jsf‖Lr2 ,

where 1/p = 1/p1 + 1/p2 = 1/r1 + 1/r2 with p < p1, r1 ≤ ∞.

Proof. See [3, Proposition 1.2], for example. Note that ‖f‖Ḟ s
p, 2

� ‖Dsf‖Lp and
‖f‖F s

p, 2
� ‖Jsf‖Lp for 1 < p < ∞.

The Hardy-Littlewood-Sobolev inequality below is used to estimate the po-
tential term of the equation. For the proof, see [15, V. §1] for example.

Lemma 2.3. Let n = 2. For 0 < α < 2, we define the operator Iα by

Iαf(x) =
∫
R2

f(y)
|x − y|2−α

dy.

If 1/q = 1/p − α/2, 1 < p < 2/α, then we have

‖Iαf‖Lq(R2) � ‖f‖Lp(R2).

Below we collect the estimates on the potential term A defined by (1.1).

Lemma 2.4. We assume s ≥ 0, 1 > δ > 2/q > 0, and 2 ≤ p < ∞ if s > 0;
2 < p < ∞ if s = 0. Then, we have

‖∇A‖Ḣs � ‖u‖L∞‖u‖Ḣs ,(2.3)

‖∇A‖L∞ � ‖u‖L∞‖Jδu‖Lq ,(2.4)

‖A‖L∞ � ‖u‖L2‖Jδu‖Lq ,(2.5)

‖DsA‖Lp � ‖u‖Lp‖u‖Ḣs .(2.6)

Proof. We first notice that

∂kAj = CRkRj′Im(u1u2),(2.7)

where j′ = 2 if j = 1, and j′ = 1 if j = 2. This is a consequence of the fact that

F [∂kAj ] = C ξkĜj(ξ)F [Im(u1u2)],

and Ĝj(ξ) = C ξj′/|ξ|2, since the Riesz transforms Rj is defined by R̂jf =
−iξj/|ξ| f̂ . For the Fourier transform of Gj , see [15, III. §3] for example.
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Using (2.7) and Lemma 2.2 it is easy to see that

‖∇A‖Ḣs �
2∑

i,j=1

‖RiRjD
s Im(u1u2)‖L2

� ‖Ds Im(u1u2)‖L2 � ‖u‖L∞‖u‖Ḣs ,

since the Riesz transforms are bounded on Lp for 1 < p < ∞. Similarly, using
(2.7) and the Sobolev embedding, we have

‖∇A‖L∞ �
2∑

i,j=1

‖JδRiRjIm(u1u2)‖Lq

� ‖Jδ Im(u1u2)‖Lq � ‖u‖L∞‖Jδu‖Lq ,

where δ > 2/q, and we applied Lemma 2.2 for the last inequality. For the proof
of (2.5) we use Lemma 2.3. In fact, since |Gj(x)| � 1/|x|, we have

‖A‖L∞ � ‖JδA‖Lq �
∥∥I1|Jδ Im(u1u2)|

∥∥
Lq .

Since q > 2, we are able to apply Lemma 2.3 for 1/q = 1/r − 1/2 to obtain∥∥I1|Jδ Im(u1u2)|
∥∥

Lq � ‖Jδ Im(u1u2)‖Lr � ‖u‖L2‖Jδu‖Lq .

The proof of (2.6) are divided into three cases. The case s = 0 is similar to
(2.5). In fact, we have

‖A‖Lp � ‖I1|u|2‖Lp � ‖|u|2‖Lr � ‖u‖Lp‖u‖L2 ,

where r is determined by 1/p = 1/r − 1/2 with 2 < p < ∞. We next consider
the case 0 < s < 1. In this case, we first notice that

F [DsAj ] = C|ξ|sĜj(ξ)F [Im(u1u2)] = C
ξj′

|ξ|2−s
F [Im(u1u2)].(2.8)

Since F−1[ξj′/|ξ|2−s] = Cxj′/|x|2+s (see [15, III. §3] for example), we have

‖DsA‖Lp �
∥∥I1−s|u|2

∥∥
Lp � ‖|u|2‖Lr � ‖u‖Lp‖u‖L2/(1−s) ,

where r is determined by 1/p = 1/r − (1 − s)/2 with 2 ≤ p < ∞. Then, the
Sobolev embedding Ḣs(R2) ↪→ L2/(1−s)(R2) (note that u ∈ Lp) enables us to
obtain (2.6). In the case where s ≥ 1, we observe that from (2.8) F [DsAj ] is
written as

F [DsAj ] = C
ξj′

|ξ|2−ε
|ξ|s−εF [Im(u1u2)]

for 0 < ε < 1. Thus, similarly as above, we obtain

‖DsA‖Lp �
∥∥I1−ε|Ds−ε Im(u1u2)|

∥∥
Lp

� ‖Ds−ε Im(u1u2)‖Lr

� ‖u‖Lp‖Ds−εu‖L2/(1−ε) � ‖u‖Lp‖Dsu‖L2 ,

where r is determined by 1/p = 1/r − (1 − ε)/2 with 2 ≤ p < ∞.
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We next prove the energy estimate for the solution to the modified Schrödinger
map.

Proposition 2.5. Let s ≥ 0 and let u be a solution to (MSM) on (0, T ) × R2.
Then, for T > 0, we have

‖u‖L∞
T L2

x
= ‖u0‖L2 ,(2.9)

‖u‖L∞
T Hs

x
≤ ‖u0‖Hs exp

{
C

(
1 + ‖u0‖2

L2

)
T 2/q‖Jδu‖2

Lp
T Lq

x

}
,(2.10)

where δ > 2/q > 0, 1/p = 1/2 − 1/q.

Proof. The conservation of the L2-norm (2.9) is easily obtained from the equa-
tion (MSM). In fact, multiplying the first equation in (MSM) by u1 and inte-
grating over Rn, and then taking the imaginary part, we obtain

∂t‖u1(t)‖2
L2 = 2

∫
Im(u2u1)Re(u2u1) dx,

since div A = 0, and B is real valued. Similarly, we obtain

∂t‖u2(t)‖2
L2 = 2

∫
Im(u1u2)Re(u1u2) dx

= −2
∫

Im(u2u1)Re(u2u1) dx.

Thus, we obtain ∂t‖u(t)‖2
L2 = ∂t‖u1(t)‖2

L2 +∂t‖u2(t)‖2
L2 = 0 which implies (2.9).

For the proof of the energy estimate (2.10), we employ [12, Propositions 2]
which states

∂t‖u(t)‖2
Ḣs �

(‖∇A(t)‖Ḣs‖u(t)‖L∞ + ‖∇A(t)‖L∞‖u(t)‖Ḣs + ‖B(t)u(t)‖Ḣs

+
∥∥|A(t)|2u(t)

∥∥
Ḣs +

∥∥Im
(
u1(t)u2(t)

)
u(t)

∥∥
Ḣs

)‖u(t)‖Ḣs .

(2.11)

In what follows, we estimate each term on the right hand side of (2.11) to obtain
(2.10) assuming s > 0.

From (2.3) we have

‖∇A(t)‖Ḣs‖u(t)‖L∞ � ‖u(t)‖2
L∞‖u(t)‖Ḣs � ‖Jδu(t)‖2

Lq‖u(t)‖Ḣs(2.12)

by the Sobolev embedding, where δ > 2/q. Similarly, from (2.4) we have

‖∇A(t)‖L∞‖u(t)‖Ḣs � ‖u(t)‖L∞‖Jδu(t)‖Lq‖u(t)‖Ḣs

� ‖Jδu(t)‖2
Lq‖u(t)‖Ḣs .

(2.13)

From the definition (1.3) we have

‖B(t)u(t)‖Ḣs �
2∑

j,k=1

∥∥(
RjRkRe(uj(t)uk(t))u(t)

∥∥
Ḣs +

∥∥|u(t)|2u(t)
∥∥

Ḣs .(2.14)
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As for the first term on the right hand side of (2.14), we apply Lemma 2.2 to
get ∥∥Ds

(
RjRkRe(ujuk) u

)∥∥
L2

� ‖u‖L∞‖DsRjRkRe(ujuk)‖L2 + ‖RjRkRe(ujuk)‖L∞‖Dsu‖L2

� ‖u‖L∞‖DsRe(ujuk)‖L2 + ‖JδRjRkRe(ujuk)‖Lq‖Dsu‖L2

� ‖u‖2
L∞‖Dsu‖L2 + ‖JδRe(ujuk)‖Lq‖Dsu‖L2

� ‖u‖2
L∞‖Dsu‖L2 + ‖u‖L∞‖Jδu‖Lq‖Dsu‖L2 .

Meanwhile, the following estimate of the second term on the right hand side of
(2.14) ∥∥Ds

(|u|2u)∥∥
L2 � ‖u‖2

L∞‖Dsu‖L2(2.15)

is also derived by applying Lemma 2.2 repeatedly. Thus, combining estimates
above we obtain

‖B(t)u(t)‖Ḣs � ‖Jδu(t)‖2
Lq‖u(t)‖Ḣs .(2.16)

Here, we notice that the following estimate of the fifth term on the right hand
side of (2.11) ∥∥Im

(
u1(t)u2(t)

)
u(t)

∥∥
Ḣs � ‖u(t)‖2

L∞‖Dsu(t)‖L2(2.17)

is similarly obtained as (2.15). Finally we estimate the fourth term on the right
hand side of (2.11). Applying (2.5) and (2.6) we have∥∥Ds

(|A|2u)∥∥
L2 � ‖u‖L∞

∥∥Ds|A|2∥∥
L2 + ‖A‖2

L∞‖Dsu‖L2

� ‖u‖L∞‖A‖L∞‖DsA‖L2 + ‖A‖2
L∞‖Dsu‖L2

� ‖u‖2
L2‖u‖L∞‖Jδu‖Lq‖u‖Ḣs + ‖u‖2

L2‖Jδu‖2
Lq‖u‖Ḣs

� ‖u0‖2
L2‖Jδu‖2

Lq‖u‖Ḣs

(2.18)

Combining (2.11), (2.12), (2.13) (2.16), (2.17), and (2.18), we obtain

∂t‖u(t)‖2
Ḣs ≤ C(1 + ‖u0‖2

L2)‖Jδu(t)‖2
Lq‖u(t)‖2

Ḣs .

Thus, applying the Gronwall inequality we have

‖u(t)‖Ḣs ≤ ‖u0‖Ḣs exp
(
C

(
1 + ‖u0‖2

L2

) ∫ T

0

‖Jδu(t′)‖2
Lqdt′

)
.

Therefore, (2.9) and the Hölder inequality with respect to the time integral
enables us to obtain (2.10).

We finally state the crucial estimate for the proof of Theorem 1.1. This type
of estimate was first given by Koch-Tzvetkov [10] and refined by Kenig-Koenig
[8] in the context of the Benjamin-Ono equation.
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Proposition 2.6. Let T ≤ 1. We assume that w is a solution to the equation

i∂tw + ∆w = F1 + F2, (t, x) ∈ (0, T ) × R2.(2.19)

Then, for s ∈ R, ε′ > 0, we have

‖Jsw‖Lp
T Lq

x
� ‖w‖L∞

T Hs+1/2+ε′ + ‖F1‖L2
T H

s−1/2
x

+ ‖F2‖L1
T Hs

x
,(2.20)

where 1/p = 1/2 − 1/q, 2 ≤ q < ∞.

Proof. The proof is essentially due to [8, Proposition 2.8]. We first introduce the
Littlewood-Paley decomposition. Let ϕ ∈ C∞

0 (R2) satisfy ϕ(ξ) = 1 for |ξ| ≤ 1/2,
ϕ(ξ) = 0 for |ξ| ≥ 1. And we set η(ξ) = ϕ(ξ/2) − ϕ(ξ) and set ηk(ξ) = η(ξ/2k)
for k ≥ 0 so that supp ηk ⊂ {2k−1 ≤ |ξ| ≤ 2k+1} and 1 = ϕ(ξ) +

∑∞
k=0 ηk(ξ).

Then, we define ∆k by ∆̂kf = ηkf̂ and S0 by Ŝ0f = ϕf̂ , where ĝ denotes the
Fourier transform of g. Using the notation above, it is known that

‖f‖Lr(Rn) �
∥∥∥(

|S0f |2 +
∞∑

k=0

|∆kf |2
)1/2∥∥∥

Lr(Rn)

holds for 1 < r < ∞.
We next prepare the disjoint decomposition of the time interval [0, T ] =

∪m
j=1Ij , where Ij = [aj , aj+1) satisfy |Ij | = 2−j for 1 ≤ j ≤ m − 1 and

2−j ≤ |Im| ≤ 2−j+1. Then, we have m ≤ 2j , since (m − 1)2−j + |Im| = T
implies 2−jm ≤ T − 2−j + 2−j = T ≤ 1.

Since 2 ≤ q < ∞, using the Littlewood-Paley decomposition of Jsw we have

‖Jsw‖Lp
T Lq

x
�

∥∥∥(
|S0J

sw|2 +
∞∑

k=0

|∆kJsw|2
)1/2∥∥∥

Lp
T Lq

x

�
(
‖JsS0w‖2

Lp
T Lq

x
+

∞∑
k=0

‖Js∆kw‖2
Lp

T Lq
x

)1/2

.

For the last inequality above we used Minkowski’s integral inequality, since
p, q ≥ 2. Before applying Strichartz estimates, we use the decomposition [0, T ] =
∪m

j=1Ij to estimate Js∆kw as follows.

‖Js∆kw‖Lp
T Lq

x
� 2sk‖∆kw‖Lp

T Lq
x

= 2sk
( m∑

j=1

‖∆kw‖p
Lp

Ij
Lq

x

)1/p

� 2sk
( m∑

j=1

‖∆kw‖2
Lp

Ij
Lq

x

)1/2

,

since l2 ↪→ lp for p > 2. Since ∆kw satisfies the following integral equation

∆kw(t) = U(t)∆kw(aj) − i

∫ t

aj

U(t − t′)∆k(F1(t′) + F2(t′))dt′(2.21)
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for t ∈ Ij , applying Lemma 2.1 we have

‖∆kw‖Lp
Ij

Lq
x

� ‖∆kw(aj)‖2
L2 + ‖∆kF1‖L1

Ij
L2

x
+ ‖∆kF2‖L1

Ij
L2

x
.

Thus, we obtain

2sk
( m∑

j=1

‖∆kw‖2
Lp

Ij
Lq

x

)1/2

� 2sk
{ m∑

j=1

(‖∆kw(aj)‖2
L2 + ‖∆kF1‖2

L1
Ij

L2
x

+ ‖∆kF2‖2
L1

Ij
L2

x

)}1/2

� 2sk
{

m‖∆kw‖2
L∞

T L2
x

+
m∑

j=1

|Ij |‖∆kF1‖2
L2

Ij
L2

x

}1/2

+ 2sk‖∆kF2‖L1
T L2

x

� 2(s+1/2)k‖∆kw‖L∞
T L2

x
+ 2(s−1/2)k‖∆kF1‖L2

T L2
x

+ 2sk‖∆kF2‖L1
T L2

x

� 2−ε′k‖w‖
L∞

T H
s+1/2+ε′
x

+ ‖∆kJs−1/2F1‖L2
T L2

x
+ ‖∆kJsF2‖L1

T L2
x
.

For the last term in the second inequality above, we used the triangle inequality
in l2 and then applied l1 ↪→ l2. Combining the estimates above we obtain

‖Js∆kw‖Lp
T Lq

x

� 2−ε′k‖w‖
L∞

T H
s+1/2+ε′
x

+ ‖∆kJs−1/2F1‖L2
T L2

x
+ ‖∆kJsF2‖L1

T L2
x
.

Meanwhile, applying Lemma 2.1 it is easy to see that

‖JsS0w‖Lp
T Lq

x
� ‖S0w(0)‖L2 + ‖S0F1‖L1

T L2
x

+ ‖S0F2‖L1
T L2

x

� ‖w‖L∞
T L2

x
+ ‖S0J

s−1/2F1‖L2
T L2

x
+ ‖S0J

sF2‖L1
T L2

x
.
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Therefore, we obtain(
‖JsS0w‖2

Lp
T Lq

x
+

∞∑
k=0

‖Js∆kw‖2
Lp

T Lq
x

)1/2

�
( ∞∑

k=0

2−2ε′k‖w‖2

L∞
T H

s+1/2+ε′
x

)1/2

+
(
‖S0J

s−1/2F1‖2
L2

T L2
x

+
∞∑

k=0

‖∆kJs−1/2F1‖2
L2

T L2
x

)1/2

+
(
‖S0J

sF2‖2
L1

T L2
x

+
∞∑

k=0

‖∆kJsF2‖2
L1

T L2
x

)1/2

�
( ∞∑

k=0

2−2ε′k
)1/2

‖w‖
L∞

T H
s+1/2+ε′
x

+
∥∥∥(

|S0J
s−1/2F1|2 +

∞∑
k=0

|∆kJs−1/2F1|2
)1/2∥∥∥

L2
T L2

x

+
∥∥∥(

|S0J
sF2|2 +

∞∑
k=0

|∆kJsF2|2
)1/2∥∥∥

L1
T L2

x

� ‖w‖
L∞

T H
s+1/2+ε′
x

+ ‖Js−1/2F1‖L2
T L2

x
+ ‖JsF2‖L1

T L2
x
,

where we applied Minkowski’s integral inequality again for the second inequality
above. This completes the proof of Proposition 2.6.

3. A priori estimate

In this section, we prove a priori estimate for the solution to the modified
Schrödinger map applying the estimates in the preceding section. Then, using
the a priori estimate, we give the proof of Theorem 1.1.

Theorem 3.1. Let u0 ∈ H∞(R2) and let u be a solution to (MSM). Then, for
any ε > 0, there exists T satisfying

min
{
1, C/

(
(1 + ‖u0‖q

L2)‖u0‖q
H1/2+ε

)} ≤ T ≤ 1

and M > 0 such that

‖Jδu‖Lp
T Lq

x
≤ M‖u0‖H1/2+ε ,(3.1)

where ε > δ > 2/q > 0, 1/p = 1/2 − 1/q.

Proof. Applying Proposition 2.6 for s = δ, F1 = −2iA · ∇uj , and F2 = Buj +
|A|2uj ± Im(u2u1)uj , we obtain

‖Jδu‖Lp
T Lq

x
� ‖u‖

L∞
T H

1/2+ε
x

+ ‖A · ∇u‖
L2

T H
−1/2+δ
x

+ ‖Bu‖L1
T Hδ

x
+

∥∥|A|2u∥∥
L1

T Hδ
x

+ ‖Im(u2u1)u‖L1
T Hδ

x
,

(3.2)
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where we substituted δ + ε′ = ε. In what follows we estimate each term on the
right hand side of (3.2) to obtain (3.1).

The first term is easily estimated by applying energy estimate (2.10) directly,

‖u‖
L∞

T H
1/2+ε
x

≤ ‖u0‖H1/2+ε exp
{
C

(
1 + ‖u0‖2

L2

)
T 2/q‖Jδu‖2

Lp
T Lq

x

}
.

As for the second term we notice that A ·∇u = div (Au), since div A = 0. Using
this, we have

‖A · ∇u‖
L2

T H
−1/2+δ
x

� ‖J−1/2+δ∇(Au)‖L2
T L2

x

� ‖D1/2+δ(Au)‖L2
T L2

x
+ ‖Au‖L2

T L2
x

� ‖u‖L2
T L∞

x
‖D1/2+δA‖L∞

T L2
x

+ ‖A‖L2
T L∞

x

(‖D1/2+δu‖L∞
T L2

x
+ ‖u‖L∞

T L2
x

)
.

Then, applying (2.5), (2.6), we have

‖D1/2+δA‖L∞
T L2

x
� ‖u‖L∞

T L2
x
‖D1/2+δu‖L∞

T L2
x
,

‖A‖L2
T L∞

x
� ‖u‖L∞

T L2
x
‖Jδu‖L2

T Lq
x
.

Thus, combining (2.9) and the energy estimate (2.10), we obtain

‖A · ∇u‖
L2

T H
−1/2+δ
x

� ‖u‖L∞
T L2

x
‖Jδu‖L2

T Lq
x
‖u‖L∞

T H1/2+δ

�
(
1 + ‖u0‖2

L2‖Jδu‖2
L2

T Lq
x

)‖u‖L∞
T H1/2+δ

� ‖u0‖H1/2+δ exp
{
C(1 + ‖u0‖2

L2

)
T 2/q‖Jδu‖2

Lp
T Lq

x

}
.

As for the third and the fifth term, we are able to use (2.16), (2.17) to obtain

‖Bu‖L1
T Hδ

x
+ ‖Im(u2u1)u‖L1

T Hδ
x

� ‖Jδu‖2
L2

T Lq
x
‖u‖L∞

T Hδ

� ‖u0‖Hδ exp
{
C

(
1 + ‖u0‖2

L2

)
T 2/q‖Jδu‖2

Lp
T Lq

x

}
.

Similarly, we are able to use (2.18) to obtain∥∥|A|2u∥∥
L1

T Hδ
x

� ‖u0‖2
L2‖Jδu‖2

L2
T Lq

x
‖u‖L∞

T Hδ

� ‖u0‖Hδ exp
{
C

(
1 + ‖u0‖2

L2

)
T 2/q‖Jδu‖2

Lp
T Lq

x

}
.

Combining estimates above, we obtain

‖Jδu‖Lp
T Lq

x
≤ C0‖u0‖H1/2+ε exp

{
C1

(
1 + ‖u0‖2

L2

)
T 2/q‖Jδu‖2

Lp
T Lq

x

}
.(3.3)

Now we set K(T ) = ‖Jδu‖2
Lp

T Lq
x
. Then, K(T ) is a continuous function with

respect to T since 2 ≤ p < ∞, and (3.3) implies

K(T ) ≤ C2
0‖u0‖2

H1/2+ε exp
{
2C1

(
1 + ‖u0‖2

L2

)
T 2/qK(T )

}
.(3.4)
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If K(T ) ≤ C2
0e ‖u0‖2

H1/2+ε holds for 0 ≤ T ≤ 1, then the conclusion of Theorem
3.1 follows. On the other hand, in the case of there exists T1 ∈ (0, 1) such that
K(T1) > C2

0e ‖u0‖2
H1/2+ε , we set

T0 = inf{T > 0; K(T ) > C2
0e ‖u0‖2

H1/2+ε}.
Then, T0 > 0 and we have K(T0) = C2

0e ‖u0‖2
H1/2+ε . Thus, (3.4) with T = T0

implies that

e ≤ exp
{
2C1

(
1 + ‖u0‖2

L2

)
T

2/q
0 C2

0e ‖u0‖2
H1/2+ε

}
.

Therefore, we obtain the lower bound of T0,

T0 ≥ 1
(2C2

0C1e)q/2
(
1 + ‖u0‖q

L2

)‖u0‖q
H1/2+ε

,

and for 0 ≤ T ≤ T0, K(T ) ≤ K(T0) = C2
0e ‖u0‖2

H1/2+ε holds. This completes
the proof of Theorem 3.1.

Using Theorem 3.1, we are able to prove Theorem 1.1 as follows.

Proof of Theorem 1.1. Let ρ ∈ C∞
0 (R2) satisfy ρ(x) = 1 if |x| ≤ 1, ρ(x) = 0 if

|x| ≥ 2. Then, for u0 ∈ Hs(R2) with s > 1/2 we define ρλ(x) = 1/λ2ρ(x/λ)
and set uλ

0 = ρλ ∗ u0 and the corresponding solution uλ. The existence of such
solution is assured by [12, Theorem 4] (see also [1, Theorem 2.1]).

From Theorem 3.1, uλ has a priori uniform bound

‖Jδuλ‖Lp
T Lq

x
≤ M‖uλ

0‖H1/2+ε ≤ CM‖u0‖H1/2+ε ,(3.5)

for ε > δ > 2/q > 0, 1/p = 1/2 − 1/q. Thus, by Proposition 2.5 we obtain

‖uλ‖L∞
T Hs

x
≤ C‖u0‖Hs exp

(
CM2(1 + ‖u0‖2

L2)‖u0‖2
H1/2+ε

)
,(3.6)

where we notice that ε can be chosen so that s ≥ 1/2 + ε with ε > δ. Note that
we may consider the solution uλ exists on [0, T ] satisfying (3.5), (3.6), where the
lower bound of T is determined independently of λ satisfying

min
{
1, C/

(
(1 + ‖u0‖q

L2)‖u0‖q
H1/2+ε

)} ≤ T.

Using (3.5), (3.6), and the equation (MSM), we also obtain

‖∂tu
λ‖

L
p/2
T H−2

x
≤ M ′.(3.7)

Form uniform estimates on uλ above, we observe that there exist subsequence
{uλ′} and u ∈ L∞

T Hs
x ∩ Lp

T (J−δLq)x such that

uλ′ → u ∗ -weakly in L∞
T Hs

x,

uλ′ → u weakly in Lp
T (J−δLq)x,

uλ′ → u in Lp
T L2

loc, x,(3.8)

as λ′ → 0. As for the convergence (3.8), we refer to [16, Ch. III, Theorem 2.1].
Using convergence above, we are able to observe that the limit u satisfy (MSM)
in the distribution sense. In fact, we observe that uλ

j satisfy



THE MODIFIED SCHRÖDINGER MAP 183

d

dt
〈uλ

j , ϕ〉 + 〈uλ
j ,∆ϕ〉 = −2i〈A[uλ]uλ

j ,∇ϕ〉
+ 〈B[uλ]uλ

j , ϕ〉 + 〈|A[uλ]|2uλ
j , ϕ〉 ± i〈Im(uλ

1uλ
2 )uλ

j′ , ϕ〉
(3.9)

for ϕ ∈ C∞
0 (R2), j = 1, 2, where j′ = 2 if j = 1, and j′ = 1 if j = 2. As for

the convergence of the first term on the right hand side of (3.9), we consider

〈A[uλ]uλ
j ,∇ϕ〉 − 〈A[u]uj ,∇ϕ〉

= 〈A[uλ](uλ
j − uj),∇ϕ〉 + 〈(A[uλ] − A[u])uλ

j ,∇ϕ〉.
Now we set supp ϕ ⊂ BR ≡ {x ∈ Rn; |x| ≤ R}. Then, applying (2.5) we

obtain

|〈A[uλ](uλ
j − uj),∇ϕ〉| � ‖uλ‖L2‖Jδuλ‖Lq‖uλ − u‖L2(BR)‖∇ϕ‖L2 .

Similarly, we have

|〈(A[uλ] − A[u])uλ
j ,∇ϕ〉| � ‖A[uλ] − A[u]‖Lq(BR)‖u‖L2‖∇ϕ‖Lp ,

where 1/q + 1/p = 1/2. To show the convergence, we set L ≥ 2R to estimate

‖A[uλ] − A[u]‖Lq(BR)

�
∥∥I1

{
(|uλ| + |u|)|uλ − u|χBL

}∥∥
Lq +

∥∥I1

{
(|uλ|2 + |u|2)χBc

L

}∥∥
Lq(BR)

�
∥∥(|uλ| + |u|)|uλ − u|χBL

∥∥
Lr + Rn/q

∥∥I1

{
(|uλ|2 + |u|2)χBc

L

}∥∥
L∞(BR)

� (‖uλ‖Lq + ‖u‖Lq )‖uλ − u‖L2(BL) + Rn/q(‖uλ‖2
L2 + ‖u‖2

L2)/L,

where Bc
L ≡ {x ∈ Rn; |x| > L}, r is determined by 1/q = 1/r − 1/2, and χE

denotes the characteristic function of a set E. For the last inequality above, we
used the estimate

I1

{
(|uλ|2 + |u|2)χBc

L

}
(x) = C

∫
|y|>L

1
|x − y| (|u

λ(y)|2 + |u(y)|2)dy

≤ C

L

∫
(|uλ(y)|2 + |u(y)|2)dy,

for |x| ≤ R ≤ L/2, since |x − y| ≥ |y| − |x| ≥ L/2. Thus, using the uniform
bound (3.5), (3.6), we obtain∣∣∣∫ T

0

〈A[uλ′
]uλ′

j ,∇ϕ〉ψ(t)dt −
∫ T

0

〈A[u]uj ,∇ϕ〉ψ(t)dt
∣∣∣

� ‖uλ′ − u‖L2
T L2(BL) + 1/L,

which converges to zero as λ′ → 0, L → ∞. The convergence of other terms of
(3.9) is also proved in the same manner.

Remark 3.2. It is worth noticing that the solution u also belongs to C([0, T ];Hs′
)

for s′ < s, since ∂tu ∈ L
p/2
T H−2

x .



184 JUN KATO

4. Uniqueness of H1 solution

In this section, we give the proof of Theorem 1.3. For the proof, the following
Gagliardo-Nirenberg inequality with the specific constant, which we refer to [14,
Lemma 2], is essentially used.

Lemma 4.1. For 2 ≤ q < ∞, we have

‖u‖Lq(R2) ≤ (4π)(2−q)/2q(q/2)1/2‖u‖2/q
L2(R2)‖∇u‖1−2/q

L2(R2).

Proof of Theorem 1.3. If we set wj = uj − vj , then wj satisfies

(i∂t + ∆)wj = − 2iA[u] · ∇wj + B[u]wj + |A[u]|2wj ± iIm(u1u2)wj′

− 2i
(
A[u] − A[v]

) · ∇vj +
(
B[u] − B[v]

)
vj

+
(|A[u]|2 − |A[v]|2)vj ± i

(
Im(u1u2) − Im(v1v2)

)
vj′ ,

(4.1)

for j = 1, 2, where j′ denotes 2 if j = 1, 1 if j = 2. Multiplying wj by the
equation (4.1), integrating over Rn, and then taking the imaginary part, we
obtain

∂t‖w(t)‖2
L2 � qM2+4/q(1 + M2)‖w(t)‖2(1−2/q)

L2(4.2)

for q > 2. Note that as we shall see below we finally take the limit q → ∞, so it
is important to investigate the dependence on q of the constant appeared in the
estimate. Once we obtain (4.2), then substituting ε = 2/q we have

1
ε
∂t‖w(t)‖2ε

L2 � 1
ε
M2+2ε(1 + M2).

Since ‖w(0)‖L2 = 0, we obtain

‖w(t)‖L2 ≤ (
CM2+2ε(1 + M2)T

)1/2ε

for 0 ≤ t ≤ T . Thus, if we take T ′ satisfying CM2+2ε(1 + M2)T ′ < 1, then
letting ε → 0 we conclude that ‖w(t)‖L2 = 0 for 0 ≤ t ≤ T ′. Using this
argument repeatedly, the uniqueness holds for 0 ≤ t ≤ T .

In what follows, we devote to derive (4.2) by estimating the right hand side
of (4.1). As for the first term, integrating by parts it is easy to see that

Im
{

i

∫
A[u] · (∇wj) wjdx

}
=

1
2

∫ (
divA[u]

)|wj |2dx = 0,

since divA[u] = 0. The second and the third terms are also 0, since B[u] and
|A[u]|2 are real valued. To estimate other terms, we set p, q satisfying

1/2 = 1/p + 1/q, 2 < p ≤ 4, 4 ≤ q < ∞.

Then, the fourth term is estimated by applying Lemma 4.1 as follows.∣∣∣∫ Im(u1u2)wj′wjdx
∣∣∣ ≤ ‖u‖2

Lq‖w‖2
Lp

� q‖u‖4/q
L2 ‖∇u‖2−4/q

L2 ‖w‖4/p
L2 ‖∇w‖2−4/p

L2

� qM2+4/q‖w‖2−4/q
L2 ,



THE MODIFIED SCHRÖDINGER MAP 185

since 4/p = 2−4/q, where M is the upper bound of H1 norm in the assumption.
As for the fifth term, we have∣∣∣∫ (

A[u] − A[v]
)∇vj wjdx

∣∣∣� ∥∥A[u] − A[v]
∥∥

Lq‖∇v‖L2‖w‖Lp .(4.3)

Since |Im(u2u1) − Im(v2v1)| ≤ (|u| + |v|)|w|, we have

|A[u] − A[v]| � I1

(
(|u| + |v|)|w|).

Then, applying Lemma 2.3 we obtain∥∥A[u] − A[v]
∥∥

Lq �
∥∥(|u| + |v|)|w|∥∥

Lr

�
(‖u‖Lq + ‖v‖Lq

)‖w‖L2 ,
(4.4)

where r is determined by 1/q = 1/r − 1/2. Thus, applying Lemma 4.1 again,
the right hand side of (4.3) is estimated by a constant multiple of

q1/2M2+2/q‖w‖2−2/q
L2 ≤ q1/2M2+4/q‖w‖2−4/q

L2 .

Similarly, since |Re(ujuk) − Re(vjvk)| ≤ (|u| + |v|)|w|, we have∥∥B[u] − B[v]
∥∥

L2 �
(‖u‖Lq + ‖v‖Lq

)‖w‖Lp .

Thus, we obtain∣∣∣∫ (
B[u] − B[v]

)
vj wjdx

∣∣∣ ≤ ∥∥B[u] − B[v]
∥∥

L2‖v‖Lq‖w‖Lp

�
(‖u‖Lq + ‖v‖Lq

)‖v‖Lq‖w‖2
Lp .

Then, we are able to estimate in the same way as the fourth term. We note that
the eighth term is estimated in the same manner.

Finally, as for the seventh term, we use (4.4) to estimate∣∣∣∫ (∣∣A[u]
∣∣2 − ∣∣A[v]

∣∣2)vj wjdx
∣∣∣

�
(∥∥A[u]

∥∥
Lq +

∥∥A[v]
∥∥

Lq

)∥∥A[u] − A[v]
∥∥

Lq‖v‖Lp‖w‖Lp

� M
(‖u‖2

Lq + ‖v‖2
Lq

)‖v‖Lp‖w‖Lp‖w‖L2

� qM4+2/q‖w‖2−2/q
L2

� qM4+4/q‖w‖2−4/q
L2 .

Therefore, we obtain (4.2).
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[1] L. Bergé, A. de Bouard, J. C. Saut, Blowing up time-dependent solutions of the planar,
Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity 8 (1995), 235–253.

[2] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics
10, American Mathematical Society (2003).

[3] D. Chae, On the well-posedness of the Euler equations in the Triebel-Lizorkin spaces,
Comm. Pure Appl. Math. 55 (2002), 654–678.

[4] N.-H. Chang, J. Shatah, K. Uhlenbeck, Schödinger maps, Comm. Pure Appl. Math. 53
(2000), 590–602.



186 JUN KATO

[5] W. Ding, Y. Wang, Local Schrödinger flow into Kähler manifolds, Sci. China Ser. A 44
(2001), 1446–1464.

[6] M. G. Grillakis, V. Stefanopoulos, Lagrangian formulation, energy estimates, and the
Schrödinger map problem, Comm. Partial Differential Equations 27 (2002), 1845–1877.

[7] C. E. Kenig, private communication.
[8] C. E. Kenig, K. D. Koenig, On the local well-posedness of the Benjamin-Ono and modified

Benjamin-Ono equations, Math. Res. Lett. 10 (2003), 879–895.
[9] C. E. Kenig, G. Ponce, L. Vega, On the initial value problem for the Ishimori system,

Ann. Henri Poincaré 1 (2000), 341–384.
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