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HYPERIDEAL CIRCLE PATTERNS

JEAN-MARC SCHLENKER

ABSTRACT. A “hyperideal circle pattern” in S? is a finite family of oriented circles,
similar to an “usual” circle pattern but such that the closed disks bounded by the
circles do not cover the whole sphere. Hyperideal circle patterns are directly
related to hyperideal hyperbolic polyhedra, and also to circle packings.

To each hyperideal circle pattern, one can associate an incidence graph and
a set of intersection angles. We characterize the possible incidence graphs and
intersection angles of hyperideal circle patterns in the sphere, the torus, and in
higher genus surfaces. It is a consequence of a more general result, describing
the hyperideal circle patterns in the boundaries of geometrically finite hyperbolic
3-manifolds (for the corresponding CP!-structures). This more general statement
is obtained as a consequence of a theorem of Otal [Ota94, BO01] on the pleating
laminations of the convex cores of geometrically finite hyperbolic manifolds.

Résumé

Un “motif de cercles hyperidéal” sur S? est une famille finie de cercles ori-
entés, similaire & un motif de cercles “usuel” mais tel que la réunion des disques
fermés bordés par les cercles ne couvre pas la sphére. Les motifs de cercles hy-
peridéaux sont directement liés aux polyedres hyperboliques hyperidéaux, et aussi
aux empilements de cercles.

A chaque motif de cercles hyperidéal, on associe un graphe d’incidence et un
ensemble d’angles d’intersection. On caractérise les graphes d’incidence et les an-
gles d’intersection possibles dans la sphere, le tore, et sur les surfaces de genre
supérieur. C’est une conséquence d’un résultat plus général décrivant les motifs
de cercles hyperidéaux dans les bords de variétés hyperboliques géométriquement
finies (pour les CP!-structures correspondantes). Ce résultat plus général est
obtenu comme conséquence d’un théoréme d’Otal [Ota94, BOO1] sur les lamina-
tions de plissage des coeurs convexes de variétés hyperboliques géométriquement
finies.

1. Introduction

1.1. Circle patterns. A circle packing on the sphere S? is a finite family of
oriented circles with disjoint interiors. The incidence graph of a circle packing
is a graph I', embedded in S?, which has one vertex for each circle, and an edge
between two vertices when the corresponding circles are tangent. A classical
theorem of Koebe [Koe36] states that, given any graph I' on S? which is the
1-skeleton of a polytopal triangulation, there is a unique circle packing with
incidence graph I' — the uniqueness is up to Mobius transformations. This
theorem was extended to higher genus surfaces by Thurston [Thu80]. It also
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holds when I' is the 1-skeleton of a cellular decomposition; one should then add
the condition that, for each connected component of the complement of the disks,
there is another circle orthogonal to all the adjacent circles of the pattern.

One can also consider circle patterns on S? (see e.g. [BS04]). For reasons that
should become apparent below, we add the adjective ideal to describe what is
perhaps the most commonly considered type of circle patterns.

Definition 1.1. A circle pattern on S? is a finite family of oriented circles

Ci,---,Cy. Given a circle pattern, an interstice is a connected component
of the complement of the union of the open disks bounded by the circles. If
Ci,---,CnN is a circle pattern, it is ideal if:

e Fach interstice is a point.

o If D is an open disk in S?, containing no interstice, but such that its
closure contains at least 3 of the interstices, then D is the open disk
bounded by one of the C;,1 <i < N.

It follows from this definition that any interstice is in at least 3 of the circles.
However there might also be points which are in 3 circles or more, but which are
not interstices.

Given an ideal circle pattern, its incidence graph is the 1-skeleton of the
cellular decomposition of the sphere which has:

e One vertex for each circle.

e One face for each interstice.

e One edge between two vertices, when the corresponding circles intersect
at two interstices.

Given two of the circles in an ideal circle pattern, we consider the angle be-
tween them only when the corresponding vertices of the incidence graph share
an edge. Thus the intersection angles between the circles correspond to a func-
tion from the set of edges of the incidence graph to (0, 7). The angle will always
be measured in the complement of one disk in the other, i.e. it will be equal
to m minus the intersection angle measured in the intersection of the two disks.
By extension, the intersection angle between the boundaries of two disjoint but
tangent open disks is equal to .

The notion of ideal circle pattern is not restricted to the sphere; one can
consider it in an Euclidean or a hyperbolic surface. Actually the most natural
setting is a surface with a CP!-structure, since the notion of circle is then well
defined, as well as the notion of angle. A surface with a spherical, Euclidean or
hyperbolic metric also has a canonical CP!-structure coming from the Poincaré
uniformization theorem.

1.2. Ideal polyhedra. An ideal hyperbolic polyhedron is a convex polyhedron
in H3, of finite volume, with all its vertices on the sphere at infinity. Another
possible definition is as the convex hull of a finite set of points (not all contained
in a plane) on the sphere at infinity in H?3.

The possible combinatorics and dihedral angles of ideal polyhedra were de-
scribed by Andreev [And71] and Rivin [Riv96]. Thurston [Thu80] realized that
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FIGURE 1. A piece of ideal circle pattern, with its incidence graph.

there was a deep connection between ideal polyhedra and circle patterns: given
an ideal polyhedron, the boundaries of the hyperbolic planes containing its faces
is an ideal circle pattern; its incidence graph is combinatorially dual to the
combinatorics of the ideal polyhedron, and the exterior dihedral angles between
the faces are equal to the intersection angles between the circles. Using this,
Thurston gave a simple proof of the Koebe circle packing theorem based on
Andreev’s theorem. Thus Rivin’s theorem on ideal polyhedra can be used to
describe the possible combinatorics and dihedral angles of ideal circle patterns,
in a way which is similar to Theorem 1.3 below. Many interesting extensions
and important references can be found in [BS04, Riv03, Lei02], in particular
regarding the extension to higher genus surfaces.

1.3. Hyperideal circle patterns. We now introduce another notion of circle
patterns. Just as the ideal circle patterns are related to ideal hyperbolic polyhe-
dra, those other circle patterns are related to strictly hyperideal polyhedra, so
we call them strictly hyperideal circle patterns.
Definition 1.2. Let Ci,---,Cy be a circle pattern in S?, with interstices
I, -+ ,Ip. It is strictly hyperideal if:

e Fach interstice has non-empty interior.

e For each j € {1,---, M}, there is an oriented circle C}, containing I,

which is orthogonal to all the circles C; adjacent to I;.
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e Foralli e {l,--- ,N} and all j € {1,--- , M}, if C; is not adjacent to
I;, then either the interior of C; is disjoint from the interior of C]’-, or
C; intersects CJ’. and their intersection angle is strictly larger than /2.

o If D is an open disk in S? such that:

(1) For each j € {1,---, M}, either D is disjoint from the interior of
C%, or OD has an intersection angle at least /2 with C}.

(2) 9D is orthogonal to at least 3 of the Cj.

then 0D 1is one of the C;.

As for ideal circle patterns, this notion is not restricted to the sphere, but can
be considered for any surface with a CP!-structure. In this setting, it should
be understood that, in the last condition, D is a disk which is immersed in the
surface, i.e. not necessarily embedded.

Taking the limit of such strictly hyperideal circle patterns as the radii of the
CJ’. goes to zero yields ideal circle patterns. On the other hand, taking the limit as
the intersection angles between the C; goes to 7 yields a circle packing as in the
Koebe theorem quoted above. There is a natural notion which generalizes both
the ideal and the strictly hyperideal circle patterns, and the name “hyperideal
circle pattern” should be kept for this more general notion.

Given a strictly hyperideal circle pattern, its incidence graph is the 1-skeleton
of the cellular decomposition of S? defined similarly as for ideal circle patterns,

which has:

e One face for each of the I;,1 < j < M.

e One vertex for each of the C;,1 <i < N.

e One edge between two faces, corresponding to I and I;, whenever there
are two circles C; and C; which are both orthogonal to Cj, and Cj.

We will consider the intersection angles between the circles C;, defined as ex-
plained above for ideal circle patterns.

1.4. Some examples. Before stating the main result, we give three simpler
examples, two of them corresponding to already well understood cases. The
first is a direct consequence of a recent result of Bao and Bonahon [BB02].

Theorem 1.3. Let I' be the 1-skeleton of a polytopal cellular decomposition of
S2, and let w : T'y — (0,7) be a map on the set of edges of I'. There exists a
strictly hyperideal circle pattern on S? with incidence graph T' and intersection
angles given by w if and only if:
(1) For each simple closed curve 7 in T, the sum of the values of w on the
edges of v s strictly larger than 2.
(2) For each open path ~y in T', which begins and ends on the boundary of a
face f but is not contained in f, the sum of the values of w on the edges
of v is strictly larger than .

This strictly hyperideal circle pattern is then unique, up to the Mdbius transfor-
mations of S? .

There is a similar result in the case of the torus.
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FIGURE 2. A piece of hyperideal circle pattern, with its in-
cidence graph. The circles corresponding to the interstices are
doubled. The angles between the circles of the two families
should be 7/2.

Theorem 1.4. Let T be the 1-skeleton of a cellular decomposition of T?, and let
w: Ty — (0,7) be a map on the set of edges of I'. There exists a flat metric go
on T? and a strictly hyperideal circle pattern C' on (T2, go) with incidence graph
I' and intersection angles given by w if and only if:

(1) For each simple, homotopically trivial closed path ~y in ', the sum of the
values of w on the edges of v is strictly larger than 2.

(2) For each open path ~y in T, which begins and ends on the boundary of a
face f, is homotopic to a segment in that face, but is not contained in
f, the sum of the values of w on the edges of v is strictly larger than .

Then (go, C) is unique, up to the homotheties of go.

The same statement holds on surfaces of higher genus, it is a direct conse-
quence of (a special case of) a recent result of Rousset [Rou04].

Theorem 1.5. Let S, be a closed surface of genus g > 2, let I" be the 1-skeleton
of a cellular decomposition of Sy, and let w: 'y — (0,7) be a map on the set of
edges of I'. There exists a hyperbolic metric gy on Sy and a strictly hyperideal
circle pattern C' on (Sg, go) with incidence graph I' and intersection angles given
by w if and only if:
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(1) For each simple, homotopically trivial closed path ~ in ', the sum of the
values of w on the edges of v is strictly larger than 2.

(2) For each open path ~y in T', which begins and ends on the boundary of a
face f, is homotopic to a segment f, but is not contained in f, the sum
of the values of w on the edges of v s strictly larger than w.

Then (go,C) is unique.

1.5. The main result. The 3 theorems quoted above are basically simple con-
sequences of the following more complex but much more general statement. We
now consider a compact 3-manifold with non-empty boundary M, whose interior
admits a complete hyperbolic metric; M, like all the manifolds that we consider
in this paper, will be oriented. According to a result of Thurston [Thu82], the
existence of a complete hyperbolic metric on the interior of M is equivalent to a
simple topological condition: that M is irreducible and homotopically atoroidal,
and is not the interval bundle over the Klein bottle.

We call &' M the union of the connected components of M which are not
tori, except if M is a solid torus — then 9'M = OM — or if M is the product
of a torus by an interval — then @’ M is one connected component of OM.

In this setting, the complete hyperbolic metrics on M are geometrically finite;
they contain a finite volume subset C' which is convez in the (strong) sense that,
given any geodesic segment v with endpoints in C, v is contained in C (see
[Thu80]). For each such metric, M is isometric to the quotient of H* by a discrete
group G acting by isometries. Then 0’M is the quotient of the discontinuity
domain of G by G. Since G acts on S? by Mobius transformations, 8’ M has
a natural CP!-structures. Note that, in general, among the CP!-structures on
d'M, only a small subset are obtained from a geometrically finite hyperbolic
metric on M.

Finally, before stating the result, we need a small restriction on the kind of
cellular decomposition which can be realized.

Definition 1.6. Let M be a compact 3-manifold with boundary, whose interior
admits a complete hyperbolic metric. Let ¥ be a cellular decomposition of &' M.
Y is proper if there is no essential disk D in M such that 0D C &' M and that
0D intersects the closure of at most two cells.

Theorem 1.7. Let M be a compact (orientable) 3-manifold with boundary whose
interior admits a complete hyperbolic metric. Let I be the 1-skeleton of a proper
cellular decomposition ¥ of @' M, and let w : Ty — (0,7) be a map on the set
of edges of I'. There exists a couple (o,C), where o is a CP'-structure on &' M
induced by a geometrically finite hyperbolic metric on M and C is a strictly
hyperideal circle pattern on (0'M, o) with incidence graph T' and intersection
angles given by w, if and only if:

(1) The cellular decomposition X is proper.
(2) For each simple closed path ~y in I', homotopically trivial in M, the sum
of the values of w on the edges of v is strictly larger than 2.
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(3) For each open path v in ', which begins and ends on the boundary of a
face f, is homotopic in M to a segment in f, but is not contained in f,
the sum of the values of w on the edges of v is strictly larger than .

Then (o,C) is unique.

Theorems 1.3, 1.4 and 1.5 are direct consequences of Theorem 1.7. Theorem
1.3 is obtained when M is a ball, and Theorem 1.4 when M is the product of
a torus by R. For Theorem 1.5, one should take as M the product of a surface
of genus at least 2 by an interval, with a graph I' and a function w which are
the same on both connected components of the boundary; the uniqueness in
Theorem 1.7 then shows that the CP!-structure obtained on each connected
component of the boundary is the same, so that it is the CP'-structure induced
by a hyperbolic metric on the surface considered.

There are other simple consequences of Theorem 1.7 beyond the three state-
ments given above. For instance, one can consider two cellular decompositions
of a surface X of genus at least 2, along with some angles on the edges, and
obtain from Theorem 1.7 a unique quasi-fuchsian metric on ¥ x R, along with
one strictly hyperideal circle pattern on each boundary component.

1.6. Relation to other results. Theorem 1.7 is similar to the main result of
[Sch02], although [Sch02] is about hyperideal polyhedra rather than hyperideal
circle patterns. Theorem is 1.7 less general than the main result of [Sch02] insofar
as the circle patterns considered are strictly hyperideal rather than hyperideal
(a more general notion), but also more general since M can have compressible
boundary and 0M is allowed to have toric components. The proof of Theorem
1.7, however, is completely different from the one given in [Sch02]; here we show
that Theorem 1.7 is a direct consequence of a result of Otal [Ota94, BOO1],
which itself uses crucially a result of Hodgson and Kerckhoff [HK98]. In [Sch02],
the proof is direct and based, among other things, on some properties of the
volume of hyperideal polyhedra. The method of [Sch02] yields additional infor-
mations, in particular concerning the “induced metrics” on the boundaries of
the manifolds with hyperideal boundary that appear here in section 2.

2. Circle patterns and hyperideal polyhedra

In this section we define “manifolds with strictly hyperideal boundary” and
state a theorem, concerning them, which is basically equivalent to Theorem 1.7.
This theorem is proved in the next section, using [Ota94, BOO01].

2.1. Hyperideal polyhedra. Recall that the Klein model of H? is a map
¢ : H> — B2, where B? is the open unit ball in R3, which is projective, i.e.
it sends the hyperbolic geodesics to the segments. A hyperideal polyhedron is
a hyperbolic polyhedron which is the inverse image, in H?3, of a polyhedron
P C R3 with all its vertices outside B3 but all its edges intersecting B3. It is
strictly hyperideal if P has no vertex on the boundary of B3.
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Given a point v € R3 \ﬁ, its polar dual is the plane, noted v*, which
contains the set of points z € S? such that the line going through z and v is
tangent to S2. (It can also be defined using the polarity with respect to a bilinear
form of signature (3,1) on R*, which explains the terminology.) An important
property is that, for any x € v* N B3, the intersection with B? of the line going
through x and v, considered as a hyperbolic geodesic, is orthogonal to v* N B3,
considered as a hyperbolic plane. Conversely, for any plane P C R? intersecting
B3, there is a unique point P* € R3\ B3 such that P is the plane dual to
v. This notion of duality has many interesting application, it is related to the
hyperbolic-de Sitter duality used in particular by Rivin [Riv86] and Rivin and
Hodgson [RH93] to obtain beautiful results on compact hyperbolic polyhedra.
To simplify statements a little, we will sometimes talk about the point which is
dual to an oriented circle in S?; it is the point dual to the plane which contains
the circle.

Using this notion, we can reformulate the definition of a hyperideal polyhedron
without reference to the projective model of H?; a hyperideal polyhedron is a
convex hyperbolic polyhedron (i.e. the intersection of a finite number of half-
planes) with no vertex such that, for each end, either the end has finite volume,
or there exists a hyperbolic plane which is orthogonal to all the edges going to
infinity in it. It is strictly hyperideal if all ends have infinite volume.

Moreover, given a hyperideal polyhedron P, one can truncate it (following
[BB02]) by cutting off each end of infinite volume by the plane which is dual to
the corresponding vertex; one obtains in this way a finite volume polyhedron P;
(which is compact if P is strictly hyperideal). Its faces are either faces of P, or
faces which are orthogonal to the adjacent faces.

2.2. Ideal polyhedra and ideal circle patterns. We first recall the cor-
respondence between ideal hyperbolic polyhedra and ideal circle patterns. It
is a direct consequence of the following proposition, which is classical, see e.g.
[GW93].

Proposition 2.1. Let z1,--- ,xy € S? be distinct points, M > 3. There exists
a unique family of oriented circles Cq,--- ,Cn such that:

e The C; bound closed disks which cover S?.

None of the C; bounds an open disk containing any of the ;.

Each of the C; contains at least 3 of the x;.

If D is an open disk which contains none of the x; but such that 0D
contains at least 3 of them, then D is the interior of one of the C;.

The C; are obtained as the intersections with S? of the planes containing the
faces of the convex hull, in R3, of the points x1,--- ,Tpr.

This proposition explains the relationship between ideal polyhedra and ideal
circle patterns. Given a (convex) ideal polyhedron, it is clear that the set of
oriented circles associated to its faces is an ideal circle pattern. Conversely,
given an ideal circle pattern C4,--- ,Cy, let x1,--- , 2 be its interstices. Then
Definition 1.1 implies that Cq,--- ,Cy is the set of oriented circles associated
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by Proposition 2.1 to z1,--- ,xp. Therefore Cq,--- ,Cn are the boundaries of
the planes containing the faces of the ideal polyhedron which is the convex hull
of the z;.

2.3. Hyperideal polyhedra and hyperideal circle patterns. The same
procedure can be applied for strictly hyperideal circle patterns, based on the
following analog of Proposition 2.1 (see [GW93]).

Proposition 2.2. Let Cy,--- ,C, be a family of oriented circles in S?, bounding
disjoint closed disks (M > 3), each disk being strictly smaller than a hemisphere.
There exists a unique family of oriented circles Cy,--- ,Cn such that:

e The closed disks bounded by the C; cover the complement of the closed
disks bounded by the C7.

e None of the C; contains any of the C} in its interior, or makes an angle
strictly less than w/2 with any of the C.

e FEach of the C; is orthogonal to at least 3 of the C.

e If D is an open disk such that:
(1) For each j € {1,---, M}, either D is disjoint from the interior of

C%, or 9D makes an angle at least 7/2 with C.

(2) 0D is orthogonal to at least 3 of the Cj.
then D 1is the interior of one of the C;.

The C; are obtained as the intersections with S? of the planes containing the
faces of the convex hull, in R3, of the points x1,--- ,xp which are dual to the
circles C1,--- ,C",.

Clearly the hypothesis that the circles C’J’- bound disks smaller than hemi-
spheres is not crucial, it appears here in the convex hull construction because
we do things in the Euclidean space rather than in the sphere, where state-
ments would be a little more complicated. Note also that there is a common
generalization of Proposition 2.1 and Proposition 2.2, see [GW93].

Given a strictly hyperideal polyhedron P, one can consider the oriented planes
containing its faces, and then their boundaries, which are oriented circles in
S2. Those circles clearly make up a strictly hyperideal circle pattern, with
the connected components of the complement of the disks corresponding to the
vertices of P; the circles CJ’- which appear in the definition of a strictly hyperideal
circle pattern are the boundaries of the hyperbolic planes dual to the strictly
hyperideal vertices. Moreover, the incidence graph of this circle pattern is dual
to the combinatorics as the polyhedron P, because two faces of the incidence
graph — corresponding to two connected components of the complement of the
disks — are adjacent if and only if the corresponding circles are both orthogonal
to two circles of the pattern, i.e. if and only if the corresponding hyperideal
vertices of P are adjacent.

Conversely, let C' = (C1,--- ,Cn) be a strictly hyperideal circle pattern. Let
C1,---,C", be the oriented circles corresponding to the interstices. Since those
circles bound disjoint disks, we can apply a Mobius transformation to ensure
that all those disks are strictly smaller than hemispheres.
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Definition 1.2 shows that the circles C, - - - , Cn are precisely the circles asso-
ciated to C1,---,C}; by Proposition 2.2. Therefore, the C; are the boundaries
of the planes containing the faces of a strictly hyperideal polyhedron, which is
the convex hull of the points dual to the C]'~.

2.4. Manifolds with hyperideal boundary. It is necessary below to con-
sider objects, more general than hyperideal polyhedra, which are basically sub-
manifolds M of a geometrically finite hyperbolic 3-manifold N such that the
boundary of M in N is locally like a strictly hyperideal polyhedron in H?3.

A geometrically finite hyperbolic 3-manifold is the interior of a compact 3-
manifold with boundary N with a complete hyperbolic metric, which contains a
non-empty submanifold M C N, of finite volume, which is conver in the (strong)
sense that any geodesic segment in N with endpoints in M actually remains in
M. Moreover, if N is not a ball or the product of a torus by an interval, there
exists a smallest such subset My (smallest with respect to the inclusion) and M
is called the convex core of N. If N is not a ball, a solid torus or the product
of the torus by an interval, then the boundary of My in N is homeomorphic to
the union of the connected components of 9N which are not tori, while the tori
in the boundary of N correspond to cusps in M (see e.g. [Thu82, Thu80] for
much more on this).

Definition 2.3. A hyperbolic manifold with strictly hyperideal boundary is the
interior of a compact 3-manifold with boundary M with a hyperbolic metric, such
that there exists an isometric embedding ¢ : M — N, where N is a geometrically
finite hyperbolic 3-manifold, with the property that:

o ¢(M) is convex in N in the strong sense defined above: any geodesic
segment of N with endpoints in ¢(M) actually remains in ¢(M).

e For any embedded hyperbolic ball B C N, there exists a strictly hyperideal
polyhedron P C H? and a ball B' C H3 such that the interior of B' N P
is isometric to BN ¢(M).

e The boundary of ¢(M) in N contains no closed geodesic of N.

Giwven M, N is uniquely defined and will be called the extension of M.

In many cases it is more convenient to consider the closure of M in N, rather
than M as defined above. The condition on the closed geodesics is equivalent to
the fact that the boundary of M in N does not intersect the convex core of N.
There is another possible definition, using the notion of hyperideal point in a
geometrically finite manifold. A simple example of a strictly hyperideal manifold
is that, when N is the ball, M is simply a strictly hyperideal polyhedron.

2.5. Dihedral angles of manifolds with hyperideal boundary. Consider
a hyperbolic manifold M with strictly hyperideal boundary. By definition, its
boundary 0M is a “polyhedral” surface in the extension N of M. It has a finite
number of faces and a finite number of edges. Each face is isometric to the
interior of a strictly hyperideal polygon in H?, while the edges are complete
geodesics. The boundary combinatorics of M determines (combinatorially) a



HYPERIDEAL CIRCLE PATTERNS 95

cellular decomposition of ' N — with one face for each face of M, and one
vertex for each strictly hyperideal vertex of M (or, equivalently, for each end of
OM).

For each edge e of OM, we define the exterior dihedral angle of OM at e
to be m minus the angle, measured in M, between the two faces containing e.
Another possible definition is as the angle, measured on e, between the exterior
normal vectors to the two faces of 9M containing e. The possible combinatorics
and boundary angles of the strictly hyperideal manifolds which have as their
extension a given geometrically finite hyperbolic 3-manifold N are described
in the following statement. It has non-empty intersection with the results of
[BB02, Rou04, Sch02].

Theorem 2.4. Let N be compact 3-manifold with boundary, whose interior
admits a complete hyperbolic metric. Let T be a graph, embedded in 0’ N, which
is the 1-skeleton of a cellular decomposition ¥ of O'N, and let w : 'y — (0, )
be a map from the set of edges of T to (0,7). There exists a strictly hyperideal
hyperbolic manifold M, which can be isometrically embedded in N with some
geometrically finite metric, with boundary combinatorics given by I' and exterior
dihedral angles described by w, if and only if:

(1) The cellular decomposition X is proper.

(2) For each simple closed path ~y in the dual graph T of T, which is homo-
topically trivial in M, the sum of the values of w on the edges of v is
strictly larger than 2w.

(3) For each open path ¢ in I'* which begins and ends on the same face f
of I'*, is not contained in the boundary of f, but is homotopic in M to
a segment in f, the sum of the values of w on the edges of ¢ is strictly
larger than .

This manifold M is then unique.

Note that the existence of a function w satisfying the requested conditions
implies constraints on I'; for instance, if M is a ball, I has to be the 1-skeleton of
a polytopal cellular decomposition (see [BS04, Sch02] for more details on this).

2.6. Proof of Theorem 1.7 from Theorem 2.4. Let N, I' and w be given
as in the statement of Theorem 1.7. Apply Theorem 2.4 to obtain a strictly
hyperideal hyperbolic metric A on N and a strictly hyperideal manifold M iso-
metrically embedded in (N,h). Let o be the CP!-structure induced on &' N
by (N,h), and let C' be the strictly hyperideal circle pattern defined on 9’ N
by the boundaries of the planes containing the faces of M. By construction, C
has the combinatorics dual to the combinatorics of I" and the intersection angles
determined by w. Moreover, the uniqueness in Theorem 1.7 will follow from the
uniqueness in Theorem 2.4 if we show that any strictly hyperideal circle pattern
in &' N, for a CP'-structures which is induced by a geometrically finite metric on
N, comes from a strictly hyperideal hyperbolic manifold isometrically embedded
in N (with some complete hyperbolic metric, not necessarily h).
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Let o be a CP!-structure on & N induced by a geometrically finite hyperbolic
metric g on N, and let C be a strictly hyperideal circle pattern in O'N for o. Let
g be the lift of g to the universal cover N of N; then (N, §) is isometrically iden-
tified with H?3, and the fundamental group m N of N acts on H? by isometries.
Let A C S? be its limit set.

Under the projection from N to N, &N lifts to the complement of A in S2.
The strictly hyperideal circle pattern C' lifts to an infinite set C' of circles in
S2 \ A, which accumulates close to A — each neighborhood of a point of A
contains an infinite number of circles. However C is still a strictly hyperideal
circle pattern in the sense of Definition 1.2 (except of course for the finiteness
condition). The other set of oriented circles appearing in the definition of a
hyperideal circle pattern, say C' = {C1,---,C,}, lifts to a set C' of disjoint
circles in S? \ A, which also accumulates close to A.

Now consider the images of C and C’ by the projective map ¢ of the Klein
model, which we call C, and C’é, respectively. We suppose that each circle of
(:’é bounds a disk smaller than a hemisphere (this can be achieved by applying a
projective transformation since the circles of C? bound disjoint disks). For each
¢ € C’, let s(¢’) be the point in R? which is dual to the oriented plane p’ such
that p' N S? = ¢. For each ¢ € C., let h(c) be the closed half-space, bounded by
the plane containing ¢, which contains ¢(A). The elementary properties of the
duality indicate that, for all ¢ € C, and all ¢/ € C’

e s(c’) € h(c) if and only if either the interior of ¢’ is disjoint from the
interior of ¢, or ¢ and ¢ intersect with angle at least /2.
e s(c’) € Oh(c) if and only if ¢ and ¢’ are orthogonal.
Remark 2.5. The intersection of the h(c), for ¢ € é’e, 1s equal to the convex
hull of the s(c¢'), for ¢ € C".

Proof. Let U := N . h(c). By definition, U is a convex subset of R3. Moreover,

for each ¢ € C’, ¢ is orthogonal to at least 3 of the circles in C., so that s(c)
is in Oh(c) for at least 3 elements of C,. Since s(¢’) is contained in h(c) for all
¢ € C, it follows that s(¢/) is an extreme point of U.

Conversely, let sy be an extreme point of U. If so € ¢(A), then sg =
lim,, . s(c,), for a sequence ¢, in C’. Otherwise, sy has to be outside the
closed ball of radius 1. Let pg be the dual oriented plane, let ¢ = pg N S?, and
let Dy be the open disk bounded by cg. Then, for all ¢ € C., so is not in the
interior of h(c), so that either Dy is disjoint from the interior of ¢, or 9Dy has an
intersection angle at least 7/2 with ¢. In addition, since sg is an extreme point
of U, there exist at least 3 elements ¢ € C, such that so € dh(c), so there exists
at least 3 elements ¢ € C, such that dDy is orthogonal to ¢. Going back to N
and then projecting to NN, this contradicts the last point of the definition of a
hyperideal circle packing, Definition 1.2. O

Let S := {s(¢)|¢ € C'}. By definition, S is invariant under the action of
71N on R?® (which is by projective transformations preserving S?), so that its
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convex hull is also invariant under the action of w1 N. Taking the quotient of
the convex hull of S by the action of 71 /N defines, in NV, a manifold with strictly
hyperideal boundary, whose combinatorics and boundary angles are as needed.
Thus Theorem 1.7 follows from Theorem 2.4.

3. Hyperideal polyhedra and hyperbolic convex cores

It remains, in this section, to prove Theorem 2.4. We will show here that it
is a simple consequence of a result of Otal [Ota94, BOO1].

3.1. Convex cores of hyperbolic manifolds. Let NV be a geometrically finite
hyperbolic 3-manifold (not a ball, a solid torus or the product of a torus by an
interval). We have defined above the convex core of N as the smallest non-
empty subset of N which is convex in the sense that, given a geodesic segment
v in N with endpoints in C, v C C. The convex core of N has finite volume (by
definition of a geometrically finite hyperbolic manifold).

The boundary of the convex core of N is a non-smooth surface in N which
is locally convex; it has a hyperbolic induced metric, but is “bent” along a
lamination (see [Thu80]), called the “pleating lamination”. The precise way
the bending occurs is described by a transverse measure defined on the pleating
lamination. We are interested here only in a very special case, where the support
of the pleating lamination is a disjoint union of simple closed curves; in this case
we say that the pleating lamination is rational.

In this case, the boundary of the convex core is a polyhedral-like surface. It
has totally geodesic faces, edges which are closed geodesics (corresponding to
the curves in the support of the pleating lamination) and no vertex. To each
edge is associated a number — describing the weight of the corresponding leaf
for the transverse measure of the pleating lamination — which is simply the
angle between the oriented normals of the “faces” on the two sides; see e.g.
[EM86, Bon01] for more on the local geometry of the boundary of the convex
core.

It follows from its definition that the convex core of N has the same topology
as V. Since the pleating lamination and its bending measure are topological in
nature, we can consider them on the boundary of N rather than the boundary
of its convex core.

3.2. A theorem of Otal. The possible transverse measures of the rational
pleating laminations of hyperbolic convex cores are precisely described by the
following result.

Theorem 3.1 (Otal [Ota94, BOO01]). Let N be a compact 3-manifold with bound-
ary, whose interior admits a complete hyperbolic metric. Let o be a measured
lamination on ON whose leaves are closed curves. There exists a non-fuchsian
geometrically finite metric g such that a is the measured pleating lamination
of the boundary of the convex core if and only if the following conditions are
satisfied:
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(1) Each leaf of a has weight at most .

(2) For all essential annulus or Mobius strip A in N, the total weight of 0A
18 strictly positive.

(3) For all essential disk D in N, the total weight of 0D is strictly larger
than 2.

This metric g is then unique (up to isotopy in N ).
The proof of this difficult result uses among other things a result of Hodgson
and Kerckhoff [HK98] on the rigidity of hyperbolic cone-manifolds.

3.3. Proof of Theorem 2.4 from Theorem 3.1. First note that condition
(1) of Theorem 2.4, that the cellular decomposition of @’ N is proper, is necessary.
If it were not satisfied, and if M were a manifold with hyperideal boundary as
described in the statement of Theorem 2.4, the boundary of the universal cover
M of M , considered as a complete convex polyhedral surface in H?, would
contain a non-trivial closed path contained in the union of the closures of two
faces. This is clearly impossible by convexity.
The rest of the proof proceeds in several steps.

1. The uniqueness in Theorem 2.4. Let N, I and w be as in the statement of
Theorem 2.4. Suppose first that, as stated in the theorem, there exists a strictly
hyperideal hyperbolic metric g on N such that the boundary combinatorics of
N is given by I' and its dihedral angles by w. Let N; be the truncated version
of N. So N, is a finite volume hyperbolic manifold with convex, polyhedral
boundary; its boundary has one face for each face of I', and one — induced by
the truncation — for each vertex of I' (i.e. for each hyperideal vertex of ).
Moreover, each face corresponding to a vertex of I' is orthogonal to each face
corresponding to an adjacent face of T'.

Consider another copy of N;, which we call N/, and glue N; to N/ along all
the couples of faces — one on N; and the other on N/ — corresponding to the
vertices of I'; let C be the resulting hyperbolic manifold. By construction, C has
finite volume — since Ny and N, have finite volume — and it has a “polyhedral”
boundary, with no vertex.

Each face f of I' has two corresponding faces, one, say F', on NNy, and the
other, say F’, on ON/. But, for each vertex v of I" adjacent to f, the faces on
ON; and ON] corresponding to v are orthogonal to F' and F’, respectively. If
follows that F' and F’ are two parts of the same face of C. Each edge of F' with,
on the other side, a face of dN; corresponding to a vertex of I' “disappears” in
C, while each edge of F' with on the other side a face of N; contained in a face
of ON becomes, in C, half of an edge of dC which is a closed curve.

The following description of 0C follows from those considerations. It has:

e One face F, for each face f of I', and F, is topologically a sphere with v
disks removed, where v is the number of vertices of f.

e One edge for each edge of I', and each of those edges is a closed curve.
The (exterior) dihedral angle at each edge is equal to the value of w on
the corresponding edge of I'.
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It cleary follows from this description that C' is the convex core of a geometrically
finite hyperbolic 3-manifolds, which has a rational pleating lamination. The
uniqueness in Theorem 3.1 shows that C' is uniquely determined by I' and by w,
and the uniqueness in Theorem 2.4 follows.

2. Conditions (2) and (3) of Theorem 2.4 are necessary. For condition
(2), consider a closed curve « as in the statement of condition (2), so that v is a
sequence of faces of M, with two consecutive faces sharing an edge. Associate to
~ a curve v in 9M , which intersects the same faces in the same order. Following
the construction made in step (1), 7' can be considered as a closed curve in the
boundary of C. Since ~ is simple, this curve is homotopically non-trivial in
0C', while it is homotopically trivial in C. But 0C' lifts to a complete, convex,
polyhedral surface in H2. It is known that, for any non-trivial closed curve
on such a surface, the sum of the exterior dihedral angles of the edges crossed
by the closed curve is strictly larger than 27, see [RH93, CD95, Sch96, Sch98].
Condition (2) follows.

For condition (3), consider an open curve ¢ as in the statement of condition
(3). In the manifold C constructed in step (1) above, consider two copies of ¢,
one on 9N, and the other on ON/; they can be glued at their endpoints to obtain
a closed, non-trivial curve in C, with boundary in dC. The same argument as
for condition (2) thus shows that the sum of the exterior dihedral angles of the
edges of OC crossed by this closed path has to be strictly larger than 27, and
the statement of condition (3) follows.

3. Construction of a manifold with a rational measured lamination.
To prove the existence of M, we consider a 3-manifold C along with a rational
measured lamination a on dC corresponding to the manifold C' obtained above.
So C is obtained by gluing two copies of N, which we call N and N’, along a set of
disks, one for each vertex of I'. Since the interior of N has a complete hyperbolic
metric, N is irreducible and homotopically atoroidal; since C is obtained by
gluing two copies of N along some disks in the boundaries, it follows that C is
also irreducible and homotopically atoroidal (and C is not the interval bundle
over the Klein bottle), so that C admits a complete hyperbolic metric.

The lamination « has one closed curve for each edge of I', so that is has a
finite number of closed leaves. The transverse measure we consider is the one
given, for each leaf of «, by the value of w on the corresponding edge of T
Clearly hypothesis (1) of Theorem 3.1 is satisfied.

4. Proof that hypothesis (3) of Theorem 3.1 is satisfied. Let D be an
essential disk in C. We can suppose (applying a small deformation if necessary)
that its boundary 0D C OC is transverse to the edges of dC. In addition, it is
possible to make two kinds of deformations of D to obtain a simpler picture.

e Suppose that some connected component D’ of DN N is a (closed) disk
in the interior of D. Then 9D’ is contained in one of the disks along
which N is glued to N’. Since N is irreducible, D’ can be deformed to
the disk in N N N’ bounded by dD’. It is then possible to “push” a
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neighborhood of D’ in D into N’. The same argument can be applied
to a connected component D’ of D N N’ under the same hypothesis.

e Suppose that some connected component D’ of DN N is such that 0D’ =
cUcd, where ¢ € 9D NIN and ¢ € N N N’ are connected curves.
Suppose moreover that ¢ remains in the union of the faces of 0N which
are adjacent to the disk of NN N’ containing ¢/. Then the same argument
shows that a neighborhood of D’ in D can be “pushed” into N’. Again
the same argument works if D’ C N'.

Finally, perturbing D a little if necessary, we suppose that D is transverse to
the surface N N N’ between N and N'.

We associate to 0D a closed path ~ in the dual graph I'* of ', which follows
the edges dual to the edges crossed by dD. The total weight of 0D for the
transverse measure « is equal to the sum of the values of w on the edges of ~. If
D C N (orif D C N’) then hypothesis (3) of Theorem 3.1 is a direct translation
of hypothesis (1) of Theorem 2.4. We now suppose that it is not the case.

Consider the connected components Dy, -- - , Dy of either (DNN) or (DNN").
By the simplifications done above, each of the D; has non-empty intersection
with 0D. Since D is a disk, at least two of those connected components, say
Dy and Ds, have a boundary which is the union of one (connected) curve of
0D and of one connected component of D NN N N’. Then the curve 9D NOD
(resp. 0D2 N OD) is in N N IC (or in IN’' N IC) and begins and ends on a
truncation face fi (resp. f2). Moreover, the deformation made above shows
that 0Dy, N OD (resp. 0D2 N OD) does not remain in the faces adjacent to fi
(resp. f2). Therefore hypothesis (2) of Theorem 2.4 shows that its total weight
for « is strictly larger than 7. It follows that the total weight of 0D for « is
strictly larger than 27, so that hypothesis (3) of Theorem 3.1 is valid.

5. Proof that hypothesis (2) of Theorem 3.1 is satisfied. Let A be an
essential annulus in C, such that the total weight of 0A for « is zero; then each
connected component of JA is contained in one of the faces of C. It follows that
each of the connected components of A enters both N and N’, otherwise it
would be a closed curve in a convex cell, and A could not be essential.

We can suppose that A is transverse to N N N’. Note that no connected
component of AN (N N N’) is a closed non-trivial loop in the interior of A,
because otherwise — since N N N’ is the disjoint union of a finite number of
disks — A could not be an essential annulus.

Moreover, if some connected component of AN (N N N') is a homotopically
trivial loops in A, we can suppress it by deforming A, as described for disks
in the previous step. So we can suppose that all the connected components of
AN (NN N’) intersect 0A. The same deformation argument can be applied
if one connected component of AN (N N N’) has both endpoints on the same
connected component of 0A. So we can suppose that all connected components
of AN (N N N’) go from one connected component of A to the other.
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Let D be one of the connected components of either AN N or AN N’. Then
D is a strip in A, bounded by two curves, each going from one of the connected
components of JA to the other. So D is a disk in N (or in N’), with boundary
in ON (or ON’) a curve which intersects the closure of at most two cells of " in
ON (or ON') corresponding to the faces of C containing the two boundary curves
of A. If D is essential, this is impossible since it contradicts the hypothesis that
the cellular decomposition of 9’ N is proper. However, if none of the connected
component of ANN or ANN' is essential, A is not essential. The same argument
can be used if A is a Mbius strip, and this shows that hypothesis (2) in Theorem
3.1 is valid.

6. End of the proof. Theorem 3.1 shows that there exists a unique hyperbolic
metric h on C such that (C, h) is the convex core of a geometrically finite mani-
fold, with rational pleating lamination, with pleating lamination given by I' and
transverse measure given by «. By the uniqueness, (C,h) can be cut along to-
tally geodesic surfaces to obtain hyperbolic metrics on N and N’, corresponding
to truncated hyperideal metrics. Theorem 2.4 follows.
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