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THE HYODO-KATO THEOREM FOR RATIONAL
HOMOTOPY TYPES

Minhyong Kim and Richard M. Hain

Abstract. The Hyodo-Kato theorem relates the De Rham cohomology of a vari-
ety over a local field with semi-stable reduction to the log crystalline cohomology of
the special fiber. In this paper we prove an analogue for rational homotopy types.
In particular, this gives a comparison isomorphism for fundamental groups.

1. Introduction

Let A be a complete discrete valuation ring with perfect residue field k of
characteristic p > 0 and fraction field F . Denote by W the ring of Witt vectors
of k and by K the fraction field of W . Endow A with the log structure A−0↪→A
and let X be a proper smooth connected fine saturated log scheme over A with
generic fiber XF and special fiber Y which we assume to be of Cartier type ([6]
2.12). The Hyodo-Kato theorem ([6] Theorem 5.1) says

Hi
DR(XF ) � Hi

cr(Y/W )⊗W F

where the cohomology groups appearing in the statement are algebraic De Rham
cohomology on the left and the crystalline cohomology of Y with respect to W
(with the ‘hollow’ log structure) on the right.

We will prove a version of this theorem in the context of the unipotent rational
homotopy types defined in [9]. The definitions will be reviewed in the next
section, but let us state the main result here. If Acr(Y ) denotes the crystalline
rational homotopy type of Y and ADR(XF ) the De Rham rational homotopy
type of XF , then

Theorem 1.1.
ADR(XF ) � Acr(Y )⊗ F

in the homotopy category of commutative differential graded algebras (CDGA’s)
over F .

In [9], we proved this result essentially when A has the trivial log structure.
Let x be a point of X, xF the correponding point on the generic fiber, and y the
reduction of x to the special fiber. It is simple to check that the augmentations
induced by xF and y on the homotopy types are compatible. Hence, we get
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Corollary 1.2.
πdr

1 (XF , xF ) � πcr(Y, y)⊗K F

as pro-unipotent algebraic groups over F .

We also get results of the Artin-Mazur type [1] on higher homotopy groups
of simply connected varieties. For this, let XE(1) and XE(2) be proper smooth
geometrically-connected varieties over a number field E equipped with normal
crossing divisors DE(1) and DE(2). Denote by OE,v the localization at a prime
v of the ring of integers OE of E. Assume that XE(i) extends to a proper flat
scheme X(i) over OE,v with special fibers Y (i) and that DE(i) extends to a
divisor D(i) on X(i) that is relatively of normal crossing. Further assume that
D(i) + Y (i) is a strict normal crossing divisor. View X(i) as a log scheme with
the log structures given by D(i) + Y (i). Then Y (i) also has the induced log
structure.

Corollary 1.3. Suppose Y (1) � Y (2) as log schemes. Then for every embed-
ding σ : E↪→C such that the (XE(i)−DE(i))⊗E C are simply-connected, their
higher rational homotopy groups are isomorphic.

The hypothesis of the corollary is satisfied for example if

X(1)⊗OE,v/m2
v � X(2)⊗OE,v/m2

v

by a map that preserves the divisors D(i) + Y (i).
The proof of the theorem consists of choosing explicit CDGA representatives

for the homotopy types and a few other intermediate complexes using embedding
systems for crystalline cohomology, constructing explicit multiplicative maps
between them and, thereby, ‘exorcising the derived category’ from the proof of
the usual Hyodo-Kato isomorphism.

It is perhaps useful to think about the theorem in the following general con-
text: Let A be the homotopy category of non-negatively graded CDGA’s over
some field and consider the forgetful functor

R : A→C
to the derived category of complexes. Following the ideas of rational homotopy
theory, one should think of objects A in A as being rationally nilpotent topo-
logical spaces and R(A) as being like the homotopy groups of the space. Given
two objects A, B and an isomorphism g : R(A) � R(B), we can then ask if
there is in fact an isomorphism f : A→B such that g = R(f). That is, we wish
to prove a Whitehead-type theorem showing that an isomorphism of homotopy
groups is induced by an actual isomorphism of spaces. In our situation, the
usual Hyodo-Kato isomorphism says that R(ADR(X∗)) � R(Acr(Y )⊗K F ) and
our theorem says that this map can be lifted to a map of ‘spaces.’

In the process of making maps explicit, one encounters the problem of assem-
bling a collection of maps in (an increasing sequence of) finite characteristics into
a single map of algebras. This is because the Hyodo-Kato isomorphism depends
on the fact that repeated Frobenius twists of complexes computing crystalline
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cohomology with respect to two different log structures become increasingly
close, i.e., isomorphic modulo increasingly high powers of p. That is, an inverse
system of complexes related by the relative Frobenius and reduction mediates
the Hyodo-Kato isomorphism. To deal with this difficulty we use a differential
graded algebra version of homotopy direct limits, namely, the mapping telescope
of an inverse system of maps. In fact, it will be necessary to, employ the no-
tion of a ‘twisted’ inverse limit introduced by Ogus to define ‘twisted’ mapping
telescopes and the key definition of an ‘infinitely twisted’ mapping telescope
(obtained by taking a direct limit of twisted mapping telescopes). Once one
has this machinery in place, the isogenies that occur in the usual proof fall into
place nicely as isomorphisms of ∞-twisted mapping telescopes and the rest of
the argument becomes quite short.

We remark that the proof of theorem 1.1 appears to clarify the cohomological
Hyodo-Kato isomorphism as well: The rational homotopy types considered as
complexes compute the usual cohomology groups (crystalline and De Rham).
However, the proof given here, while just a modification of those of Hyodo-Kato
and Ogus, possesses an advantage over them in that the maps involved are made
completely explicit.

One issue we do not deal with in this paper is the dependence of the isomor-
phism stated in the theorem on the choice of a uniformizer for A. Although it is
more or less clear that one gets the same kind of dependence as in the cohomo-
logical theorem, we prefer to discuss this in a subsequent paper together with a
more detailed study of the monodromy operator and period isomorphisms.

A few words about our convention: For the most part we leave the log struc-
ture implicit and do not introduce separate notation to indicate their presence.
The important exception of course is in the proof of theorem 1.1. A multiplica-
tive quasi-isomorphism of CDGA’s is just a quasi-isomorphism at the level of
complexes that respects the multiplicative structure. A quasi-equivalence, on
the other hand, is an isomorphism in the homotopy category of CDGA’s.

2. Brief review

For precise definitions, we refer the reader to [9] sections 3 and 4, and the
references therein. In this section, we will just recall at the superficial level some
basic notation, the objects that we will need, and their main properties.

For concreteness, we concentrate on the situation described in the introduc-
tion. Therefore, k is endowed with the log structure of the punctured point
which is associated to the pre-log structure N→k that sends 1 to 0. We de-
note by Y a smooth proper fine saturated log scheme of Cartier type over k
and y : Spec(k)→Y a point of Y . (We remind the reader that this means in
particular that it is a map of log schemes.)

The unipotent crystalline rational homotopy type Acr(Y ) of Y is defined by
the following formula:

Acr(Y ) = TW (WωY ) := sTW ((lim←−Γ(G(WωY )))⊗W K)
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The notation is that given a pro-sheaf L, G(L) is a cosimplicial Godement res-
olution [3] for the étale topology, lim←− goes from the category of inverse sys-
tems (Mn)n∈N, where Mn is a (cosimplicial) Wn-algebra, to the category of
complete cosimplicial W -algebras, and finally, sTW is Navarro-Aznar’s ‘simple
Thom-Whitney algebra’ functor [11]. WωY is the pro-sheaf of CDGA’s consist-
ing of the De Rham-Witt differential forms of Y [6]. It is probably best at this
point not to worry about the precise construction and just remember that

TW (·) = sTW ((lim←−Γ(G(·))⊗)W K)

is a functor from the isogeny category of pro-sheaves of CDGA’s over W (that
is, systems (Ln) where a given level Ln is a sheaf of CDGA’s over Wn) to
the homotopy category of CDGA’s over K. As motivation for the language of
homotopy types, we refer the reader to [10].

A basic property of the functor sTW is that for any cosimplicial CDGA C,
sTW (C) � s(C) in the derived category of complexes, where s(·) denotes the
usual ‘associated simple object’ functor. Ostensibly, the definition depends on
the choice of a surjective system of geometric points on Y . One can remove this
dependence as follows. Denote for a moment AS the rational homotopy type
constructed from a specific system S of geometric points. Given two different
systems S1 and S2, we can find a map f : S1→S2 which certainly induces a
multiplicative quasi-isomorphism

f∗ : AS2 � AS1

To see that this map is independent of the choice of f , Consider S3 := S1×Y S2

and the graph of f , gf : S1→S3. Denote by πi : S3→Si the projection maps.
Then π∗

i : ASi→AS3 is a multiplicative quasi-isomorphism for each i as is g∗f :
AS3→AS1 . Then since g∗f ◦π∗

1 ;AS1→AS1 is the identity, we get that g∗f = (π∗
1)−1

in the homotopy category. Therefore, f∗ = g∗f ◦ π∗
2 = (π∗

1)−1 ◦ π∗
2 is independent

of f in the homotopy category. That is to say A1 and A2 are canonically quasi-
equivalent. This justifies omitting the system of points from the notation for the
homotopy type. We will omit similar obvious arguments in a few other places of
the papers. We remark that this proof was suggested by the referee, correcting
an earlier error.

The (unipotent) De Rham rational homotopy type of XF is defined by

ADR(X) = TW (ΩXF /F ) := sTW Γ(G(ΩXF /F ))

where the Godement resolution is now taken on XF . But Grothendieck’s exis-
tence theorem ([4], 5.1.2) implies that

ADR(X) � sTW ((lim←−Γ(G(ΩX̂/A)))⊗A F )

where the formal completion ΩX̂/A of the De Rham complex of X/A is regarded
as a pro-sheaf on Y . It is the latter object that we will compare to Acr.

One can compute Acr using the ‘crystalline complex’ associated to an embed-
ding system ([6] 2.18): Let (Y., Z.) be a pair of simplicial schemes that fit into a
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diagram
Y. ↪→ Z.

↓
Y

where Y. is a simplicial hypercovering that satisfies cohomological descent for the
étale topology which we equip with the log structure pulled back from that of
Y , Y.↪→Z. is a closed embedding of formal log schemes, and Z. is smooth formal
log scheme over W . Here, W is equipped with the ‘hollow’ [12] log structure
associated to the monoid N and the zero map N→W . Then the associated
crystalline complex is by definition

C(Y., Z.) := ΩZ./W ⊗OZ.
DY.(Z.)

Here, DY.(Z.) is the divided power envelop of Y. in Z.. Regard C(Y., Z.) as a
simplicial pro-CDGA on Y.. Then we also defined TW (C(Y., Z.)) in this setting
and we have a quasi-equivalence (i.e., an isomorphism in the homotopy category):

TW (C(Y., Z.)) � TW (WωY )

The functor TW (Thom-Whitney) can be defined in a more general setting, as we
have already done in the definition of ADR for example, but also for crystalline
complexes over more general bases. So if Y/S is a fine saturated smooth log
scheme over an affine base S = Spec(R) and S↪→T = Spec(B) is an exact
immersion of formal log schemes where B is flat over Z, then to any embedding
system (Y., Z.) as above with Z. smooth over B, we can associate the crystalline
complex C(Y., Z.) and the Thom-Whitney algebra TW (C(Y., Z.)) which ends up
as a CDGA over B ⊗Q. This algebra is in fact canonically independent of the
embedding system: Any two embedding systems can be dominated by a third
giving rise to a quasi-equivalence which, in turn, is independent in the homotopy
category of the dominating system, as in our earlier argument.

3. Mapping telescopes

Now we will go on to define the (twisted) mapping telescopes of inverse systems
of complete W -algebras.

First, if f : A→B is a map of (complete) CDGA’s over W , we define the
mapping cylinder that fits into a diagram

Cyl(f)
↗ ↓

A → B

as follows: Denote by I the formal divided power De Rham complex of W <<
x >>, the p-adic completion of the divided power polynomial algebra over W,
which therefore is concentrated in degrees 0 and 1. Consider the two augmenta-
tion maps e0, ep : I→Z that evaluate functions in I0 at 0 and p, respectively, and
sends I1 to zero. Hence B ⊗ I is likewise equipped with two maps to B which
we also denote by e0 and ep. Here and henceforward, all tensor products are
topological. The mapping cylinder Cyl(f) of f is defined to be the subalgebra
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of A⊕B⊗I consisting of elements (a, b) such that f(a) = e0(b). Notice that the
map Cyl(f)→B induced by ep : B ⊗ I→B becomes surjective after tensoring
with Q: for any b ∈ B, (0, xb/p) is in Cyl(f)⊗Q and maps to b. On the other
hand, integrally, we can only say that if b ∈ B, then pb is in the image of ep.
The map A→Cyl(f) given by a �→ (a, f(a)) induces a q.i. In fact, the projection
Cyl(f)→A to the first component is a chain homotopy inverse. Now, given an
inverse system of maps

A. : · · ·→A3→A2→A1

indexed by the positive integers, it is clear how to construct the mapping tele-
scope Tel(A.). It is the inverse limit of the inverse system defined inductively
by putting Tel1 = A1 and

Teli+1 := Cyl(Ai+1→Teli)

where the map Ai+1→Teli is the composite Ai+1→Ai→Teli. The construction
of Tel is clearly functorial for inverse systems of CDGA’s. In particular, one
can apply the construction to inverse systems of cosimplicial CGDA’s or bi-
cosimplicial CDGA’s. Also, there is a map of inverse systems A.→Tel. giving
rise to a functorial map lim←−A.→Tel.

We will also need the ‘twisted’ inverse limit construction of Ogus ([12] p.203):
Given an inverse system L. of W -modules indexed by N and an integer m, let
lim←−mL. be the collection of elements (ai), ai ∈ Li, such that ai �→ pmai−1. If n ≥
m, then we have natural maps lim←−mL.→ lim←− nL. given by (ai) �→ (p(n−m)iai).
That is, the twisted inverse limits form a directed system.

Using these, we can also construct the m−twisted telescope

Telm(A.) = lim←−
mTeli(A.)

as well as the infinitely twisted telescope

Tel∞(A.) = lim−→mTelm(A.)

Clearly, we have functorial maps lim←−mA.→Telm(A.) and

lim−→m lim←−
mA.→Tel∞(A.)

Lemma 3.1. Let L.→K. be a map of inverse systems of (bi-cosimplicial)CDGA’s
which is a quasi-isomorphism at each level. That is, each Ln→Kn is a quasi-
isomorphism. Suppose, furthermore, that the transition maps for both systems
(denoted π) have the following property: there exists some m such that for each
element x of level i, there exists an element y of level i+1 such that π(y) = pmx.
Then

lim−→ n lim←−
nL.→ lim−→ n lim←−

nK.

is a quasi-isomorphim.

Proof. It is straightforward to check that the twisted inverse limit commutes
with the cone construction, so that, for each n, we have a distinguished triangle

lim←−
nL.→ lim←−

nK.→ lim←−
nC.→L.[1]
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where C. is the cone of L.→K.. Since direct limits commute with cohomology,
we need only show that

lim−→H(lim←−
nC.) = 0

In fact, the transition map

H(lim←−
nC.)→H(lim←−

n+mC.)

is zero. To see this, let the cocycle (ci) represent an element of H(lim←− nC.).
We will show that (pmici) ∈ lim←− n+mC. is a coboundary. Construct an element
(bi) ∈ lim←− n+mC. such that d(bi) = (pmici) inductively as follows: assume we
have constructed up to bj . That is, for i ≤ j, dbi = pmici and π(bj) = pn+mbj−1.
Since each Ci is acyclic, there exists an xj+1 ∈ Cj+1 such that dxj+1 = cj+1.
Hence, dπ(pmjxj+1) = pmjπ(cj+1) = pmj+ncj = pndbj and d(π(pmjxj+1) −
pnbj) = 0. Again by acyclicity in level j, we can then find an aj such that
daj = π(pmjxj+1)− pnbj . Multiplying by pm, we get

π(p(j+1)mxj+1)− pn+mbj = d(pmaj) = dπ(aj+1)

for some aj+1. Now put

bj+1 := p(j+1)mxj+1 − daj+1

Then π(bj+1) = pn+mbj and dbj+1 = p(j+1)mcj+1, so we are done.

We emphasize that Tel∞ is a functor from inverse systems of (bi-cosimplicial)
CDGA’s to (bi-cosimplicial) CDGA’s and that the maps

lim←−A.→ lim−→m lim←−
mA.→Tel∞(A.)

are multiplicative.

4. Proof of theorem

In this section, it will be useful to employ the following notation: Given a
p-adic formal scheme S and an integer m, S/m denotes S ⊗Z Z/m which of
course only depends on the p-adic valuation of m.

We denote by S1 and S2 the scheme SpecW [t] equipped with the log structures
associated to the pre-log structures N→W [t] that send 1 to 0 and t, respectively.
So both restrict to the log structure of the punctured point on Spec(k). W [t]
carries the lifting of Frobenius σ given by the usual Frobenius on W and sending
t to tp. Denote by W << t >>, the p-adic completion of the divided power
polynomial algebra W < t > over W which therefore also carries log structures
induced by those of S1 and S2. Denote these formal log schemes by Ŝ1 and Ŝ2.
The Frobenius σ of W [t] naturally extends to W << t >>. We will denote by
S

(n)
i the scheme Spec(W [t]) equipped with the log structure of Si pulled back

by the n-th iterate of the Frobenius. Hence, we see that S
(n)
1 � S1 while the log

structure on S
(n)
2 is associated to the pre-log structure N→W [t] that sends 1 to

tp
n

. We will also use the notation Ŝ
(n)
i in the obvious manner.
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The difficult part of the Hyodo-Kato isomorphism says that if Y is a smooth
fine proper log scheme of Cartier type, then

Hi(Y/S1)⊗Z Q � Hi(Y/S2)⊗Z Q

that is, the crystalline cohomology is the same for the two log structures, up to
isogeny.

We recall the proof, taking care to make some maps more explicit.
We start out by choosing embedding systems Y.↪→Z1

. and Y.↪→Z2
. for Y with

respect to the two log schemes S1 and S2 that admit Frobenius lifts. This notion
requires a brief explanation: Denote by S

(n)
a the Frobenius twisted log schemes

introduced above. There are then maps Sa→S
(n)
a induced from the monoid map

N→N, 1 �→ pn. Now, (Za
. )(n) is a smooth simplicial log scheme over S

(n)
a , and

a Frobenius lift refers to a map F : Za
. →(Za

. )(1) that fits into the commutative
diagram

Za
.

F→ (Za
. )(1)

↓ ↓
Sa → S

(1)
a

Such embedding systems can be constructed, for example, as follows: Y0 in both
cases is just the disjoint union of the elements of an affine open covering of Y
and Z1

0 and Z2
0 are smooth liftings of Y0 to S1 and S2, respectively. Then the

Yi = Y1 ×Y Y1 × · · · × Y1 (i + 1-times) embed diagonally into

Za
i = Za

0 ×Sa Za
0 ×Sa · · · ×Sa Za

0

(i + 1-times) for a = 1, 2 and come together to form a simplicial hypercovering.
By the affine smoothness, we easily get the Frobenius lifts in cosimplicial level
0 and then the other levels by taking products.

Let C1 and C2 be crystalline complexes for the two different embedding sys-
tems, and form the bi-cosimplicial algebras over W << t >>

Ba := lim←−Γ(G(Ca))

for a = 1, 2. Denote by B
(n)
a the pull-back of Ba via σn, which therefore arise

from crystalline complexes for (Za
. )(n), the n-th Frobenius pull-back of Za

. , with
respect to S

(n)
a . In particular, when we adjoin divided powers and reduce mod

pn!, the two log structures are isomorphic, so we get isomorphisms in the derived
category of bi-cosimplicial complexes

B
(n)
1 /(pn)! � B

(n)
2 /(pn)!

We can get these maps to fit into commutative diagrams of bi-cosimplicial
CDGA’s

B
(n+1)
1 /(pn)! → Ln+1 ← B

(n+1)
2 /(pn)!

↓φ ↓ ↓φ
B

(n)
1 /(pn)! → Ln ← B

(n)
2 /(pn)!
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where the horizontal arrows are multiplicative quasi-isomorphisms of CDGA’s
(as opposed to maps in the derived category of complexes) constructed as follows.
The vertical arrows on either end are induced by the Frobenius lifts. Ln is the
crystalline complex for Y (n) relative to Ŝ

(n)
1 /pn! = Ŝ

(n)
2 /pn! computed using the

‘diagonal’ embedding system

Y (n)
. ↪→(Z1

. )(n) ×
Ŝ

(n)
1 /pn!

(Z2
. )(n)

The Frobenius lifts for Z1
. and Z2

. determine one for each product giving the
maps Ln+1→Ln. The horizonal maps are then induced by the projections. We
stress that all the maps are given by pull-backs of differential forms, and hence,
are multiplicative.

On the other hand, the iterates of the Frobenius induce multiplicative maps
of inverse systems

B(.)
a /p.!→Ba/p.!

where the target is just the inverse system given by the reductions of Ba with
the natural projections connecting them.

Lemma 3.1 admits the following corollaries:

Corollary 4.1. The following arrows are quasi-isomorphisms:

Tel∞(B(.)
1 )→Tel∞(L.)←Tel∞(B(.)

2 )

Corollary 4.2.
lim−→m lim←−

m(Ba/p.!)→Tel∞(Ba/p.!)
is a quasi-isomorphism.

On the other hand, we have the

Proposition 4.3. The map

B(.)
a /p.!→Ba/p.!

induces a quasi-isomorphism

Tel∞(B(.)
a /p.!) � Tel∞(Ba/p.!)

for a = 1, 2.

Proof. We will omit the subscript a from the notation. Hence, S also refers
to either S1 or S2.

If Cn is the cone of B(n)/pn!→B/pn! then Teln(C.) is the cone of

Teln(B(.)/p.!)→Teln(B/p.!)

That is, we have a distinguished triangle:

0→Teln(B(.)/p.)→Teln(B/p.!)→Teln(C.)→Teln(B(.)/p.)[1]

The key point is the following

Lemma 4.4. Hi(Cn) = Hi(Teln(C.)) is killed by p2in for i > 0 and pn for
i = 0.
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Proof of lemma. This is essentially [6] (2.25) which is a logarithmic version of
[2], chapter 8. However, we give here a self-contained proof for the convenience
of the reader.

Since the algebras are constructed out of the stalks of Godements resolutions,
the statement is local on Y . So we may assume that the embedding system is
just a smooth S lift X and that we also have a Frobenius lift f . Thus, f induces
pull-back maps

φn : ΩX(n)/S(n)→ΩX/S

It suffices to show that the cone Conen of this map mod pn! has i-th cohomology
killed by p2in for i > 0 and pn for i = 0. We just give the argument for i > 0
since the i = 0 case is an obvious modification.

Recall the map F given by φ/pi in degree i. The definition works just as in
the usual case ([7] 0.2.3.3) using the W -flatness of the sheaf of differentials. F
induces an injection ([8] III.1.5.4):

F : Ωi
X(1)/S(1)/[pn(Ωi

X(1)/S(1)) + pd(Ωi−1
X(1)/S(1))]↪→Ωi

X/S/[pn(Ωi
X/S) + d(Ωi−1

X/S)]

This is an immediate consequence of the Cartier isomorphism, again as in the
classical case.

Note the following corollary: given x ∈ Ωi
X(1)/S(1) , if F (x) = pmy for some y,

then x = pmz for some z. This is obvious for m = 1 from the above injection.
Assume it for m − 1. F (x) = pmy in any case implies x = pmw + pdu. But
then F (pdu) = F (x)− F (pmw) = pm(y − F (w)) so F (du) is divisible by pm−1.
Therefore, du = pm−1v and x is divisible by pm.

By iterating the argument, we also see that if x ∈ Ωi
X(n)/S(n) and Fn(x) is

divisible by pm, then so is x.
Now, let

(a, b) ∈ Ωi
X/S ⊕ Ωi+1

X(n)/S(n)

represent a cocycle in

(Conen)i = (Ωi
X/S ⊕ Ωi+1

X(n)/S(n))⊗ Z/pn!

Then φn(b)− da = pn!x and db = pn!y. Write the first equality as

Fn(pinb) = pn!x + da

and apply the injection above to get

pinb = pn!w + pds = pn!w + dc

for some w and c. We also get

d(φn(c)− pina) = pinφn(b)− pn!pinFn(w)− pinda = pn!pin(x− Fn(w))

That is,
φn(c)− pina ∈ d−1(pn!pinΩi+1

X/S)

Recall the formula

d−1(pnΩi+1
X/S) = Σ0≤k≤npkFn−k(Ωi

X(n−k)/S(n−k)) +
∑

0≤k≤n−1

F k(dΩi−1
X(k)/S(k))
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whose proof also follows [7] 0.2.3.13 verbatim, as pointed out by Jannsen in the
appendix of [5]. Thus, we have

φn(c)− pina = pn!pinz0 + pn!p−1pinF (z1) + · · ·+ pn!p−npinFn(zn) + · · ·
FN (zN ) + du0 + F (du1) + · · ·+ FN−1(duN−1)

where N = vp(pn!)+in. We examine the terms in this equality after multiplying
by another pin. We get that φn(pinc)−p2ina is of the form pn!pinz +φn(l)+du.
If we apply the differential d, we get that dφn(l) = φn(dl) is divisible by pinpn!.
Thus, Fn(dl) is divisible by pn!, and hence, so is dl. So we get d(pinc − l) =
p2inb (mod pn!) and φn(pinc − l) − du = p2ina (mod pn!). Hence, the class of
(p2ina, p2inb) (mod pn!) is a coboundary. This proves the lemma.

For all our considerations, we may assume that the dimension d of Y is pos-
itive. Therefore, we see that all the cohomology of Cn is killed by p2dn. The
remainder of the proof of the proposition is as in the proof of Lemma 3.1 :
Let (cn) be a cocycle in Telm(C.). Then (p(2d+1)ncn) ∈ Tel(m+2d+1)(C.) is a
coboundary.

Remark 4.5. The fact that the relative Frobenius is an isogeny has been the
source of many important theorems on crystalline cohomology starting with the
theorem of Berthelot and Ogus. Here, it is rather mysteriously manifested in
the isomorphism of infinitely twisted mapping telescopes.

Thus we have arrived at an explicit isomorphism in the derived category from

lim−→
m lim←−

mB1/p.!

to
lim−→

m lim←−
mB2/p.!

mediated by the following system of arrows all of which are quasi-isomorphisms:

Tel∞(L.)

↗ ↖
Tel∞(B(.)

1 /p.!) Tel∞(B(.)
2 /p.!)

↓ ↓
lim−→m lim←−mB1/p.! → Tel∞(B1/p.!) Tel∞(B2/p.!) ← lim−→m lim←−mB2/p.!
On the other hand, as has already been pointed out, it is trivial to check that if
L. is an inverse system of W -algebras, then lim−→m lim←−mL. is a W algebra, even
though each lim←−mL. separately is not. Also, maps in the category of inverse sys-
tems of algebras induce algebra homomorphisms for this double limit. Therefore,
we see that the isomorphism constructed above is actually an isomorphism in
the homotopy category of algebras.

Now consider the natural map

lim←−Ba/p.!→ lim−→
m lim←−

mBa/p.!

By Ogus ([12] Lemma 18), we have an isomorphism

(lim←−Ba/p.!)⊗Q � (lim−→
m lim←−

mBa/p.!)⊗Q
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Thus, we have constructed a quasi-equivalence from

(lim←−B1/pi!)⊗Q

to
(lim←−B2/pi!)⊗Q

Applying the Thom-Whitney simple object functor twice, we get a quasi-
equivalence

TW (C(Y., Z
1
. ) � TW (C(Y., Z

2
. ))

It is straightforward to check that this map is independent (in the homotopy
category) of the various choices made.

The rest of the argument is as in [9], section 7, and amounts to a ‘Berthelot-
Ogus’ type argument [2]. Choose a uniformizer π of A which therefore determines
a presentation A �W [t]/(f(t)), where f(t) is an Eisentein polynomial of degree
e = [F : K]. Let R be the p-adic completion of the divided power envelop of
(f(t), p) inside W [t]. Thus R is also the completed DP envelop of the ideal (te).
We have a natural map g : R→W << t >>. On the other hand, if r is such
that pr ≥ e, then the map σr : W << t >> →W << t >> factors through
W << t >> →R→W << t >>. Composing in the other direction R→W <<
t >> →R is, by definition, the Frobenius map of R. Let Y ′ = X ⊗ A/p with
the induced log structure. Also, give Spec(R) the log structure induces from S2.
We have the commutative diagram

Y ′ → Y ↪→ Y ′

↓ ↓ ↓
Spec(A/p) → Spec(k) ↪→ Spec(A/p)

↓ ↓ ↓
Spec(R) → Ŝ2 → Spec(R)

where the composite of the horizontal arrows are all the r-th iterate of the
Frobenius. We choose crystalline complexes for Y and Y ′ as follows. Construct
first embedding systems for Y and Y ′ with respect to S2 that fit into a diagram

Y. ↪→ Y ′
. ↪→ Z.

↓ ↓
Y ↪→ Y ′

where Z. is smooth over S2 and the left hand square is cartesian. We can
also arrange for Z. to admit a Frobenius lift compatible with the Frobenius of
W [t]. Then C = ΩZ./W [t] ⊗W << t >> and C ′ = ΩZ./W [t] ⊗ R are crystalline
complexes for Y and Y ′ and we can regard both as simplicial sheaves of CDGA’s
on Y..

Denote by C(r) (resp. (C ′)(r) ) the pull-back of C (resp. C ′) by the r-th
power of the Frobenius map of W << t >> (resp. R). Then the big diagram
above implies that

(C ′)(r) � C(r) ⊗W<<t>> R
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in the homotopy category of sheaves of CDGA’s on Y.. On the other hand,
the Frobenius lifts induce maps C(r)→C and (C ′)(r)→C ′. So we have maps of
sheaves of CDGA’s

C ⊗R← C(r) ⊗R � (C ′)(r)→C ′

and taking Thom-Whitney algebras, we have multiplicative maps

TW (C)⊗ (R⊗Q)← TW (C(r))⊗ (R⊗Q) � TW ((C ′)(r))→TW (C ′)

of CDGA’s over R⊗Q. From the fact that the relative Frobenius is an isogeny
([6] Proposition 2.24), we know that all these maps are quasi-equivalences. Now
we tensor with the quotient map R⊗Q→A⊗Q = F to get

TW (C)⊗W<<t>>⊗Q F � TW (C ′)⊗R⊗Q F

By using the fact that C ′ ⊗ A is the crystalline complex associated to an em-
bedding system for Y ′ w.r.t. A which is also true of ΩX̂/A, we get

TW (C ′)⊗ F � TW (ΩX̂/A) � TW (ΩXF /F )

On the other hand, C is quasi-equivalent to C(Y., Z2
. ) from the previous section,

so that TW (C) � TW (C(Y., Z2
. )) � TW (C(Y., Z1

. )) and C(Y., Z1
. ) is quasi-

equivalent to the base change to W << t >> of a crystalline complex for Y
with respect to W so we get

TW (C)⊗ F � TW (WωY )⊗K F

giving us the desired quasi-equivalence

TW (WωY )⊗K F � TW (ΩXF /F )

This is the isomorphism of homotopy types stated in the theorem.

Proof of corollary 1.2
We need to discuss basepoints. We start with a careful discussion of the

basepoint for WωY . If y : Spec(k)→Y is a point of Y , then there is a map
WωY→y∗(W ). It is given by 0 in positive degrees and the canonical map ey :
WOY→W (k) induced by OY→k. This map induces TW (WωY )→TW (y∗(W )).
However, a simple examination of the definition yields the following description
of the degree zero term TW 0(y∗(W )): It consists of collections (fn) where fn

is a function on An
K with the property that ∂i(fn+1) = fn for any i. The map

(fn)→f0 yields a quasi-isomorphism TW (y∗(W )) � K. We obtain thereby the
augmentation map TW (WωY )→K. Let’s describe this map explicitly. The
degree zero term of TW (WωY ) consists of compatible sequences ([9] section
3) (an), an ∈

∏
p̄(WOY )p̄ ⊗ OAn

K
where p̄ is an n + 1-tuple of points in Y .

Thus, a0 is just an element of
∏

p(WOY )p, and the map TW (WωY )→K is
zero in positive degrees while in degree zero it sends (an) to ey(a0). Now, let
(Y., Z.) be an embedding system for which Y0 is the disjoint union of an affine
open cover of Y and Z0 is a smooth lifting of Y0 which admits a Frobenius
lift F . By the construction at the beginning of the section, for example, such
embedding systems exist. The base point y ∈ Y lifts to Y0 and a W point z of
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Z = Z0. Locally, we can express WnOY as the cohomology H0(ΩZn/Wn
) and

then we get the map OZ→WOY that sends a to the sequence (Fn(a)(modpn))n

which is the degree zero component of the quasi-isomorphism ΩZ/W→WωY .
Let ΩZ/W ⊗ Dy(Z) be the divided power envelop of y in Z. Then we have
(H0(ΩZn/Wn

⊗ Dy(Zn)))n � W (k). The augmentation ez : OZ→W given by
evaluation at z then fits into a commutative diagram

OZ → (H0(ΩZn/Wn
))n � WOY

↓ ↓ ↓
W → (H0(ΩZn/Wn

⊗Dy(Zn)))n � W

where the first arrow in the bottom row sends a ∈ W to the inverse system
(σn(a)(modpn))n This implies that

(TW (C(Y., Z.)), ez) � (TW (WωY ), ey)

as augmented algebras.
Now, assume we are in the situation at the end of section 2 where V→Spec(R)

is a smooth proper connected fine saturated log scheme over an affine base and
Spec(R)↪→Spec(B) is an exact topologically nilpotent immersion where B is of
characteristic zero. Assume also that we are given a point v : Spec(R)→V . Then
we can always find an embedding system (V., Z.) with the property that v lifts
to V0 and to a point z : B→Z0. This point allows us to put an augmentation
TW (C(V., Z.))→B ⊗Q on the Thom-Whitney algebra and a product construc-
tion shows that for any two choices of embedding systems, there is a homotopy
equivalence between the Thom-Whitney algebras which is compatible with the
augmentation. Similarly for different choices of liftings of the point y. From
this, applied to the various embedding systems that occur in the proof of the
theorem, one easily deduces that the homotopy equivalence

TW (C(Y., Z.))⊗ F � TW (ΩXF
)

takes the augmentation induced by ez to that induced by evaluation at xF .

Proof of Corollary 1.3.
The isomorphism classes of the higher rational homotopy groups are deter-

mined by their dimension, and this dimension can be computed in any complex
embedding of E or after base change to the completion Ev of E w.r.t. v. The
assumptions imply that the special fibers Y1 and Y2 are isomorphic smooth log
schemes. Thus, TW (ωY2) � TW (ωY2), which implies the quasi-equivalence of
TW (ΩXE(1)(log DE(1)))⊗Ev and TW (ΩXE(2)(log DE(2)))⊗Ev. Thus, their bar
complexes are quasi-equivalent, giving isomorphisms of their cohomology groups,
i.e., the higher De Rham homotopy groups of XE(1)−DE(1) and XE(2)−DE(2)
[13].



THE HYODO-KATO THEOREM FOR RATIONAL HOMOTOPY TYPES 169

Acknowledgement

Both authors were supported in part by grants from the National Science
Foundation. We are also very grateful to the referee who read an earlier ver-
sion very carefully and made many useful suggestions. He/she also corrected a
defective proof involved in the definition of the rational homotopy type.

References

[1] M. Artin, B. Mazur, Etale homotopy. Reprint of the 1969 original. Lecture Notes in
Mathematics, 100. Springer-Verlag, Berlin, 1986. iv+169 pp.

[2] P. Berthelot, A. Ogus, F -isocrystals and de Rham cohomology. I. Invent. Math. 72 (1983),
159–199.
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