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A NOTE ON DIV CURL INEQUALITIES

Loredana Lanzani and Elias M. Stein

Recently a series of interesting theorems have been proved by Bourgain,
Brezis, Mironescu, and Van Schaftingen, [1],[2],[3],[7], that involve the diver-
gence and curl of vector fields.

Among the many results obtained is the following surprising inequality:

Theorem A. (Bourgain and Brezis [2]). Suppose Z is a smooth vector field,
Z(x) = (Z1(x), . . . , Zn(x)), of compact support in R

n, with n ≥ 3. If curl Z = f
and div Z = 0, then

‖ Z ‖Lr ≤ A ‖ f ‖L1 , where r = n/(n − 1) .(1)

(Note: We state this result, and others below, for smooth functions or forms
of compact support. More general formulations then follow by standard limiting
arguments).

The result above is remarkable in view of the following facts. First, the
inequality (1) fails for n = 2. Secondly, its variant,

‖ Z ‖r ≤ A(‖ f ‖L1 + ‖ g ‖L1),

with div Z = g, fails for every n ≥ 2.
The inequality (1) is reminiscent of a famous inequality of Gagliardo and

Nirenberg, valid for all n ≥ 1. Here F is a scalar smooth function of compact
support in R

n.

Theorem B.

‖ F ‖Lr ≤ A ‖ �F ‖L1 , r = n/(n − 1) .(2)

However, it should be observed that the proof of (1) is subtler than that of
(2). The question that arises is of finding a common general context for these
theorems. It is the purpose of this note to help to clarify this issue by pointing
out how the following result, formulated in the language of the (real) Hodge -
de Rham complex in R

n, can be obtained by using existing techniques.
We deal with smooth q-forms u, with compact support, and denote by du

and d∗u, the exterior derivative and co-exterior derivative of u, which are q + 1
and q−1 forms, respectively. (For basic facts about the Hodge complex, see e.g.
[4].) We consider the system
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{
du = f
d∗u = g .

We then ask if an inequality of the form

‖ u ‖Lr ≤ A(‖ f ‖L1 + ‖ g ‖L1) , r = n/(n − 1)(3)

is valid, and if not, what are appropriate substitutes.

Theorem. If u is a smooth q-form with compact support on R
n then:

(a) The inequality (3) holds when q is neither 1 nor n − 1.
(b) When q = 1 a substitute for (3) holds with ‖ g ‖L1 replaced by ‖ g ‖H1 , with

H1 the real Hardy space. Similarly for q = n − 1, when we replace ‖ f ‖L1

by ‖ f ‖H1 .
We should note first that the case q = 0, q = n are merely restatements of

Theorem B, while the case q = 1, when g = 0, is Theorem A. We should add
that we have been informed by Bourgain and Brezis that the above theorem can
also be deduced from general results of theirs, contained in a forthcoming paper.

While there are several approaches possible to the proof of this theorem, the
one we outline is an adaptation of an argument in [7]. It is based on the following
estimate. We have stated this in a sharper form than needed in the present case,
because the stronger inequality may turn out to be useful later.

On R
N , besides the spaces Lp(RN ), we need the corresponding “weak-type”

space of functions F , those for which m{x : |F (x)| > α} ≤ A/αp for all α > 0.
For any F we denote by F ∗ the equi-measurable decreasing rearrangement of |F |
on (0,∞). Then F satisfies this weak-type inequality when the quantity sup

0 < t <∞
t1/pF ∗(t) is finite, and if 1 < p < ∞, this quantity is equivalent to a norm on
the corresponding Lorentz space Lp,∞. See e.g. [6], Chapter V, §3.

Next, on R
n we define a space of functions that are of weak-type in all but

one variable. More precisely for x ∈ R
n write x as (x1, x̄), x1 ∈ R, x̄ ∈ R

N ,
N = n − 1, and define the space L̃p in terms of its norm by

‖ F ‖L̃p =
(∫

R1
‖ F (x1, ·) ‖p

Lp,∞(Rn−1) dx1

)1/p

.

One observes that ‖ F ‖L̃p ≤ c ‖ F ‖Lp , so Lp ⊂ L̃p, but the inclusion is
strict.
Lemma 1. Suppose F1, F2, . . . Fn are smooth functions of compact support with
∂F1

∂x1
=

n∑
k=2

∂Fk

∂xk
, then

∣∣∣∣∫
Rn

F1(x) Φ(x) dx

∣∣∣∣ ≤ c

(
n∑

k=1

‖ Fk ‖L1

)
‖ � Φ ‖L̃p(4)
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with p = n.
This is based on the following.

Lemma 2. Suppose Φ is smooth and has compact support in R
N . Then for

every δ > 0 we can write Φ = Φ1 + Φ2 with

sup
x∈RN

|Φ1(x)| δ−γ + sup
x∈RN

|�Φ2(x)| δ1−γ ≤ c ‖ �Φ ‖Lp,∞(RN ) ,

as long as p > N and γ = 1 − N/p.
To prove Lemma 2, recall that Φ = K ∗�Φ, with K = cNx/|x|N . Decompose K
as K1 +K2, where K1(x) = K(x)η(x/δ), with η a smooth cut-off function which
is 1 when |x| ≤ 1/2, and is supported in |x| ≤ 1. We then set Φj = Kj ∗ �Φ,

j = 1, 2, and use the basic rearrangement inequality
∫

RN

|F (x)| |G(x)| dx ≤∫ ∞

0

F ∗(t) G∗(t) dt. First we set F = K1 and G = �Φ. A calculation shows that

F ∗(t) ≤ c t−
N−1

N , for 0 ≤ t ≤ c1δ
N , and F ∗(t) = 0, otherwise. Hence,

|Φ1| ≤ c′
∫ c1δN

0

t−
N−1

N t−/p ‖ �Φ ‖Lp,∞ dt = c δγ ‖ �Φ ‖Lp,∞ .

Similarly, �Φ2 = �K2 ∗ �Φ. With F = �K2, another calculation shows that
F ∗(t) ≤ c (t + c1 δN )−1. Thus one has |�Φ2| ≤ c δ−1+γ ‖ �Φ ‖Lp,∞ , because∫ ∞

0

(t + c1 δN )−1 t−1/p dt = c̄ δ−1+γ . This gives Lemma 2.

To prove Lemma 1, one can now follow the argument in Van Schaftingen [7].
For each function F on R

n we write F y for the slice on R
n−1 obtained by freezing

the x1 variable as y, that is F y(x̄) = F (y, x̄).

We set J(y) =
∫

Rn−1
F y

1 (x̄) Φy(x̄) dx̄. Then using the decomposition of Lemma

2 for each y, with N = n − 1, we get that J(y) = J1(y) + J2(y), where Jj(y) is
obtained from J(y) by replacing Φy by Φy

j . Thus we obtain

|J1(y)| ≤ c δγ ‖ F y
1 ‖L1(RN ) ‖ �Φy ‖Lp,∞(RN ) .

Also J2(y)

=
∫ y

−∞

∫
RN

∂

∂x1
(F1(x1, x̄)) Φy

2(x̄) dx1dx̄

=
n∑

k=2

∫ y

−∞

∫
RN

∂Fk

∂xk
(x1, x̄) Φy

2(x̄) dx1dx̄

= −
n∑

k=2

∫ y

−∞

∫
RN

Fk(x, x̄)
∂

∂xk
Φy

2(x̄) dx1dx̄ .
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This gives |J2(y)| ≤ c δ−1+γ

(
n∑

k=1

‖ Fk ‖L1(Rn)

)
‖ �Φy ‖Lp,∞(Rn). We then

combine these estimates, choosing δ = δ(y) = ‖ F y
1 ‖−1

L1(Rn) ·
n∑

k=1

‖ Fk ‖L1(Rn)

and integrate in y, using Hölder’s inequality (with exponents r = n−1
n and p = n)

and the fact that γ = 1 − N/p = 1 − n−1
n .

We come to the proof of the theorem, and first recall some relevant notation.
A q-form u on R

n can be written in standard coordinates u =
∑
|I|=q

uI dxI . Here

uI are scalar functions; the I’s range over multi-index sets of degree q, that is,
each I is of the form {i1 < i2 < · · · < iq}, with 1 ≤ ij ≤ n, and |I| designates
the degree of q; also dxI is an abbreviation for dxi1 ∧ dxi2 · · · ∧ dxiq

. If v

is another q-form, v =
∑
|I|=q

vI dxI , then the inner product (u, v) is defined as

∑
|I|=q

∫
Rn

uI(x) vI(x) dx. We also note that if u and v are smooth forms of degrees

q and q+1 respectively, and of compact support, we have (du, v) = (u, d∗v). We
write ‖ u ‖Lr for

∑
|I|=q

‖ uI ‖Lr , whenever u is a q-form.

Now to prove the inequality (3) it suffices to prove that

|(u, ϕ)| ≤ A(‖ f ‖L1 + ‖ g ‖L1) ‖ ϕ ‖Lp , with p = n − 1 ,(5)

whenever ϕ is a smooth q-form of compact support and du = f , d∗u = g. Assume
first that 2 ≤ q ≤ n − 2. Let G be the usual fundamental solution operator for
� on R

n. Then since � = d∗d + dd∗, we have have that

(u, ϕ) = (u, (d∗d + dd∗)G(ϕ)) = (du, dG(ϕ)) + (d∗u, d∗ G(ϕ)) .

Now (du, dG(ϕ)) = (f,Φ), with f and Φ the q + 1 forms given respectively
as f = du, Φ = dG(ϕ). Thus, to estimate (du, dG(ϕ)) it suffices to estimate∫

Rn

fI(x) ΦI(x) dx, for each multi-index I of degree q + 1.

However since q ≤ n − 2, q + 1 ≤ n − 1, there is an index i, 1 ≤ i ≤ n,
with i /∈ I. To simplify the notation we may relabel the indices 1, 2, · · · , n, so
that i = 1. Next for each k, k �= 1, define Ik to be the multi-index of degree
q +1 obtained from I by adding the index 1, but removing the index k, if k ∈ I.
(Otherwise, if k /∈ I, leave Ik as undefined.) Now df = 0, since du = f , and as
a result

∂fI

∂x1
=

n∑
k=2

± ∂fIk

∂xk
,
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for an appropriate choice of ± signs, where it is understood that if k /∈ I, k ≥ 2,
the corresponding term in the sum does not appear. Hence by Lemma 1, with
F1 = fI , Fk = ±fIk

, we get∣∣∣∣∫ fI ΦI dx

∣∣∣∣ ≤ c ‖ f ‖L1 ‖ � Φ ‖L̃p ≤ c ‖ f ‖L1‖ � Φ ‖Lp

≤ c ‖ f ‖L1 ‖ ϕ ‖Lp , since ‖ � Φ ‖Lp = ‖ �dG(ϕ) ‖Lp .

A similar estimate works for (d∗u, d∗ G(ϕ)) and (5) is proved and thus also
(3). In the case q = 0 the term (d∗u, d∗ G(ϕ)) is not present, and we proceed as
before. Similarly for q = n. Finally when q = 1, Lemma 2 does not apply to the

term (d∗u, d∗ G(ϕ)). We use instead the fact that with ϕ =
n∑

k=1

ϕk(x) dxk,

(d∗u, d∗ G(ϕ)) = −(g,
n∑

k<1

∂

∂xk
G(ϕk)) = (I1(g) ,

n∑
k=1

Rk(ϕk)) ,

where Rk are the Riesz transforms, and I1 maps H1 to Lr, r = n−1
n . (See e.g.

Stein [5], p.136). This gives |(u, ϕ)| ≤ c(‖ f ‖L1 + ‖ g ‖H1)‖ ϕ ‖Lp , and proves
that ‖ u ‖Lr≤ c(‖ f ‖L1 + ‖ g ‖H1), when q = 1. A similar argument works in
the case q = n − 1, and this completes the proof of the theorem.
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